How Dennis and I intersected

Jim Stasheff
UNC-CH and U Penn
May $28^{\text {th }}, 2011$

Intersection

χ

Intersection

Primary intersection: Rational homotopy theory and ∞-algebra

Intersection

Primary intersection: Rational homotopy theory and ∞-algebra
Two elegant approaches:
Dennis' minimalist/computational Quillen's 'maximalist'/categorical.

Intersection

Primary intersection: Rational homotopy theory and ∞-algebra
Two elegant approaches:
Dennis' minimalist/computational Quillen's 'maximalist'/categorical.

The secret? L_{∞}-algebra in Dennis' minimal models.

Intersection

Primary intersection: Rational homotopy theory and ∞-algebra
Two elegant approaches:
Dennis' minimalist/computational
Quillen's 'maximalist'/categorical.
The secret? L_{∞}-algebra in Dennis' minimal models.

OR

Symmetrising the cup product over the integers replaces associativity by ∞-homotopy associativity.

Transverse intersection

χ

Manifolds?

Manifolds of the homotopy type of (non-Lie) groups

PD spaces

A point of intersection - Poincaré duality spaces

PD spaces

A point of intersection - Poincaré duality spaces

$$
S p(5) / S U(5)
$$

PD spaces

A point of intersection - Poincaré duality spaces

$$
\begin{gathered}
S p(5) / S U(5) \\
S^{6} \times S^{25} \# S^{10} \times S^{21}
\end{gathered}
$$

PD spaces

A point of intersection - Poincaré duality spaces

$$
\begin{gathered}
S p(5) / S U(5) \\
S^{6} \times S^{25} \# S^{10} \times S^{21} \\
<6,6,10>=21 \text { and }<6,10,10>=25
\end{gathered}
$$

PD spaces

A point of intersection - Poincaré duality spaces

$$
\begin{gathered}
S p(5) / S U(5) \\
S^{6} \times S^{25} \# S^{10} \times S^{21} \\
<6,6,10>=21 \text { and }<6,10,10>=25 \\
<6,6,10>10=6<6,10,10>
\end{gathered}
$$

PD spaces

A point of intersection - Poincaré duality spaces

$$
\begin{gathered}
S p(5) / S U(5) \\
S^{6} \times S^{25} \# S^{10} \times S^{21} \\
<6,6,10>=21 \text { and }<6,10,10>=25 \\
<6,6,10>10=6<6,10,10> \\
\text { Larry Taylor's special Massey products } \\
<x, ?, z>
\end{gathered}
$$

PD theorem

Theorem
For simply connected rational Poincaré duality spaces Y with fundamental class $\mu \in H^{N}$, there is a dg Lie algebra model $\mathcal{L}(H(Y))$ with

$$
d(\mu)=1 / 2 \Sigma\left[x_{i}, x^{i}\right],
$$

where $\left\{x_{i}\right\}$ is a basis for $H(Y)$ in degrees $k: 0<k<N$ and $\left\{x^{i}\right\}$ is a dual basis.

PD theorem

Theorem
For simply connected rational Poincaré duality spaces Y with fundamental class $\mu \in H^{N}$, there is a dg Lie algebra model $\mathcal{L}(H(Y))$ with

$$
d(\mu)=1 / 2 \Sigma\left[x_{i}, x^{i}\right],
$$

where $\left\{x_{i}\right\}$ is a basis for $H(Y)$ in degrees $k: 0<k<N$ and $\left\{x^{i}\right\}$ is a dual basis.

Equivalently $Y=X \cup e^{N}$ where e^{N} is attached by ordinary Whitehead products (not iterated) with respect to some basis of the rational homotopy groups of X.

Work with Steve Halperin

Filtered dgca models and perturbations

Work with Steve Halperin

Filtered dgca models and perturbations
Given a rationally nilpotent space or dgca $\left(A, d_{A}\right)$ and an isomorphism $\phi: \mathcal{H} \rightarrow H\left(\left(A, d_{A}\right)\right)$, we perturbed the minimal model for the cohomology algebra \mathcal{H} to create a canonically filtered Sullivan model for $\left(A, d_{A}\right)$.

Work with Steve Halperin

Filtered dgca models and perturbations
Given a rationally nilpotent space or dgca $\left(A, d_{A}\right)$ and an isomorphism $\phi: \mathcal{H} \rightarrow H\left(\left(A, d_{A}\right)\right)$, we perturbed the minimal model for the cohomology algebra \mathcal{H} to create a canonically filtered Sullivan model for $\left(A, d_{A}\right)$.

That minimal model is a purely algebraic construct closely related to a multiplicative resolution of \mathcal{H} by free graded commutative algebras, sometimes called the Koszul-Tate resolution, (and extended to the graded case by Jozefiak).

Perturbations

Definition

For a filtered complex (C, d) with d of degree 1 , a perturbation is a linear map $p: C \rightarrow C$ of degree 1 such that p lowers filtration by at least 1 and

$$
(d+p)^{2}=0
$$

Perturbations

Definition

For a filtered complex (C, d) with d of degree 1 , a perturbation is a linear map $p: C \rightarrow C$ of degree 1 such that p lowers filtration by at least 1 and

$$
(d+p)^{2}=0
$$

Equivalently,

$$
[d, p]+1 / 2[p, p]=0
$$

Perturbations

Definition

For a filtered complex (C, d) with d of degree 1 , a perturbation is a linear map $p: C \rightarrow C$ of degree 1 such that p lowers filtration by at least 1 and

$$
(d+p)^{2}=0
$$

Equivalently,

$$
[d, p]+1 / 2[p, p]=0
$$

Nowadays, p is called a Maurer-Cartan or MC element.

