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Intersection

Primary intersection: Rational homotopy theory and ∞-algebra

Two elegant approaches:
Dennis’ minimalist/computational
Quillen’s ‘maximalist’/categorical.

The secret? L∞-algebra in Dennis’ minimal models.

OR
Symmetrising the cup product over the integers replaces associativity by
∞-homotopy associativity.
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Transverse intersection

χ
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Manifolds?

Manifolds of the homotopy type of (non-Lie) groups
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PD spaces

A point of intersection - Poincaré duality spaces

Sp(5)/SU(5)

S6 × S25 # S10 × S21

< 6, 6, 10 >= 21 and < 6, 10, 10 >= 25

< 6, 6, 10 > 10 = 6 < 6, 10, 10 >

Larry Taylor’s special Massey products

< x , ?, z >
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Sp(5)/SU(5)

S6 × S25 # S10 × S21

< 6, 6, 10 >= 21 and < 6, 10, 10 >= 25

< 6, 6, 10 > 10 = 6 < 6, 10, 10 >

Larry Taylor’s special Massey products

< x , ?, z >

Jim Stasheff (UNC-CH & UPenn) May 28th, 2011 6 / 34



PD spaces

A point of intersection - Poincaré duality spaces
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PD theorem

Theorem

For simply connected rational Poincaré duality spaces Y with fundamental
class µ ∈ HN , there is a dg Lie algebra model L(H(Y )) with

d(µ) = 1/2 Σ[xi , x
i ],

where {xi} is a basis for H(Y ) in degrees k : 0 < k < N and {x i} is a
dual basis.

Equivalently Y = X ∪ eN where eN is attached by ordinary Whitehead
products (not iterated) with respect to some basis of the rational
homotopy groups of X .
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Work with Steve Halperin

Filtered dgca models and perturbations

Given a rationally nilpotent space or dgca (A, dA) and an isomorphism
φ : H → H((A, dA)), we perturbed the minimal model for the cohomology
algebra H to create a canonically filtered Sullivan model for (A, dA).

That minimal model is a purely aIgebraic construct closely related to a
multiplicative resolution of H by free graded commutative algebras,
sometimes called the Koszul-Tate resolution, (and extended to the graded
case by Jozefiak).
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Perturbations

Definition

For a filtered complex (C , d) with d of degree 1, a perturbation is a linear
map p : C → C of degree 1 such that p lowers filtration by at least 1 and

(d + p)2 = 0.

Equivalently,
[d , p] + 1/2[p, p] = 0.

Nowadays, p is called a Maurer-Cartan or MC element.

If (A, d) is a differential graded algebra, then p is to be a derivation.

There is an intimate relation between perturbations and deformations.
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Obstructions

Given a cohomology isomorphism f , Steve and I used the filtered models
to construct a sequence of obstructions On(f ) (of classical type in
algebraic topology) to the realization of f by a map of models.

Theorem

If S and T are rationally nilpotent spaces and

f : H∗(S ; Q) → H∗(T ; Q)

is an isomorphism of algebras, f can be realized by a rational homotopy
equivalence if and only if the obstructions On(f ) all vanish.

The next obvious question:

“How different can rational homotopy types be if the cohomology algebras
agree?”
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Intrinsic formality

Theorem

If H is (n − 1)- connected and Hi = 0 for i ≥ 3n − 1, then H is
intrinsically formal, i.e., there is only one homotopy type with the given
cohomology algebra.

For PD spaces, the hypothesis can be extended to Hi = 0 for i ≥ 4n − 1.
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Work with Mike Schlessinger

The Koszul-Tate resolution of

Q[x1, x2]/xixj = 0

Mike: pure algebra

Jim: the cohomology of S2 ∨ S2

A particular non-minimal Sullivan model of the formal space with a given
cohomology algebra H, using the adjointness between dgcas and dg Lie
coalgebras, cf. Quillen and John Moore.
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Quillen’s approach to rational homotopy theory

The adjointness between dgcas and dg Lie coalgebras or rather between
dgLie algebras and dgc coalgebras.

For a space X , there is a dgL LX such that H(LX ) is isomorphic as graded
Lie algebra to the rational homotopy groups of the loop space of X with
respect to the Samelson product.

