Dennisfest, Stony Brook, May 27, 2011
Quantum Riemann surfaces related to Shrddinger equation solutions

Leonid Chekhov (based on papers with B. Eynard and O. Marchal)

e Methods of constructing the 1/N-expansion in matrix models; “topological
recursion”

e General topological recursion; symplectic invariants

e [ he g-ensemble and Riccati equation: “Quantum’ algebraic geometry: holomorphic
differentials, A- and B-cycles, symmetric forms

e Fuchsian systems, AGT, and all



Matrix models is a technique for computing *“action functionals’” and correlation
functions appearing in physics and applications. Loosely speaking, main idea is to
replace functionals of 2 variables with matrices with two indices.

The Einstein action in 2D gravity (over all possible metrics and topologies)
/dge—/{f\/—gd%: — e]:

IS approximated by the sum over triangulations of surfaces of all genera,



We represent triangulation by fat graphs...




We represent triangulation by fat graphs

the dual to which are described by the Hermitian matrix model integrals



't Hooft idea of 1/N expansion. We reduce the matrix integral

N 00 2—2h
DH o—NtrV(H) 2/ DA A2 NZima VO = ZhZo N2 2 y(p) = 2y ok
| DHe DA% : ()= 3 Tt

to the N-fold integration over the eigenvalues A; of H, A(X\) = [[;<;(A; — A;) The
genus-h contributions F; to the free energy F come with the factors N2—2h \We
assume that as N — oo, the asymptotic distribution of eigenvalues p(xz) = Imy(x)
spans n = g + 1 intervals providing the spectral curve—a hyperelliptic Riemann
surface possibly with double points.

Imy
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Cp = jl U AQ

. contour encircling

- - € ~ ' ) only cuts, no other
\_/ B; \_/  singular points (00, etc.)

Fo — satisfies equations of the Whitham—Krichever hierarchy and WDVV w.r.t. s;
and t; [I.Krichever'93] [L.Ch., A.Marshakov, A.Mironov, D.Vassiliev]'03



Besides the free energy, objects of main interest are the correlation functions, or
resolvents. one-point resolvent is a 1-differential W1 € €24
o, Xk 8]—‘

tg /L1 to
Wl(x)zﬁo<.;x—/\i>dx’ Wile) = +aV(x)F_§+Z RSV T

obtained from F by the action of the loop insertion operator.
the t-point resolvents (¢t > 2) are symmetric t-differentials W; € Q4

1 1
Wi(zq,...,x¢) = N2 <tr et > dxq - - - dxy
x1— H rt+ — H /[ conn

Correspondingly

a o o o a
OV(xy) OV(xi_1)

(conn'""means the connected part of a correlation function). All the W's admit the
_ h
1) = 300  N=2h WM (zq, L mp).

W1 (xt)

W; =

genus expansions Wi(x1,...,




e LOOp equation expresses invariance of the integral under the change of integration
variables 6\, = €>\-1—x and is exact (generating function for Virasoro conditions):

V(z) — V(H) 1
rx— H >+ﬁ

Wo(z,z) =0, Wi(x)

= t—O—I—O(:U_Q).
T

Wf(x)—v’(x)wl<x)+<tr

T—r00

Disregarding the correction term, for Wl(o)(:c) = y(x)+V'(x)/2 we obtain algebraic
equation determining the hyperelliptic spectral curve:

P@) = V(@2 + PO ) = Uaae),  y(@) = Uula)

We look for W; that solve the corresponding loop equations



The “flat” variables t, s; are: t;, = rescoz Fy(z), k> 0; s; = j?Aiy(a?)da:.

Variations w.r.t. the “flat’”’ variables are algebro-geometric objects:

0 d
y(z)dz = w; —canonical holomorphic differential, w; = 0; ;.
8Si A?, J 2J

Oy(x)dx
Oty

= v, —Whitham—Krichever meromorphic diff's, Uk|a:—>% = j:a;k_l—l—()(x_Q); j’&’”k = 0.

oOF OF
We also have exact Seiberg—Witten equations— — =]{ dx




2-point correlation function. Universality property.

For P and @Q point on the spectral curve, B(P,Q) is the Bergmann bi-differential
symmetric in P < (), canonically normalized, j?AiB(-,Q) — 0, and such that

1
(€(P) — €(Q))?

B(P, Q)|P—>Q: (

with no other singularities.

+ 0(1)> d§(P)d&(Q),

Oy (x)dx.

Riemann bilinear identities: §p. B(z,z) = w;(z); %resz:oo 2 kB(z, ) = vp(z)= or.

then

0 (0) (0) _
S — = , = B ,
aV(a;)Wl (y) = W5 (z,y) (z,9)
iIs the two-point correlation function. It depends ONLY on the Riemann surface.