Perturbations

Definition

For a filtered complex (C, d) with d of degree 1 , a perturbation is a linear map $p: C \rightarrow C$ of degree 1 such that p lowers filtration by at least 1 and

$$
(d+p)^{2}=0
$$

Equivalently,

$$
[d, p]+1 / 2[p, p]=0
$$

Nowadays, p is called a Maurer-Cartan or MC element.
If (A, d) is a differential graded algebra, then p is to be a derivation.

Perturbations

Definition

For a filtered complex (C, d) with d of degree 1 , a perturbation is a linear map $p: C \rightarrow C$ of degree 1 such that p lowers filtration by at least 1 and

$$
(d+p)^{2}=0
$$

Equivalently,

$$
[d, p]+1 / 2[p, p]=0
$$

Nowadays, p is called a Maurer-Cartan or MC element.
If (A, d) is a differential graded algebra, then p is to be a derivation.
There is an intimate relation between perturbations and deformations.

Obstructions

Given a cohomology isomorphism f, Steve and I used the filtered models to construct a sequence of obstructions $O_{n}(f)$ (of classical type in algebraic topology) to the realization of f by a map of models.

Obstructions

Given a cohomology isomorphism f, Steve and I used the filtered models to construct a sequence of obstructions $O_{n}(f)$ (of classical type in algebraic topology) to the realization of f by a map of models.

Theorem

If S and T are rationally nilpotent spaces and

$$
f: H^{*}(S ; \mathbb{Q}) \rightarrow H^{*}(T ; \mathbb{Q})
$$

is an isomorphism of algebras, f can be realized by a rational homotopy equivalence if and only if the obstructions $O_{n}(f)$ all vanish.

Obstructions

Given a cohomology isomorphism f, Steve and I used the filtered models to construct a sequence of obstructions $O_{n}(f)$ (of classical type in algebraic topology) to the realization of f by a map of models.

Theorem

If S and T are rationally nilpotent spaces and

$$
f: H^{*}(S ; \mathbb{Q}) \rightarrow H^{*}(T ; \mathbb{Q})
$$

is an isomorphism of algebras, f can be realized by a rational homotopy equivalence if and only if the obstructions $O_{n}(f)$ all vanish.

The next obvious question:
"How different can rational homotopy types be if the cohomology algebras agree?"

Intrinsic formality

Theorem
If \mathcal{H} is $(n-1)$ - connected and $\mathcal{H}^{i}=0$ for $i \geq 3 n-1$, then \mathcal{H} is intrinsically formal, i.e., there is only one homotopy type with the given cohomology algebra.

Intrinsic formality

Theorem
If \mathcal{H} is $(n-1)$ - connected and $\mathcal{H}^{i}=0$ for $i \geq 3 n-1$, then \mathcal{H} is intrinsically formal, i.e., there is only one homotopy type with the given cohomology algebra.

For PD spaces, the hypothesis can be extended to $\mathcal{H}^{i}=0$ for $i \geq 4 n-1$.

Work with Mike Schlessinger

Work with Mike Schlessinger

The Koszul-Tate resolution of

$$
Q\left[x_{1}, x_{2}\right] / x_{i} x_{j}=0
$$

Mike: pure algebra
Jim: the cohomology of $S^{2} \vee S^{2}$

Work with Mike Schlessinger

The Koszul-Tate resolution of

$$
Q\left[x_{1}, x_{2}\right] / x_{i} x_{j}=0
$$

Mike: pure algebra
Jim: the cohomology of $S^{2} \vee S^{2}$
A particular non-minimal Sullivan model of the formal space with a given cohomology algebra \mathcal{H}, using the adjointness between dgcas and dg Lie coalgebras, cf. Quillen and John Moore.

Quillen's approach to rational homotopy theory

The adjointness between dgcas and dg Lie coalgebras or rather between dgLie algebras and dgc coalgebras.

Quillen's approach to rational homotopy theory

The adjointness between dgcas and dg Lie coalgebras or rather between dgLie algebras and dgc coalgebras.

For a space X, there is a $\operatorname{dgL} \mathcal{L}_{X}$ such that $H\left(\mathcal{L}_{X}\right)$ is isomorphic as graded Lie algebra to the rational homotopy groups of the loop space of X with respect to the Samelson product.

Quillen's approach to rational homotopy theory

The adjointness between dgcas and dg Lie coalgebras or rather between dgLie algebras and dgc coalgebras.

For a space X, there is a $\operatorname{dgL} \mathcal{L}_{X}$ such that $H\left(\mathcal{L}_{X}\right)$ is isomorphic as graded Lie algebra to the rational homotopy groups of the loop space of X with respect to the Samelson product.

Baues and Lemaire gave a construction of \mathcal{L}_{X} as a free graded Lie algebra on the desuspension of the reduced homology of X.

Quillen's approach to rational homotopy theory

The adjointness between dgcas and dg Lie coalgebras or rather between dgLie algebras and dgc coalgebras.

For a space X, there is a $\operatorname{dgL} \mathcal{L}_{X}$ such that $H\left(\mathcal{L}_{X}\right)$ is isomorphic as graded Lie algebra to the rational homotopy groups of the loop space of X with respect to the Samelson product.

Baues and Lemaire gave a construction of \mathcal{L}_{X} as a free graded Lie algebra on the desuspension of the reduced homology of X.

Quillen applies a generalized Chevalley-Eilenberg construction \mathcal{C} to obtain a dgc coalgebra model.

Quillen's approach to rational homotopy theory

The adjointness between dgcas and dg Lie coalgebras or rather between dgLie algebras and dgc coalgebras.