Baues and Lemaire gave a construction of LX as a free graded Lie algebra
on the desuspension of the reduced homology of X .

Quillen applies a generalized Chevalley-Eilenberg construction C to obtain
a dgc coalgebra model.

Chains are more natural than cochains, hence the use of differential graded
coalgebras.
Compare also equivalent work of John Moore.
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The special model A(sLcH)

Apply the free graded Lie coalgebra Lc functor to the shifted/suspended
augmentation ideal of H, with the differential dLc defined by extending the
multiplication in H as a coderivation (after shifting).

Form the free graded commutative algebra A = A(sLcH) with differential
dA determined by dsLc and the cobracket.

This construction defines a rational homotopy space A which is manifestly
formal.

Given a rational homotopy space (A, dA) and an isomorphism

φ : H → H(A),

perturb dA to a model for (A, dA).
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The control yoga

Rough: A deformation problem is controlled by a dg Lie algebra.

Fine: A deformation problem is controlled by a dg Lie algebra, unique up
to homtopy equivalence as an L∞-algebra.

Finer: A deformation problem is controlled by an L∞-algebra, unique up to
homtopy equivalence as an L∞-algebra.
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Dg Lie algebras for perturbations

Perturbations of A sit naturally in a sub-dg Lie algebra of Der(A(sLcH)).
Perturbations of LcH sit naturally in a sub-dg Lie algebra of Coder(LcH).

For our model A, the total degree minus resolution degree is called the
weight and similarly for LcH.

Definition

Denote by PertA(sLcH)) the dg Lie algebra of weight decreasing
derivations of A(sLc(H))).

Denote by Pert(LcH)) the dg Lie algebra of weight decreasing
coderivations of LcH.
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Main Homotopy Theorem

Main Homotopy Theorem

Let H be a simply connected graded commutative algebra of finite type.
The set of augmented homotopy types of dgca’s

(A, dA, φ : H ≈ H(A))

is in 1–1 correspondence with the path components of Ĉ(PertA(sLc(H))).

A graded coalgebra map from the rationals Q as a coalgebra serves as a
“point” and a “path” is an appropriate kind of homotopy between points.

Two perturbed augmented models are homotopy equivalent if they are
related by an automorphism of the form: Id plus “terms which decrease
weight”,

also known as a gauge transformation.

The hard part is to go from a homotopy to such an equivalence.

Jim Stasheff (UNC-CH & UPenn) May 28th, 2011 17 / 34
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Comparison theorems

Theorem

For simply connected H of finite type, the natural dg Lie map
Pert(Lc(H)) → Pert(A(sLc(H))) is a homology isomorphism.
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The space of homotopy types

The set of path components can be regarded as a topological space VH,
but the quotient by the action of AutH, the group of automorphisms of
H, can fail to be even Hausdorff.

A simple example: H = H(S2 ∨ S2 ∨ S5)

For dimensional reasons, the space VH is Q2.

AutH = GL(2)× GL(1) acts to give two orbits: (0, 0) and the rest.

The space of rational homotopy types is

• → •

meaning one orbit is a limit point of the other.

To go from the formal to the non-formal type is known as a jump
deformation.
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• → •

meaning one orbit is a limit point of the other.

To go from the formal to the non-formal type is known as a jump
deformation.

Jim Stasheff (UNC-CH & UPenn) May 28th, 2011 19 / 34



The space of homotopy types

The set of path components can be regarded as a topological space VH,
but the quotient by the action of AutH, the group of automorphisms of
H, can fail to be even Hausdorff.

A simple example: H = H(S2 ∨ S2 ∨ S5)

For dimensional reasons, the space VH is Q2.

AutH = GL(2)× GL(1) acts to give two orbits: (0, 0) and the rest.

The space of rational homotopy types is

• → •

meaning one orbit is a limit point of the other.

To go from the formal to the non-formal type is known as a jump
deformation.

Jim Stasheff (UNC-CH & UPenn) May 28th, 2011 19 / 34



The space of homotopy types

The set of path components can be regarded as a topological space VH,
but the quotient by the action of AutH, the group of automorphisms of
H, can fail to be even Hausdorff.