(y is the point on the second sheet of the hyperelliptic Riemann surface).
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3-point correlation functions are originated from Rauch variational formulas:
59-B(z,2) = $B(x, [1a]) B(z, [1a]),

0 (0) - (0) . B(x,£)B(y,£)B(z,¢)
e @D =Wy =, SRR
2012 4, (@)B(y, OBG.E) | dE, (2)B(y,)B(,8) :
_ 3: _ 3: oy [ Ble
B SR on e s ¢ vl S o v B ) P S J; B2
dE&g—(:c)

where is the recursion kernel: If

(y(&)—y(&))d¢

(&) — s @IWD, (€ DRI (€ 1) = WD g D+ X W e nwn @/,
r,JCJ

then

wih (e,0) =

dE,. 7(x) i
) a8+ 3 WD oW @ i)

We therefore express 3- and higher-point correlation functions and all its
corrections in terms of one- and two-correlation functions in the leading
order: y(x) and B(X,z).
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Graphical representation for the action of 9/0V (x):

Yy x
9 5 \
= =z o £ o = U c

OV (z) y OV (z) y 2 £

A

— p— - m— 1 s
= B(y, 2), = dE, :(y), *=dep oy @i
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Feynman-like diagrammatic technique (in terms of standard graphs!)

W@ =2 — oW mm)=c—6)
n n

y y
W2(1)(x,y) = 8Va(y)W1(1)(x) = \ Q + =z AB
& M n o€

W1(2) () == .([Wl(l)(n)f + Wg(l)(n, 77))
n

=z 02% o« o ¢« ) + c/o\\/o
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Iterative solution of the loop equation (in the graphic form):

T1 T1
: N 1 Y r
= S — T WL ED
SN [7l+1
k7
0 Wfr(bljr)ﬂwo,J) = %0 .\ FE +X.r To—@
j g —
< (h—r)
5 : o q J/I_/Wn—|l|—|—1(§’ J/1)
In In

W,Eh)(,]) comprises all the diagrams n external legs and h loops such that

° segregating one variable zg we take all the

composed from recursion kernels (arrowed propagators) that starts at
the vertex zg and does not go to any other external leg; this subtree establishes a
partial ordering on the set of vertices that determines the order of doing integrals
over Cp at these vertices;

e all other propagators: h inner propagators and n — 1 remaining external legs are
B(xz,y) (blue lines); only vertices comparable in the partial ordering sense can be
joint by B(x,y).
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Symplectic invariants (free-energy terms) F;, [L.Ch., B.Eynard]'05

The new operator He is inverse to the loop insertion operator, He : $2;41 > $2,

. >z I
Ho = esV(@)e(e) ~ s V(@de(@) +to [ Te(@ddo+ 3 s f, wle)do,

X

Action of H:
H H
:v\c o = — ® Z =0
£ Y T Y §
Xr
3
HyB(n,2) = —y()dz  HedBg@)de = [ y(o)dp
9 o He-Heo 2 =1 H WM (2, 2) = —(2h — W (2)
oV oV ! 2 1 !
1
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We then have the diagrammatic expression for Fj; with h > 2; for example

« )
2. Fp =2 +2 O/O\\/. +1 @
am—e() )

[green arrows indicate the order of taking residues]

T

T

©

A

= B(x, z)dxdz

= [7d¢B(x, &)da

= Z] res

= Z] Fes

1
/%iy(x)dx

[P y(©)dg
1 y(x)dx
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Same technique works for

—finding F;, in the two-matrix model (here X is an arbitrary algebraic curve)
[B.Eynard, L.Ch., N.Orantin]'06

/DH]_ DH2 e_Ntr(vl(Hl)_I_VQ(HQ)‘I_H]_HQ)

—topological recursion for holomorphic anomalies; KP hierarchies (generalized Kontsevich

model); plane partitions; generating functions for Hurwitz numbers and more [B.
Eyvnard, N. Orantin, M. Marifio et al]

Generating function for simple Hurwitz numbers [Bouchard, M. Marifio]: Lambert
function z = yeY (has just one branching point)
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The (Wigner) g-ensemble model

N gzN Vi) 1/2 — orthogonal matrices
/ dz; |A(z)|?P e To ~=17 Y 3=/ 1 — Hermitian matrices :
N 2 — symplectic matrices

For arbitrary 8 and any potential for which V'’ is a rational function [this
includes the AGT-conjecture case], we know the answer for F, ;, where

F = i N2—29—k(\/§_\/§—1)k]:g7k.