For a space X, there is a $\operatorname{dgL} \mathcal{L}_{X}$ such that $H\left(\mathcal{L}_{X}\right)$ is isomorphic as graded Lie algebra to the rational homotopy groups of the loop space of X with respect to the Samelson product.

Baues and Lemaire gave a construction of \mathcal{L}_{X} as a free graded Lie algebra on the desuspension of the reduced homology of X.

Quillen applies a generalized Chevalley-Eilenberg construction \mathcal{C} to obtain a dgc coalgebra model.

Chains are more natural than cochains, hence the use of differential graded coalgebras.
Compare also equivalent work of John Moore.

The special model $\mathcal{A}\left(s \mathcal{L}^{c} \mathcal{H}\right)$

The special model $\mathcal{A}\left(s \mathcal{L}^{\mathcal{C}} \mathcal{H}\right)$

Apply the free graded Lie coalgebra \mathcal{L}^{c} functor to the shifted/suspended augmentation ideal of \mathcal{H}, with the differential $d_{\mathcal{L}^{c}}$ defined by extending the multiplication in \mathcal{H} as a coderivation (after shifting).

The special model $\mathcal{A}\left(s \mathcal{L}^{c} \mathcal{H}\right)$

Apply the free graded Lie coalgebra \mathcal{L}^{c} functor to the shifted/suspended augmentation ideal of \mathcal{H}, with the differential $d_{\mathcal{L}^{c}}$ defined by extending the multiplication in \mathcal{H} as a coderivation (after shifting).

Form the free graded commutative algebra $\mathcal{A}=\mathcal{A}\left(s \mathcal{L}^{\mathcal{C}} \mathcal{H}\right)$ with differential $d_{\mathcal{A}}$ determined by $d_{s \mathcal{L}^{c}}$ and the cobracket.

The special model $\mathcal{A}\left(s \mathcal{L}^{\mathcal{C}} \mathcal{H}\right)$

Apply the free graded Lie coalgebra \mathcal{L}^{c} functor to the shifted/suspended augmentation ideal of \mathcal{H}, with the differential $d_{\mathcal{L}^{c}}$ defined by extending the multiplication in \mathcal{H} as a coderivation (after shifting).

Form the free graded commutative algebra $\mathcal{A}=\mathcal{A}\left(s \mathcal{L}^{c} \mathcal{H}\right)$ with differential $d_{\mathcal{A}}$ determined by $d_{s \mathcal{L}^{c}}$ and the cobracket.

This construction defines a rational homotopy space A which is manifestly formal.

The special model $\mathcal{A}\left(s \mathcal{L}^{\mathcal{C}} \mathcal{H}\right)$

Apply the free graded Lie coalgebra \mathcal{L}^{c} functor to the shifted/suspended augmentation ideal of \mathcal{H}, with the differential $d_{\mathcal{L}^{c}}$ defined by extending the multiplication in \mathcal{H} as a coderivation (after shifting).

Form the free graded commutative algebra $\mathcal{A}=\mathcal{A}\left(s \mathcal{L}^{c} \mathcal{H}\right)$ with differential $d_{\mathcal{A}}$ determined by $d_{s \mathcal{L}^{c}}$ and the cobracket.

This construction defines a rational homotopy space A which is manifestly formal.

Given a rational homotopy space $\left(A, d_{A}\right)$ and an isomorphism

$$
\phi: \mathcal{H} \rightarrow H(A),
$$

perturb $d_{\mathcal{A}}$ to a model for $\left(A, d_{A}\right)$.

The control yoga

The control yoga

Rough: A deformation problem is controlled by a dg Lie algebra.

The control yoga

Rough: A deformation problem is controlled by a dg Lie algebra.
Fine: A deformation problem is controlled by a dg Lie algebra, unique up to homtopy equivalence as an L_{∞}-algebra.

The control yoga

Rough: A deformation problem is controlled by a dg Lie algebra.
Fine: A deformation problem is controlled by a dg Lie algebra, unique up to homtopy equivalence as an L_{∞}-algebra.

Finer: A deformation problem is controlled by an L_{∞}-algebra, unique up to homtopy equivalence as an L_{∞}-algebra.

Dg Lie algebras for perturbations

Perturbations of \mathcal{A} sit naturally in a sub-dg Lie algebra of $\operatorname{Der}\left(\mathcal{A}\left(s \mathcal{L}^{c} \mathcal{H}\right)\right)$. Perturbations of $\mathcal{L}^{c} \mathcal{H}$ sit naturally in a sub-dg Lie algebra of $\operatorname{Coder}\left(\mathcal{L}^{c} \mathcal{H}\right)$.

Dg Lie algebras for perturbations

Perturbations of \mathcal{A} sit naturally in a sub- dg Lie algebra of $\operatorname{Der}\left(\mathcal{A}\left(s \mathcal{L}^{c} \mathcal{H}\right)\right)$. Perturbations of $\mathcal{L}^{c} \mathcal{H}$ sit naturally in a sub-dg Lie algebra of $\operatorname{Coder}\left(\mathcal{L}^{c} \mathcal{H}\right)$.
For our model \mathcal{A}, the total degree minus resolution degree is called the weight and similarly for $\mathcal{L}^{\mathcal{C}} \mathcal{H}$.

Definition

Denote by $\left.\operatorname{Pert} \mathcal{A}\left(s \mathcal{L}^{c} \mathcal{H}\right)\right)$ the dg Lie algebra of weight decreasing derivations of $\left.\mathcal{A}\left(s \mathcal{L}^{c}(\mathcal{H})\right)\right)$.
Denote by $\left.\operatorname{Pert}\left(\mathcal{L}^{c} \mathcal{H}\right)\right)$ the $d g$ Lie algebra of weight decreasing coderivations of $\mathcal{L}^{\mathcal{C}} \mathcal{H}$.