A simple example: H = H(S2 ∨ S2 ∨ S5)

For dimensional reasons, the space VH is Q2.

AutH = GL(2)× GL(1) acts to give two orbits: (0, 0) and the rest.

The space of rational homotopy types is

• → •

meaning one orbit is a limit point of the other.

To go from the formal to the non-formal type is known as a jump
deformation.

Jim Stasheff (UNC-CH & UPenn) May 28th, 2011 19 / 34



The space of homotopy types

The set of path components can be regarded as a topological space VH,
but the quotient by the action of AutH, the group of automorphisms of
H, can fail to be even Hausdorff.

A simple example: H = H(S2 ∨ S2 ∨ S5)

For dimensional reasons, the space VH is Q2.

AutH = GL(2)× GL(1) acts to give two orbits: (0, 0) and the rest.

The space of rational homotopy types is

• → •

meaning one orbit is a limit point of the other.

To go from the formal to the non-formal type is known as a jump
deformation.

Jim Stasheff (UNC-CH & UPenn) May 28th, 2011 19 / 34



The space of homotopy types

The set of path components can be regarded as a topological space VH,
but the quotient by the action of AutH, the group of automorphisms of
H, can fail to be even Hausdorff.

A simple example: H = H(S2 ∨ S2 ∨ S5)

For dimensional reasons, the space VH is Q2.

AutH = GL(2)× GL(1) acts to give two orbits: (0, 0) and the rest.

The space of rational homotopy types is

• → •

meaning one orbit is a limit point of the other.

To go from the formal to the non-formal type is known as a jump
deformation.
Jim Stasheff (UNC-CH & UPenn) May 28th, 2011 19 / 34



L∞-structure on H(L)

For any dg Lie algebra L, there is in general a highly non-trivial
L∞-structure on H(L) such that L and H(L) are equivalent as L∞ algebras.

For dg associative algebras, the result is work of Kadeishvili.

The definitive treatment in the dg Lie case (which is more subtle) is due to
Huebschmann.

For L = Pert(Lc(H)), these higher order brackets can often be related to
Massey products and attaching maps.
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Examples and computations

Pert(Lc(H)) can be identified with a subspace of Hom (Lc(H),H) and
hence each element as a sum of elements of Hom (H̄⊗k+2,H) which
lowers the internal H-degree by k.

In case the formal space is a wedge of spheres

X =
∨

Sni

the dual of the rational homotopy groups is then isomorphic to Lc(H(X )).

A perturbation θ can often be described as iterated Whitehead products
which are the attaching maps for the cells eni in the perturbed space.

Attaching a cell by an ordinary Whitehead product [Sp,Sq] means the cell
carries the product cohomology class. Massey (and Uehara) introduced
Massey products in order to detect cells attached by iterated Whitehead
products such as [Sp, [Sq,S r ]].
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Obstructed example

We refer to a candidate perturbation θ as an infinitesimal deformation.

If (d + θ)2 6= 0 but is d-cohomologous to 0, alter θ and try further.

If (d + θ)2 6= 0 and not even d-cohomologous to 0, we say θ is obstructed.

A simple examples of this phenomenon is

X = S3 ∨ S3 ∨ S8 ∨ S13.

In a dual notation : for

θ = [x1, [x1, x2]]∂x8 + [x2, [x1, x8]]∂x13,

[θ, θ] is not cohomologous to 0.

In terms of cells, this means we cannot attach simultaneously both e8 to
realize 〈x1, x1, x2〉 and attach e13 to realize 〈x2, x1, x8〉.

Jim Stasheff (UNC-CH & UPenn) May 28th, 2011 22 / 34



Obstructed example

We refer to a candidate perturbation θ as an infinitesimal deformation.

If (d + θ)2 6= 0 but is d-cohomologous to 0, alter θ and try further.

If (d + θ)2 6= 0 and not even d-cohomologous to 0, we say θ is obstructed.

A simple examples of this phenomenon is

X = S3 ∨ S3 ∨ S8 ∨ S13.

In a dual notation : for

θ = [x1, [x1, x2]]∂x8 + [x2, [x1, x8]]∂x13,

[θ, θ] is not cohomologous to 0.