9,k=0
A general procedure of finding ]—“g’k in the 5 eigenvalue model using Feynman-like
diagrams was developed in [B.Eynard, L.Ch.]'06

There is no obvious interpretation in terms of “triangulations” of Riemann surfaces,
which exists for 8 = 1 (the Hermitian matrix model).
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Quantum surfaces = nonperturbative solutions of the g-eigenvalue
model[L.Ch.,B.Eynard,O.Marchal]’09-10 TM® February 2011.

e The loop equation again expresses invariance under the change of integration

variables dx; = ex,l_x and is exact
1

o VA2 Z<H)>+%(ﬁ B @)+ 5 Wala,2) = 0.

We incorporate the term with Wi («) into the leading order. This results in resummation
of the asymptotic series for ]—"g’k in k.

W%<x>—v’<x>wl<x>+<

For Wl(o)(w) = y(z)+V'(x)/2 we obtain Riccati equation determining the spectral
curve:

2 (2) + hy (z) = %V’(az)z + By_1(z) = U(x), where we identify h = (/5 — /5 1)/N.
Solution is y(x) = AY'(z) /v (z), where ¢ (z) solves the Schrbdinger equation

h2y" (z) = U(z)y(z).
with V/(z) = 2,/U(x)4.
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e \We cannot satisfy asymptotic conditions Wl(o)(a:) ~ to/z+O(z~2) in all directions
if we take just one solution ¥ (z), so define Wl(o)(x) sectorwise:

ay . (0) oy L Walz) | V(z)
y(x) := Wy (m)—h%(x)+ 5

, forQ?ESa

e Stokes Sectors We choose the function 1,(x) to be a unique solution of

the Schrodinger equation that decreases at the ath sector bounded by the lines
ReV(xz) =0,

\ no zero concentration

7
x Al .isolated
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e \We cannot satisfy asymptotic conditions Wl(o)(a:) ~ to/z+O(z~2) in all directions
if we take just one solution ¥ (z), so define Wl(o)(x) sectorwise:

ay . (0) oy L Walz) | V(z)
y(x) := Wy (m)—h%(x)+ 5

, forQ?ESa

e Stokes Sectors We choose the function 1,(x) to be a unique solution of

the Schrodinger equation that decreases at the ath sector bounded by the lines
ReV(xz) =0,

o001

\ no zero concentration

i integration contour for g
X7
pulled from infinities
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The contour Cp and the set of A- and B-cycles
e The contour Cp

The integration contour Cp: §¢,, — the analogue of res|
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To obtain A-cycles, we “protrude’ integration contours to make them running
between infinities “in pairs'’:
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To obtain A-cycles, we “protrude’ integration contours to make them running
between infinities “in pairs'’:
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B-cycles are, as usual, “‘dual’ to A-cycles:

def [Cay O+ o —
f f@dz S [ (G - Gy,

O
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Variations of the resolvent w.r.t. “flat” coordinates, which comprise

e filling fractions

=5 i v@de &[T (y(F) —y(o)) e,

i 7

) ) Wroni i _ _
The difference y( 5_) — y(zx) =7 (x)wf’(x) decreases exponentially in sectors where
Z_|_ 1__

the both solutions ¢i+ and ; increase so we can integrate it with any polynomial
function.

e times of the potential

t = 7{ y(aﬁ)x_kdaﬁ, Ek=0,1,....
Cp

For any infinitesimal polynomial variation U(x) — U(xz) + 6U(xz) we have

LT w20 () ds

hoy(2) + 2y(@)dy(z) = sU (x); oy(z) = mb2(x) Joo
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e First kind functions wk(%). Let Ay, k=1,...,d— 1, be a basis of polynomials of
degree < d— 2. Then

(8 (8 1 L / / /
6, y(x) = wi(x) = hi(z) pa(a') dx

hp2(x) Jooa
with the same polynomial h(z’) for all the sheets and with the canonical normalization

7{4 wi(z)dr =0 k,a=1,...,d—1,
wk(%) has double poles with no residues at the zeroes of Y, and behaves like
O(1/z2) inside all the sectors including the sector S, (so it can be integrated
over any cycle!)

e [ he Riemann matrix of periods
def

Tji — ég.wi(w)d:v

J
Is symmetric [proof is not direct, however...]

e Meromorphic differentials §;, y(z) = v(2) = W%@) S 2(a")hg_14r(z")dz’ such
that :

ot Oe.

—P = Op = v - x” Pdx; 0= "% = 7{ v (x)dx.