Main Homotopy Theorem

Main Homotopy Theorem
Let \mathcal{H} be a simply connected graded commutative algebra of finite type.
The set of augmented homotopy types of dgca's

$$
\left(A, d_{A}, \phi: \mathcal{H} \approx H(A)\right)
$$

is in 1-1 correspondence with the path components of $\hat{\mathcal{C}}\left(\operatorname{Pert} \mathcal{A}\left(s \mathcal{L}^{c}(\mathcal{H})\right)\right)$.

Main Homotopy Theorem

Main Homotopy Theorem

Let \mathcal{H} be a simply connected graded commutative algebra of finite type.
The set of augmented homotopy types of dgca's

$$
\left(A, d_{A}, \phi: \mathcal{H} \approx H(A)\right)
$$

is in 1-1 correspondence with the path components of $\hat{\mathcal{C}}\left(\operatorname{Pert} \mathcal{A}\left(s \mathcal{L}^{c}(\mathcal{H})\right)\right)$.

A graded coalgebra map from the rationals Q as a coalgebra serves as a "point" and a "path" is an appropriate kind of homotopy between points.

Main Homotopy Theorem

Main Homotopy Theorem

Let \mathcal{H} be a simply connected graded commutative algebra of finite type.
The set of augmented homotopy types of dgca's

$$
\left(A, d_{A}, \phi: \mathcal{H} \approx H(A)\right)
$$

is in 1-1 correspondence with the path components of $\hat{\mathcal{C}}\left(\operatorname{Pert} \mathcal{A}\left(s \mathcal{L}^{c}(\mathcal{H})\right)\right)$.

A graded coalgebra map from the rationals Q as a coalgebra serves as a "point" and a "path" is an appropriate kind of homotopy between points.

Two perturbed augmented models are homotopy equivalent if they are related by an automorphism of the form: Id plus "terms which decrease weight",

Main Homotopy Theorem

Main Homotopy Theorem

Let \mathcal{H} be a simply connected graded commutative algebra of finite type. The set of augmented homotopy types of dgca's

$$
\left(A, d_{A}, \phi: \mathcal{H} \approx H(A)\right)
$$

is in 1-1 correspondence with the path components of $\hat{\mathcal{C}}\left(\operatorname{Pert} \mathcal{A}\left(s^{c}(\mathcal{H})\right)\right)$.

A graded coalgebra map from the rationals Q as a coalgebra serves as a "point" and a "path" is an appropriate kind of homotopy between points.

Two perturbed augmented models are homotopy equivalent if they are related by an automorphism of the form: Id plus "terms which decrease weight",
also known as a gauge transformation.

Main Homotopy Theorem

Main Homotopy Theorem

Let \mathcal{H} be a simply connected graded commutative algebra of finite type. The set of augmented homotopy types of dgca's

$$
\left(A, d_{A}, \phi: \mathcal{H} \approx H(A)\right)
$$

is in 1-1 correspondence with the path components of $\hat{\mathcal{C}}\left(\operatorname{Pert} \mathcal{A}\left(s \mathcal{L}^{c}(\mathcal{H})\right)\right)$.

A graded coalgebra map from the rationals Q as a coalgebra serves as a "point" and a "path" is an appropriate kind of homotopy between points.

Two perturbed augmented models are homotopy equivalent if they are related by an automorphism of the form: Id plus "terms which decrease weight",
also known as a gauge transformation.
The hard part is to go from a homotodv to such an eauivalence Jim Stasheff (UNC-CH \& UPenn)

Comparison theorems

Theorem
For simply connected \mathcal{H} of finite type, the natural dg Lie map $\operatorname{Pert}\left(\mathcal{L}^{c}(\mathcal{H})\right) \rightarrow \operatorname{Pert}\left(\mathcal{A}\left(s \mathcal{L}^{c}(\mathcal{H})\right)\right)$ is a homology isomorphism.

The space of homotopy types

The set of path components can be regarded as a topological space $V_{\mathcal{H}}$, but the quotient by the action of $\operatorname{Aut} \mathcal{H}$, the group of automorphisms of \mathcal{H}, can fail to be even Hausdorff.

The space of homotopy types

The set of path components can be regarded as a topological space $V_{\mathcal{H}}$, but the quotient by the action of $\operatorname{Aut} \mathcal{H}$, the group of automorphisms of \mathcal{H}, can fail to be even Hausdorff.

A simple example: $\mathcal{H}=H\left(S^{2} \vee S^{2} \vee S^{5}\right)$

The space of homotopy types

The set of path components can be regarded as a topological space $V_{\mathcal{H}}$, but the quotient by the action of $\operatorname{Aut} \mathcal{H}$, the group of automorphisms of \mathcal{H}, can fail to be even Hausdorff.

A simple example: $\mathcal{H}=H\left(S^{2} \vee S^{2} \vee S^{5}\right)$
For dimensional reasons, the space $V_{\mathcal{H}}$ is \mathbb{Q}^{2}.

The space of homotopy types

The set of path components can be regarded as a topological space $V_{\mathcal{H}}$, but the quotient by the action of $\operatorname{Aut} \mathcal{H}$, the group of automorphisms of \mathcal{H}, can fail to be even Hausdorff.

A simple example: $\mathcal{H}=H\left(S^{2} \vee S^{2} \vee S^{5}\right)$
For dimensional reasons, the space $V_{\mathcal{H}}$ is \mathbb{Q}^{2}.
Aut $\mathcal{H}=G L(2) \times G L(1)$ acts to give two orbits: $(0,0)$ and the rest.