In terms of cells, this means we cannot attach simultaneously both e8 to
realize 〈x1, x1, x2〉 and attach e13 to realize 〈x2, x1, x8〉.

Jim Stasheff (UNC-CH & UPenn) May 28th, 2011 22 / 34



Obstructed example

We refer to a candidate perturbation θ as an infinitesimal deformation.

If (d + θ)2 6= 0 but is d-cohomologous to 0, alter θ and try further.

If (d + θ)2 6= 0 and not even d-cohomologous to 0, we say θ is obstructed.

A simple examples of this phenomenon is

X = S3 ∨ S3 ∨ S8 ∨ S13.

In a dual notation : for

θ = [x1, [x1, x2]]∂x8 + [x2, [x1, x8]]∂x13,

[θ, θ] is not cohomologous to 0.

In terms of cells, this means we cannot attach simultaneously both e8 to
realize 〈x1, x1, x2〉 and attach e13 to realize 〈x2, x1, x8〉.

Jim Stasheff (UNC-CH & UPenn) May 28th, 2011 22 / 34



Obstructed example

We refer to a candidate perturbation θ as an infinitesimal deformation.

If (d + θ)2 6= 0 but is d-cohomologous to 0, alter θ and try further.

If (d + θ)2 6= 0 and not even d-cohomologous to 0, we say θ is obstructed.

A simple examples of this phenomenon is

X = S3 ∨ S3 ∨ S8 ∨ S13.

In a dual notation : for

θ = [x1, [x1, x2]]∂x8 + [x2, [x1, x8]]∂x13,

[θ, θ] is not cohomologous to 0.

In terms of cells, this means we cannot attach simultaneously both e8 to
realize 〈x1, x1, x2〉 and attach e13 to realize 〈x2, x1, x8〉.

Jim Stasheff (UNC-CH & UPenn) May 28th, 2011 22 / 34



Obstructed example

We refer to a candidate perturbation θ as an infinitesimal deformation.

If (d + θ)2 6= 0 but is d-cohomologous to 0, alter θ and try further.

If (d + θ)2 6= 0 and not even d-cohomologous to 0, we say θ is obstructed.

A simple examples of this phenomenon is

X = S3 ∨ S3 ∨ S8 ∨ S13.

In a dual notation : for

θ = [x1, [x1, x2]]∂x8 + [x2, [x1, x8]]∂x13,

[θ, θ] is not cohomologous to 0.

In terms of cells, this means we cannot attach simultaneously both e8 to
realize 〈x1, x1, x2〉 and attach e13 to realize 〈x2, x1, x8〉.

Jim Stasheff (UNC-CH & UPenn) May 28th, 2011 22 / 34



Obstructed example

We refer to a candidate perturbation θ as an infinitesimal deformation.

If (d + θ)2 6= 0 but is d-cohomologous to 0, alter θ and try further.

If (d + θ)2 6= 0 and not even d-cohomologous to 0, we say θ is obstructed.

A simple examples of this phenomenon is

X = S3 ∨ S3 ∨ S8 ∨ S13.

In a dual notation : for

θ = [x1, [x1, x2]]∂x8 + [x2, [x1, x8]]∂x13,

[θ, θ] is not cohomologous to 0.

In terms of cells, this means we cannot attach simultaneously both e8 to
realize 〈x1, x1, x2〉 and attach e13 to realize 〈x2, x1, x8〉.
Jim Stasheff (UNC-CH & UPenn) May 28th, 2011 22 / 34



Continuous moduli

The first example of “continuous moduli”, i.e., of a one–parameter family
of homotopy types, was mentioned to us by John Morgan.

For
H = H(S3 ∨ S3 ∨ S12),

the attaching map of the 12-cell is in

π11(S
3 ∨ S3)⊗Q

of dimension 6, while

AutH = GL(2)× GL(1)

is of dimension 5.

Alternatively, the space of 5–fold Massey products H⊗5 → H is of
dimension 6.
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Extension to fibrations

Dennis: construction of a rational homotopy model for a classifying space
for fibrations with given fibre.

Mike and me: Classification in terms of homotopy classes of maps
C → C(L) of a dg commutative coalgebra (base space) into C(L) for an
appropriate dgLie algebra L.

