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The Goldman bracket

S an orientable surface

Mo denotes the set of free
homotopy classes of closed
oriented curves on S.
NOTE: 1o = mo(free loop space
of the surface)

[, ]: Z[mo]® Z[rig] = Z[mo]
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S an orientable surface

o denotes the set of free

D~ :-.‘ \ p— homotopy classes of closed
K - /i—\ oriented curves on S.
o NOTE: 1o = mo(free loop space

of the surface)

Theorem: (Goldman, 1986)
The bracklelt S V\(ell defined and satisfies 1 Z[rol® Z{rol— Zino)
the Jacobi identity.
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2roof of Jacobi identity
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2roof of Jacobi identity

0001-00 o

[Q,Q]Q]=©QQ QQQ
OO0 01= OO0 0O




Theorem: (Goldman, 1986)

o , The bracket is well defined and satisfies
2root of Jacobi identity  he Jacobi identity.

0001-00 o

[Q,Q]©]=Q©© QQQ
0.0 01=- VOO0 o0
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o\/\rite w In Z[mo] as a linear combination of elements of
TTo. [he sum of the absolute value of the coefficients is
the Manhattan norm of w (or |1 norm), denoted M(w).

e-or each X and Y In 1o, the smallest number of points
IN which a representative of X intersects a
representative of Y I1s minimal intersection of X and Y,
denoted by (X, Y).

Goal: Study relation between M([X,V])
and 1(X,Y).
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S = orientable surface
(or orbifold)

M3 = compact, orientable,
Irreducible, with contractible
universal cover.

Goldman Bracket: (= 7 =)
Lie Bracket on (linear combination
of ) closed, oriented free
homotopy classes of curves.

String bracket: Lie bracket on
(linear combination of ) families of

oriented closed curves. |

Combinatorial presentation

The bracket encodes the intersection structure in terms of the
Manhattan norm.

Different surfaces have different
Goldman Lie algebras

String bracket gives the H-S graph
of the graph of groups in the
celebrated torus decomposition

We are not unaware of the connections with geometrization.
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M [X,Y] < i(X.Y)

MEX,Y] = i(X,Y)?  caarPe

aab ba = aabba

baa ab = baaab




M [X,Y] < i(X.Y)

In this

MEX,Y] = i(X,Y)?  caarPe

aab ba = aabba

baa ab = baaab
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Consider X and Y are free homotopy classes of closed curves, such
that X has a representative with no self-intersection.

Theorem (Goldman, 1986) If [X,Y]=0 (that is, M[X,Y]=0) then i(X,Y)=0.

Theorem (C, 2009) M[X,Y] = i(X,Y).

Proof: Free product with
amalgamation (or HNN structure)

+[ Wy WoWaW,, X =

W XWoWaWy, = Wy WoXWaW, + Wi WoWa X W= W WoWaW, X

-~ 4 c‘
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Consider X and Y are free homotopy classes of closed curves, such
that X has a representative with no self-intersection.

Theorem (Goldman, 1986) If [X,Y]=0 (that is, M[X,Y]=0) then i(X,Y)=0.

Theorem (C, 2009) M[X,Y] = i(X,Y).

Proof: Free product with
amalgamation (or HNN structure)

+[ Wy WoWaW,, X =

W XWoWaW, = Wy WoXWaW, + W WoWa X Wy Wy WoWo W,

() O O

L

Combinatorial presentation of the Goldman bracket
Counting intersections theorem.
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M=space of maps from the circle to M.

e

Ho(LM)= the zeroth equivariant homology group of LM

(equivariant with respect to the f

actionof the circle)

~

Since the circle is connected,
Ho(space) =®{C is a connected component of space} £.C
HO(LVl) Z@{a in 1o (M)} /.a
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M=space of maps from the circle to M.

Consider a map f from the circle to LM.

1(space) =®{C connected component of space} H1(C)
1(LM) =®¢a in mo (LM)} H1(a)

H+(LM)= the first equivariant homology group of LM
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M=space of maps from the circle to M.

Ho(LM)= the zeroth equivariant homology group of LM

\
M

H+(LM)= the first equivariant homology group of LM

(" )
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The terms of the bracket
are free homotopy classes

- J
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The terms of the bracket
are free homotopy classes

M

Orientation gives
a sign )

- J
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Theorem (Sullivan, C, 1999

* Ho ® Hy -> Hop is a Lie module.

*H; ® Hy -> Hj is a Lie algebra.

e Jacobi “ - iy ; fW
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Theorem (Sullivan, C, 1999 = a

* Ho ® Hy -> Hop is a Lie module.