The space of homotopy types

The set of path components can be regarded as a topological space $V_{\mathcal{H}}$, but the quotient by the action of $\operatorname{Aut} \mathcal{H}$, the group of automorphisms of \mathcal{H}, can fail to be even Hausdorff.

A simple example: $\mathcal{H}=H\left(S^{2} \vee S^{2} \vee S^{5}\right)$
For dimensional reasons, the space $V_{\mathcal{H}}$ is \mathbb{Q}^{2}.
Aut $\mathcal{H}=G L(2) \times G L(1)$ acts to give two orbits: $(0,0)$ and the rest.
The space of rational homotopy types is meaning one orbit is a limit point of the other.

The space of homotopy types

The set of path components can be regarded as a topological space $V_{\mathcal{H}}$, but the quotient by the action of $\operatorname{Aut} \mathcal{H}$, the group of automorphisms of \mathcal{H}, can fail to be even Hausdorff.

A simple example: $\mathcal{H}=H\left(S^{2} \vee S^{2} \vee S^{5}\right)$
For dimensional reasons, the space $V_{\mathcal{H}}$ is \mathbb{Q}^{2}.
Aut $\mathcal{H}=G L(2) \times G L(1)$ acts to give two orbits: $(0,0)$ and the rest.
The space of rational homotopy types is
meaning one orbit is a limit point of the other.
To go from the formal to the non-formal type is known as a jump deformation.

L_{∞}-structure on $H(L)$

For any dg Lie algebra L, there is in general a highly non-trivial L_{∞}-structure on $H(L)$ such that L and $H(L)$ are equivalent as L_{∞} algebras.

L_{∞}-structure on $H(L)$

For any dg Lie algebra L, there is in general a highly non-trivial L_{∞}-structure on $H(L)$ such that L and $H(L)$ are equivalent as L_{∞} algebras.

For dg associative algebras, the result is work of Kadeishvili.
The definitive treatment in the dg Lie case (which is more subtle) is due to Huebschmann.

L_{∞}-structure on $H(L)$

For any dg Lie algebra L, there is in general a highly non-trivial L_{∞}-structure on $H(L)$ such that L and $H(L)$ are equivalent as L_{∞} algebras.

For dg associative algebras, the result is work of Kadeishvili.
The definitive treatment in the dg Lie case (which is more subtle) is due to Huebschmann.

For $L=\operatorname{Pert}\left(\mathcal{L}^{c}(\mathcal{H})\right)$, these higher order brackets can often be related to Massey products and attaching maps.

Examples and computations

$\operatorname{Pert}\left(\mathcal{L}^{c}(\mathcal{H})\right)$ can be identified with a subspace of $\operatorname{Hom}\left(\mathcal{L}^{c}(\mathcal{H}), \mathcal{H}\right)$ and hence each element as a sum of elements of $\operatorname{Hom}\left(\overline{\mathcal{H}}^{\otimes k+2}, \mathcal{H}\right)$ which lowers the internal \mathcal{H}-degree by k.

Examples and computations

$\operatorname{Pert}\left(\mathcal{L}^{c}(\mathcal{H})\right)$ can be identified with a subspace of $\operatorname{Hom}\left(\mathcal{L}^{c}(\mathcal{H}), \mathcal{H}\right)$ and hence each element as a sum of elements of $\operatorname{Hom}\left(\overline{\mathcal{H}}^{\otimes k+2}, \mathcal{H}\right)$ which lowers the internal \mathcal{H}-degree by k.

In case the formal space is a wedge of spheres

$$
X=\bigvee S^{n_{i}}
$$

the dual of the rational homotopy groups is then isomorphic to $\mathcal{L}^{c}(H(X))$.

Examples and computations

$\operatorname{Pert}\left(\mathcal{L}^{c}(\mathcal{H})\right)$ can be identified with a subspace of $\operatorname{Hom}\left(\mathcal{L}^{c}(\mathcal{H}), \mathcal{H}\right)$ and hence each element as a sum of elements of $\operatorname{Hom}\left(\overline{\mathcal{H}}^{\otimes k+2}, \mathcal{H}\right)$ which lowers the internal \mathcal{H}-degree by k.

In case the formal space is a wedge of spheres

$$
X=\bigvee S^{n_{i}}
$$

the dual of the rational homotopy groups is then isomorphic to $\mathcal{L}^{C}(H(X))$.
A perturbation θ can often be described as iterated Whitehead products which are the attaching maps for the cells $e^{n_{i}}$ in the perturbed space.

Examples and computations

$\operatorname{Pert}\left(\mathcal{L}^{c}(\mathcal{H})\right)$ can be identified with a subspace of $\operatorname{Hom}\left(\mathcal{L}^{c}(\mathcal{H}), \mathcal{H}\right)$ and hence each element as a sum of elements of $\operatorname{Hom}\left(\overline{\mathcal{H}}^{\otimes k+2}, \mathcal{H}\right)$ which lowers the internal \mathcal{H}-degree by k.

In case the formal space is a wedge of spheres

$$
X=\bigvee S^{n_{i}}
$$

the dual of the rational homotopy groups is then isomorphic to $\mathcal{L}^{C}(H(X))$.
A perturbation θ can often be described as iterated Whitehead products which are the attaching maps for the cells $e^{n_{i}}$ in the perturbed space.

Attaching a cell by an ordinary Whitehead product [S^{p}, S^{q}] means the cell carries the product cohomology class. Massey (and Uehara) introduced Massey products in order to detect cells attached by iterated Whitehead products such as $\left[S^{p},\left[S^{q}, S^{r}\right]\right]$.