Oty ’ Cp Oty A;
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e The recursion kernel K(%,z). Introduce

. 1 1 T dx’
K QY —— 2 /
(w, Z) h{pg(m) O, ¢C¥(£B ) f,U/ _
The recursion kernel K(%,z) reads
87 ~ d—1 87 ~
K(E2) =K@ - Y oH0(), ha(x) = §, K@2), a=1,..,g
j=1 g
e The “quantum” Bergman kernel B(%,g)
B h 2 K(%,Z)
B(z,2) = -0 0, —~ "2 |

B(%,g) is an analytical function of x and z in the whole complex plane (no cuts)
with the double pole with zero residue at x = z for o« = .

The kernel B satisfies the loop equations in the both variables.
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The properties of B(%,g) are analogous to those of the Bergmann kernel:
e Foreverya=1,...,9: fAiB(a:,g)d:c = 0, fAjB(%,z)dz = 0;
o fBj B(%, z) dz = 2imw; (%);

o B(%,g) is symmetric, B(%,g) — B(g,%).

Corollary The period matrix 7 , is symmetric: 7, o, = §3, ¢35, B(z,z)dz dz.
Since %y(%) = vr(%), we can define the loop insertion operator %@) =32 r.g—r—1%

%,
oV (€)

VB = Y e BE = B

We identify B(%,g) with the two-point correlation function.
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3-point correlation function

o3 . 1
T 0 = ch K (z,€)B(y, €)B(z, £)(df)

and it admits the same diagrammatic representation as in the one-matrix model.
But we have no apparent residue formula, so what about WDVV?

Seiberg—W.itten relations are exact:

OF, OF,
de; 7432. 8V(§)d£'
or
OFp (h)
p = 1, WO,

where Wl(h)(g) Is to be defined by the recursion procedure, as in the standard matrix
model.
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e Diagrammatic representation for correlation functions (solutions of the loop
equation) is formally the same as the one in the original matrix model

Recurrent relation:

T1 L1
| T 1 ~ w
- N — = — 2 wihiEn
_|_D‘
) £/ 1Nel <
xO_qu—I—)l(xo’J) = X R\’ ‘I‘Zr,] X0
y :
< (h T)
— P LSS\
In In
. = K(%,2) — = B(%,Q) vertex = ¢c
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Perturbative part of Fp

For the one- and two-matrix models:

no1 O>F 3
Pert Fo = Y =s?l0gs;; 0 = Thik 4 reg.
i=1 2 Gsiasjé)sk S;

Perturbative part of Fp in the quantum case follows from the Seiberg—Witten
relations:
o3 o3
Fo = jf d jf dy ¢ d F
deide;0e,” 0 I, I8, B, oV (2)av (y)av (z)” °

In the quantum surface case (for h=1),

93 Fo 1 /" 5 d
— 116, ., (log M (e; /1 reg.  Pert Fo=h /Iol’ /h):
Sedes0e; k(109 T(ei/m))" + reg 0= 3. [] teg1ei/m)
So we have poles of the second order at ¢, = 0, —h, —2A,... (not the first-order

pole 1/s; as in the matrix-model case), but the same singular behavior ~ %ef l0g ¢;

at large positive ¢;. This expression coincides with Superpotential of Nekrasov and
Shatashvili for (quantum) TBA.
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Rational potentials (related to the AGT conjecture)

" bg b2

V=Y U@ =Yt Y=o

a=1% ~ Mo L — Ha

Yo ~ (x — Ma)—léal — 0 as * — pa, everything else remains the same...

1 T hi(x!
: $2 (a1t
AGT: Liouville —- CFT — p-ensembles

w;i(T) = dr', degh; <n-3.

2

CFT central charge: c=1+ 6<\/B — \/5—1)

Nekrasov—Shatashvili super YM instanton counting 8 = e1/eo, N = (e162)7 /2, i.e.,

(\/E— \ﬁ_l)/N =1 —¢e2, N 2 =c¢eqep,

SO we calculate these functions in the limit of e — O keeping 1 arbitrary.
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System of A- and B-cycles

o= [ () =)
Ao \¥n  Ya Aa Yn

as Y. /1vq has trivial monodromy around pq
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System of A- and B-cycles

€Eax — / <¢7’1 — ¢&> ) w—%
Ao \¥n  Ya Aa Yn

o= weyae= [

8604 Q Mo

as Y. /1q has trivial monodromy around

(%(5) KA

d — SW relati
NG wn(@) ¢ relanons

39



Problems, perspectives...

e constructing symplectic invariants: no clear analogue of H-operator exists at
the moment (only some guesses);

e generalization to higher-order ODEs for the function ) (general “quantum”
algebraic surfaces);

e isomonodromic (quantum) 7-functions: under construction

e SLE 7?7 (talk by S.Smirnov on May 26th)
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