- I\ )
( ™
°*Hi ® H1 -> Hi is a Lie algebra. 1
~ J
[OO01="T
e Jacobi .
[ LA ]= A \
LA L=

* (In general, H ® H -> H is a Lie algebra of degree 2-d, d is the
dimension of the manifold. When d=2, we get the Goldman
bracket Ho @ Ho -> Ho ).
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Recall that in a surface, If X has an embedded representative
then the M[X,Y]=i(X,Y) and

[ WyWoW3aWy, X |=

WA XWoWa W, = W WoXWaWy 4+ Wi WoWa X W= Wi WoWaW, X
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Recall that in a surface, If X has an embedded representative
then the M[X,Y]=i(X,Y) and

[ WyWoW3aWy, X |=

WA XWoWa W, = W WoXWaWy 4+ Wi WoWa X W= Wi WoWaW, X

If T Is fibered torus and W is a free homotopy class W
then M[T,W] < i(T,W)

Does M[ T, W ]= i(T,W) hold, possibly assuming T
embedded?
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W4 X WoWaW,

/
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IT Is a separating, embedded fibered torus with fiber X

yﬂ/

+[W{WoWaW,,<T,X>]=

W4 X WoWaW,

W4 XWoW3 W, = W WoX WaW 4+ W{WoWaXW, - W WoWaW, X

O ° O

Monday, May 30, 2011



IT Is a separating, embedded fibered torus with fiber X

+[W{WoWaW,,<T,X>]=
W4 XWoW3 W, = W WoX WaW 4+ W{WoWaXW, - W WoWaW, X

) @ O

——™
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organized in a particular way.
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\\

Imae by Jos es

Suppose that T is a
floered torus in a Seifert
manifold and the fiber
of Tis h.
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It T Is an embedded fibered torus and W Is a
free homotopy class, is M[ T, W | =i(T,W)?

Recall: A Seifert fibered manifold is a
manifold that is a disjoint union of circles
organized in a particular way.

Except for finitely many, the circles are
freely homotopic to a curve h.

The center of the fundamental group of a
Seifert manifold is typically generated by h.

\ \‘ \

Imae by Jos es

Suppose that T is a W, W, Waw,, <T,h>]
floered torus in a Seifert
manifold and the fiber

of T is h. =0
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Theorem (Gadgil, C)

_et T be (the homology class corresponding to) an embedded fibered
torus whose fiber is not the generic fiber of a Seifert piece.

et A be (free homotopy class of ) a closed curve.
Then M [T, Al =2 (T, A)
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Theorem (Gadgil, C)

_et T be (the homology class corresponding to) an embedded fibered
torus whose fiber is not the generic fiber of a Seifert piece.

et A be (free homotopy class of ) a closed curve.
Then M [T, Al =2 (T, A)

Why A2 ?
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M compact, irreducible 3-
manifold.
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of 14 Injective tori such that

// e
/
| N
| | |
I
’ \ ’ / /
‘\ - ‘ e =, /"‘
‘\._
:\\ \~\\_>\\
 —— \_.’
"'\
\
\ J
//
S i

Monday, May 30, 2011



M compact, irreducible 3-
manifold.

There exists a minimal collection
of 14 Injective tori such that

Monday, May 30, 2011



M compact, irreducible 3-
manifold.

There exists a minimal collection
of 1y Injective tori such that
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M compact, irreducible 3-

manifold.

There exists a minimal collection
Jch that

of T4 Injective tori s

Thm (Gadgil, C) String

topology gives the H-S

colored graph of the

graph of group of M.

Also, genus and numlber

of boundary components
of Seifert pieces.
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Theorem (Gadgil, C) String topology gives the
H-S colored graph of the graph of group of M
and the genus and number of boundary
components of Seifert pieces.

Step 1 of the proof. Use
[ T, T’] to “classify” tori
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components.

Theorem (Gadgil, C) String topology gives the
H-S colored graph of the graph of group of M
and the genus and number of boundary
components of Seifert pieces.

M[T, 0% ]=0
M[ T, 02 120

M[T”, O ]=0 for all other
(classes of ) peripheral tori

Step 3. Use M [T, A?] =2 (T, A) to “reconstruct’ the
graph and Seifert pieces genus and number of boundary
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Why A2 ?

===\ Seifert piece with
N generic fiber h’

' ' . Y SBF E 2 _‘ £ ;__'?_; ‘_“* ¢
Seifert piece with  “ELL L1111}
G »
] ] 8 5 "‘If"' ‘:’ o
generic fiber h '

filoer is h.h’

(wiwe,<T,h.n">]= wiwz h.h’- wih.h'w2e=0
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Detalled study of torl

T torus peripheral interior
geperlcally vertex isolated non-isolated
fibered
p(a) simple and separates p(a) simple and separates
vertex isolated .
vertex isolated
M always even M alwavs even
T(h,a) in C and there exists A in 110 such that Ay
: M=0 Seifert clump
OMI<T,a>,A2]=0 for all <T.a>in C M even outside Seifert clum
® M[<T,a>,A"2] = 0 for all <T,a> not in C P
upright
T(h,a) . . . .
p(a) simple non-separating p(a) non-simple or non-separating
vertex isolated non-isolated
M even and odd M even and odd
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