Obstructed example

We refer to a candidate perturbation θ as an infinitesimal deformation.

Obstructed example

We refer to a candidate perturbation θ as an infinitesimal deformation. If $(d+\theta)^{2} \neq 0$ but is d-cohomologous to 0 , alter θ and try further.

Obstructed example

We refer to a candidate perturbation θ as an infinitesimal deformation. If $(d+\theta)^{2} \neq 0$ but is d-cohomologous to 0 , alter θ and try further. If $(d+\theta)^{2} \neq 0$ and not even d-cohomologous to 0 , we say θ is obstructed.

Obstructed example

We refer to a candidate perturbation θ as an infinitesimal deformation. If $(d+\theta)^{2} \neq 0$ but is d-cohomologous to 0 , alter θ and try further. If $(d+\theta)^{2} \neq 0$ and not even d-cohomologous to 0 , we say θ is obstructed.

A simple examples of this phenomenon is

$$
X=S^{3} \vee S^{3} \vee S^{8} \vee S^{13}
$$

Obstructed example

We refer to a candidate perturbation θ as an infinitesimal deformation. If $(d+\theta)^{2} \neq 0$ but is d-cohomologous to 0 , alter θ and try further. If $(d+\theta)^{2} \neq 0$ and not even d-cohomologous to 0 , we say θ is obstructed.

A simple examples of this phenomenon is

$$
X=S^{3} \vee S^{3} \vee S^{8} \vee S^{13}
$$

In a dual notation : for

$$
\theta=\left[x_{1},\left[x_{1}, x_{2}\right]\right] \partial x_{8}+\left[x_{2},\left[x_{1}, x_{8}\right]\right] \partial x_{13},
$$

$[\theta, \theta]$ is not cohomologous to 0 .

Obstructed example

We refer to a candidate perturbation θ as an infinitesimal deformation. If $(d+\theta)^{2} \neq 0$ but is d-cohomologous to 0 , alter θ and try further. If $(d+\theta)^{2} \neq 0$ and not even d-cohomologous to 0 , we say θ is obstructed.

A simple examples of this phenomenon is

$$
X=S^{3} \vee S^{3} \vee S^{8} \vee S^{13}
$$

In a dual notation : for

$$
\theta=\left[x_{1},\left[x_{1}, x_{2}\right]\right] \partial x_{8}+\left[x_{2},\left[x_{1}, x_{8}\right]\right] \partial x_{13},
$$

$[\theta, \theta]$ is not cohomologous to 0 .
In terms of cells, this means we cannot attach simultaneously both e^{8} to realize $\left\langle x_{1}, x_{1}, x_{2}\right\rangle$ and attach e^{13} to realize $\left\langle x_{2}, x_{1}, x_{8}\right\rangle_{\text {. }}$

Continuous moduli

The first example of "continuous moduli", i.e., of a one-parameter family of homotopy types, was mentioned to us by John Morgan.

Continuous moduli

The first example of "continuous moduli", i.e., of a one-parameter family of homotopy types, was mentioned to us by John Morgan.

For

$$
\mathcal{H}=H\left(S^{3} \vee S^{3} \vee S^{12}\right)
$$

the attaching map of the 12 -cell is in

$$
\pi_{11}\left(S^{3} \vee S^{3}\right) \otimes \mathbb{Q}
$$

of dimension 6, while

$$
\text { Aut } \mathcal{H}=G L(2) \times G L(1)
$$

is of dimension 5 .

Continuous moduli

The first example of "continuous moduli", i.e., of a one-parameter family of homotopy types, was mentioned to us by John Morgan.

For

$$
\mathcal{H}=H\left(S^{3} \vee S^{3} \vee S^{12}\right)
$$

the attaching map of the 12 -cell is in

$$
\pi_{11}\left(S^{3} \vee S^{3}\right) \otimes \mathbb{Q}
$$

of dimension 6, while

$$
\text { Aut } \mathcal{H}=G L(2) \times G L(1)
$$

is of dimension 5 .
Alternatively, the space of 5-fold Massey products $\mathcal{H}^{\otimes 5} \rightarrow \mathcal{H}$ is of dimension 6.

Extension to fibrations

Dennis: construction of a rational homotopy model for a classifying space for fibrations with given fibre.

Extension to fibrations

Dennis: construction of a rational homotopy model for a classifying space for fibrations with given fibre.

Mike and me: Classification in terms of homotopy classes of maps $\mathcal{C} \rightarrow \mathcal{C}(\mathcal{L})$ of a dg commutative coalgebra (base space) into $\mathcal{C}(\mathcal{L})$ for an appropriate dgLie algebra \mathcal{L}.

Extension to fibrations

Dennis: construction of a rational homotopy model for a classifying space for fibrations with given fibre.

Mike and me: Classification in terms of homotopy classes of maps $\mathcal{C} \rightarrow \mathcal{C}(\mathcal{L})$ of a dg commutative coalgebra (base space) into $\mathcal{C}(\mathcal{L})$ for an appropriate dgLie algebra \mathcal{L}.

The essential idea is to work with fibrations as twisted tensor products of Sullivan models.

Algebraic model of a fibration

For simplicity of exposition, assume enough conditions so we can deal with the algebraic model of a fibration as a twisted tensor product.

Algebraic model of a fibration

For simplicity of exposition, assume enough conditions so we can deal with the algebraic model of a fibration as a twisted tensor product.

Consider topological fibrations, i.e., maps of spaces

$$
\mathcal{F} \rightarrow \mathcal{E} \xrightarrow{p} \mathcal{B}
$$

such that $p^{-1}(*)=\mathcal{F}$ and p satisfies the homotopy lifting property.