The essential idea is to work with fibrations as twisted tensor products of
Sullivan models.
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Algebraic model of a fibration

For simplicity of exposition, assume enough conditions so we can deal with
the algebraic model of a fibration as a twisted tensor product.

Consider topological fibrations, i.e., maps of spaces

F → E p→ B

such that p−1(∗) = F and p satisfies the homotopy lifting property.

Writing e.g. B for A∗(B) or a model for B, we have

B → E → F and E is a B - algebra

Under reasonable assumptions, there is a B–derivation D on B ⊗ F
and an equivalence between

E and (B ⊗ F ,D).
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Doing the twist

The algebra structure and the differential may be twisted.

Assume that F is free as a gca, then E is strongly equivalent to

B
i−→ B ⊗ F

p−→ F

with the ⊗–algebra structure.

The differential in B ⊗ F :

d⊗ + τ,

where
d⊗ = dB ⊗+1⊗ dF .

The twisting term τ ∈ Der(F , B̄ ⊗ F ), the sub-dgL of Der(B ⊗ F )
consisting of those derivations of B ⊗ F which vanish on B and reduce to
0 on F via the augmentation.
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Twist as perturbation

Assuming B is connected, regard τ as a perturbation of d⊗ on B ⊗ F with
respect to the filtration by F degree.

The twisting term must satisfy the integrability conditions (aka the MC
equation):

(d + τ)2 = 0 or [d , τ ] +
1

2
[τ, τ ] = 0.

Strong equivalence classes of fibrations correspond to the quotient by the
action of automorphisms θ of B ⊗ F which are the identity on B and
reduce to the identity on F via augmentation.
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Classification

Denote by L(B,F ) ⊂ Der (F , B̄ ⊗ F ) the analog of Pert.
Dualize with impunity and consider

A(sL(B,F ))

.

Theorem

For connected B and reasonable F , free as gca and of finite type, the set
of strong fibre homtopy equivalence classes of fibrations

B → E → F

is in bijection with the set of homotopy classes of maps A(sL(B,F )) → B.

A(sL(B,F )) is very much like a model for the classifying space, but. . .

The problem is that it has terms of negative degree, so presto changeo we
truncate it appropriately.
Mike, of course, went further and provide the moduli space specification.
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A string of intersections

Dennis and I have each dealt with homotopy theory arising from physicists’
images of strings.

For Dennis, work with Chas gave rise to a major industry of
string topology.

For me, work with Kajiura and with Hoefel continued the translation of
the physicists’

string field theory
into homotopical algebra,

especially Zwiebach and HIKKO.

String topology is a chain or homology theory.

String field theory is a cochain or form or cohomology theory.
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For Dennis, work with Chas gave rise to a major industry of
string topology.
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Comparison

String topology works with chains and intersection algebra structures on a
space of strings in a manifold.

String field theory works with functions (or bundle sections) and
convolution algebra structures over a space of strings.

Intersection algebra works for transverse representatives of homology
classes; for general chains, ∞-structures arise - Scott Wilson.

String field theory ∞-convolution algebras involve integration over
appropriate moduli spaces.
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Compactified configuration and moduli spaces

Very many ∞-algebras correspond to operads defined in terms of
configuration spaces,

often by compactification of the associated moduli spaces.

A smattering of recent references, with apologies to any I’ve missed:
Drummond-Cole-Vallette
Harrelson-Voronov-Zuniga
Hoefel-Livernet
Markl
Merkulov
Terilla-Tradler-Zeinalien.

WARNING: We need a Linneaus to organize the zoo.
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Example: OCHA = Open Closed Homotopy Algebra

Basic idea: An L∞-algebra L with an ∞-action via ∞-derivations on an
A∞-algebra A.

This involves many operations described by trees or by
Voronov’s Swiss-Cheese operad

but...

there are ‘horrible’ maps
L⊗p → A;

the operation L → A corresponds to closing an open string.
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The associahedra

Due to Tamari in his 1951 !! thesis but unpublished.

Realization as convex polytopes, even with integer coefficients.
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A la prochaine

G
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Dennis:

Best wishes for many happy years ahead and fruitful
interactions/intersections.
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