Algebraic model of a fibration

For simplicity of exposition, assume enough conditions so we can deal with the algebraic model of a fibration as a twisted tensor product.

Consider topological fibrations, i.e., maps of spaces

$$
\mathcal{F} \rightarrow \mathcal{E} \xrightarrow{p} \mathcal{B}
$$

such that $p^{-1}(*)=\mathcal{F}$ and p satisfies the homotopy lifting property.
Writing e.g. B for $A^{*}(\mathcal{B})$ or a model for \mathcal{B}, we have

$$
B \rightarrow E \rightarrow F \text { and } E \text { is a } B \text { - algebra }
$$

Algebraic model of a fibration

For simplicity of exposition, assume enough conditions so we can deal with the algebraic model of a fibration as a twisted tensor product.

Consider topological fibrations, i.e., maps of spaces

$$
\mathcal{F} \rightarrow \mathcal{E} \xrightarrow{p} \mathcal{B}
$$

such that $p^{-1}(*)=\mathcal{F}$ and p satisfies the homotopy lifting property.
Writing e.g. B for $A^{*}(\mathcal{B})$ or a model for \mathcal{B}, we have

$$
B \rightarrow E \rightarrow F \text { and } E \text { is a } B \text { - algebra }
$$

Under reasonable assumptions, there is a B-derivation D on $B \otimes F$ and an equivalence between

$$
E \text { and }(B \otimes F, D)
$$

Doing the twist

The algebra structure and the differential may be twisted.

Doing the twist

The algebra structure and the differential may be twisted.
Assume that F is free as a gca, then E is strongly equivalent to

$$
B \xrightarrow{i} B \otimes F \xrightarrow{p} F
$$

with the \otimes-algebra structure.

Doing the twist

The algebra structure and the differential may be twisted.
Assume that F is free as a gca, then E is strongly equivalent to

$$
B \xrightarrow{i} B \otimes F \xrightarrow{p} F
$$

with the \otimes-algebra structure.
The differential in $B \otimes F$:

$$
d_{\otimes}+\tau
$$

where

$$
d_{\otimes}=d_{B} \otimes+1 \otimes d_{F}
$$

Doing the twist

The algebra structure and the differential may be twisted.
Assume that F is free as a gca, then E is strongly equivalent to

$$
B \xrightarrow{i} B \otimes F \xrightarrow{p} F
$$

with the \otimes-algebra structure.
The differential in $B \otimes F$:

$$
d_{\otimes}+\tau
$$

where

$$
d_{\otimes}=d_{B} \otimes+1 \otimes d_{F}
$$

The twisting term $\tau \in \operatorname{Der}(F, \bar{B} \otimes F)$, the sub-dgL of $\operatorname{Der}(B \otimes F)$ consisting of those derivations of $B \otimes F$ which vanish on B and reduce to 0 on F via the augmentation.

Twist as perturbation

Assuming B is connected, regard τ as a perturbation of d_{\otimes} on $B \otimes F$ with respect to the filtration by F degree.

Twist as perturbation

Assuming B is connected, regard τ as a perturbation of d_{\otimes} on $B \otimes F$ with respect to the filtration by F degree.

The twisting term must satisfy the integrability conditions (aka the MC equation):

$$
(d+\tau)^{2}=0 \text { or }[d, \tau]+\frac{1}{2}[\tau, \tau]=0 .
$$

Twist as perturbation

Assuming B is connected, regard τ as a perturbation of d_{\otimes} on $B \otimes F$ with respect to the filtration by F degree.

The twisting term must satisfy the integrability conditions (aka the MC equation):

$$
(d+\tau)^{2}=0 \text { or }[d, \tau]+\frac{1}{2}[\tau, \tau]=0
$$

Strong equivalence classes of fibrations correspond to the quotient by the action of automorphisms θ of $B \otimes F$ which are the identity on B and reduce to the identity on F via augmentation.

Classification

Denote by $\mathcal{L}(B, F) \subset \operatorname{Der}(F, \bar{B} \otimes F)$ the analog of Pert. Dualize with impunity and consider

$$
\mathcal{A}(s \mathcal{L}(B, F))
$$

Classification

Denote by $\mathcal{L}(B, F) \subset \operatorname{Der}(F, \bar{B} \otimes F)$ the analog of Pert. Dualize with impunity and consider

$$
\mathcal{A}(s \mathcal{L}(B, F))
$$

Theorem
For connected B and reasonable F, free as gca and of finite type, the set of strong fibre homtopy equivalence classes of fibrations

$$
B \rightarrow E \rightarrow F
$$

is in bijection with the set of homotopy classes of maps $\mathcal{A}(s \mathcal{L}(B, F)) \rightarrow B$.

Classification

Denote by $\mathcal{L}(B, F) \subset \operatorname{Der}(F, \bar{B} \otimes F)$ the analog of Pert. Dualize with impunity and consider

$$
\mathcal{A}(s \mathcal{L}(B, F))
$$

Theorem

For connected B and reasonable F, free as gca and of finite type, the set of strong fibre homtopy equivalence classes of fibrations

$$
B \rightarrow E \rightarrow F
$$

is in bijection with the set of homotopy classes of maps $\mathcal{A}(s \mathcal{L}(B, F)) \rightarrow B$.
$\mathcal{A}(s \mathcal{L}(B, F))$ is very much like a model for the classifying space, but...

Classification

Denote by $\mathcal{L}(B, F) \subset \operatorname{Der}(F, \bar{B} \otimes F)$ the analog of Pert. Dualize with impunity and consider

$$
\mathcal{A}(s \mathcal{L}(B, F))
$$

Theorem

For connected B and reasonable F, free as gca and of finite type, the set of strong fibre homtopy equivalence classes of fibrations

$$
B \rightarrow E \rightarrow F
$$

is in bijection with the set of homotopy classes of maps $\mathcal{A}(s \mathcal{L}(B, F)) \rightarrow B$.
$\mathcal{A}(s \mathcal{L}(B, F))$ is very much like a model for the classifying space, but...
The problem is that it has terms of negative degree, so presto changeo we

A string of intersections

Dennis and I have each dealt with homotopy theory arising from physicists' images of strings.

A string of intersections

Dennis and I have each dealt with homotopy theory arising from physicists' images of strings.

For Dennis, work with Chas gave rise to a major industry of string topology.

A string of intersections

Dennis and I have each dealt with homotopy theory arising from physicists' images of strings.

For Dennis, work with Chas gave rise to a major industry of string topology.

For me, work with Kajiura and with Hoefel continued the translation of the physicists'
string field theory
into homotopical algebra, especially Zwiebach and HIKKO.

A string of intersections

Dennis and I have each dealt with homotopy theory arising from physicists' images of strings.

For Dennis, work with Chas gave rise to a major industry of string topology.

For me, work with Kajiura and with Hoefel continued the translation of the physicists'
string field theory
into homotopical algebra, especially Zwiebach and HIKKO.

String topology is a chain or homology theory.

A string of intersections

Dennis and I have each dealt with homotopy theory arising from physicists' images of strings.

For Dennis, work with Chas gave rise to a major industry of string topology.

For me, work with Kajiura and with Hoefel continued the translation of the physicists'
string field theory
into homotopical algebra, especially Zwiebach and HIKKO.

String topology is a chain or homology theory.
String field theory is a cochain or form or cohomology theory.

Comparison

String topology works with chains and intersection algebra structures on a space of strings in a manifold.

Comparison

String topology works with chains and intersection algebra structures on a space of strings in a manifold.

String field theory works with functions (or bundle sections) and convolution algebra structures over a space of strings.

Comparison

String topology works with chains and intersection algebra structures on a space of strings in a manifold.

String field theory works with functions (or bundle sections) and convolution algebra structures over a space of strings.

Intersection algebra works for transverse representatives of homology classes; for general chains, ∞-structures arise - Scott Wilson.

Comparison

String topology works with chains and intersection algebra structures on a space of strings in a manifold.

String field theory works with functions (or bundle sections) and convolution algebra structures over a space of strings.

Intersection algebra works for transverse representatives of homology classes; for general chains, ∞-structures arise - Scott Wilson.

String field theory ∞-convolution algebras involve integration over appropriate moduli spaces.

Compactified configuration and moduli spaces

Compactified configuration and moduli spaces

Very many ∞-algebras correspond to operads defined in terms of configuration spaces,

Compactified configuration and moduli spaces

Very many ∞-algebras correspond to operads defined in terms of configuration spaces,
often by compactification of the associated moduli spaces.

Compactified configuration and moduli spaces

Very many ∞-algebras correspond to operads defined in terms of configuration spaces,
often by compactification of the associated moduli spaces.
A smattering of recent references, with apologies to any l've missed:
Drummond-Cole-Vallette
Harrelson-Voronov-Zuniga
Hoefel-Livernet
Markl
Merkulov
Terilla-Tradler-Zeinalien.

Compactified configuration and moduli spaces

Very many ∞-algebras correspond to operads defined in terms of configuration spaces,
often by compactification of the associated moduli spaces.
A smattering of recent references, with apologies to any l've missed:
Drummond-Cole-Vallette
Harrelson-Voronov-Zuniga
Hoefel-Livernet
Markl
Merkulov
Terilla-Tradler-Zeinalien.
WARNING: We need a Linneaus to organize the zoo.

Example: $\mathrm{OCHA}=$ Open Closed Homotopy Algebra

Example: OCHA $=$ Open Closed Homotopy Algebra

Basic idea: An L_{∞}-algebra L with an ∞-action via ∞-derivations on an A_{∞}-algebra A.

Example: $\mathrm{OCHA}=$ Open Closed Homotopy Algebra

Basic idea: An L_{∞}-algebra L with an ∞-action via ∞-derivations on an A_{∞}-algebra A.

This involves many operations described by trees or by
Voronov's Swiss-Cheese operad
but...

Example: OCHA $=$ Open Closed Homotopy Algebra

Basic idea: An L_{∞}-algebra L with an ∞-action via ∞-derivations on an A_{∞}-algebra A.

This involves many operations described by trees or by
Voronov's Swiss-Cheese operad
but...
there are 'horrible' maps

$$
L^{\otimes p} \rightarrow A
$$

Example: $\mathrm{OCHA}=$ Open Closed Homotopy Algebra

Basic idea: An L_{∞}-algebra L with an ∞-action via ∞-derivations on an A_{∞}-algebra A.

This involves many operations described by trees or by
Voronov's Swiss-Cheese operad
but...
there are 'horrible' maps

$$
L^{\otimes p} \rightarrow A
$$

the operation $L \rightarrow A$ corresponds to closing an open string.

The associahedra

The associahedra

Due to Tamari in his 1951 !! thesis but unpublished.

The associahedra

Due to Tamari in his 1951 !! thesis but unpublished.
Realization as convex polytopes, even with integer coefficients.

A la prochaine

ℓ

A la prochaine

(

A la prochaine

$$
\begin{aligned}
& x \\
& x
\end{aligned}
$$

Dennis:

Best wishes for many happy years ahead and fruitful interactions/intersections.

