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LECTURE 1:

Mirror formula

Type A sigma model on V = Type B sigma model on Ṽ

Manifolds V and Ṽ are called mirrors.

For Kähler manifolds:

hp,q(V ) = h−p,q(Ṽ )

The concept of mirror symmetry extends to

V symplectic and Ṽ complex.

Mirror exchanges kähler (A) and complex (B) deformations.

∑

n;{k1,...,kn}

T k1 . . . T kn

n!

〈
O(0)
a O(0)

b O(0)
c

∫

Σ

O(2)
k1
. . .

∫

Σ

O(2)
kn

〉

A

=
∂3FB (T )

∂T a∂T b∂T c



Type A sigma models: Gromov-Witten theory.

Two dimensional sigma model - maps

Φ : Σ → V

Σ - two dimensional manifold, V - some Riemannian mani-
fold.

Let V be complex manifold. Mathematical reformulation of
what physicists call the computation of the path integral in
the topological type A sigma model:

Given a set of submanifolds C1, . . . , Ck, Ci ⊂ V , compute

the number NC1,...,Ck;β of rigid genus g holomorphic curves

Σ ⊂ V , [Σ] = β ∈ H2(V ;Z) passing through them

The cycles in H∗(V ) represented by C1, . . . , Ck are Poincare
dual to some cohomology classes ω1, . . . , ωk ∈ H∗(V ).



Physical picture

(Supersymmetric) Sigma model - defined through classical
action and path integral.

Φ - a map, Σ - Riemann surface and V - Riemannian mani-
fold of metric g.

Pick local coordinates: on Σ - z, z̄, on V - ΦI . Map - locally
described by ΦI(z, z̄).

K (K) - the canonical (anti-canonical) line bundles of Σ (the
bundle of one forms of types (1, 0) ((0, 1)))

TV - complexified tangent bundle of V .

to get supersymmetry ⇒ add Grassmann variables:

ψI+ - a section of K1/2 ⊗ Φ∗(TV )

ψI− - a section of K
1/2 ⊗ Φ∗(TV ).



Physical Sigma Model action - the functional on the space
of maps Φ and sections ψ :

L =
1

f2

∫

Σ

(
1

2
gIJ (Φ)∂zφ

I∂z̄φ
J +

i

2
gIJψ

I
−Dzψ

J
−

)
+

+

(
i

2
gIJψ

I
+Dz̄ψ

J
+ +

1

4
RIJKLψ

I
+ψ

J
+ψ

K
−ψ

L
−

)

f2 - coupling constant, RIJKL - Riemann tensor of V .

Dz̄ - ∂̄ operator on K1/2 ⊗ Φ∗(TV ) constructed using the
pullback of the Levi-Civita connection on TV .



Now suppose V is Kähler ⇒ sigma model has extended
susy (N = 2).

Local coordinates: φi, φī = φi.

Decompose: TV = T 1,0V ⊕ T 0,1V .

ψi+ (ψi+) - the projection of ψ+ in:

K1/2 ⊗ Φ∗(T 1,0V ) (K1/2 ⊗ Φ∗(T 0,1V ))

ψi− (ψī−) - the projections of ψ− in:

K̄1/2 ⊗ Φ∗(T 1,0V ) (K̄1/2 ⊗ Φ∗(T 0,1V ))

Action has more parameters:

L = iθ

∫

Σ

1

2
gij̄

(
∂zφ

i∂z̄φ
j̄ − ∂z̄φ

i∂zφ
j̄
)
+

1

f2

∫

Σ

1

2
gIJ∂zφ

I∂z̄φ
J+

+iψī−Dzψ
i
−gīi + iψī+Dz̄ψ

i
+gīi +Ri īj j̄ψ

i
+ψ

ī
+ψ

j
−ψ

j̄
−

θ-another parameter, theta-angle.



Twist:

+ : ψ+
i and ψ+

ī - sections of Φ∗(T 1,0X) andK⊗Φ∗(T 0,1X).

− : ψi+ and ψī+ - sections ofK⊗Φ∗(T 1,0X) and Φ∗(T 0,1X).

A Model: + twist of ψ+ and a − twist of ψ−.

B Model: − twists of both ψ+ and ψ−

Locally the twisting does nothing at all, since locally K and
K are trivial.



χ - section of Φ∗(TX) ( χi = ψi+, and χi = ψī−);

ψī+ - in the A model a (1, 0) form on Σ with values in

Φ∗(T 0,1X); ψī+ = ψīz.

ψi− is (0, 1) form with values in Φ∗(T 1,0X); ψi− = ψiz̄.

Topological transformation laws:

δΦI = iαχI

δχI = 0

δψīz = −α∂zφī − iαχj̄Γīj̄m̄ψ
m̄
z

δψiz̄ = −α∂z̄φi − iαχjΓijmψ
m
z̄ .

δ2 = 0 - on the space of solutions of equations of motion
(minimizing the action). Can be made ”off-shell” by intro-
ducing auxiliary fields.

Let t = θ + i
f2 .

Action:

S =
1

f2

∫

Σ

d2z δR + t

∫

Σ

Φ∗(ω)

R = gij̄

(
ψīz∂z̄φ

j + ∂zφ
īψjz̄

)
,

∫

Σ

Φ∗(ω) = i

∫

Σ

d2z
(
∂zφ

i∂z̄φ
j̄gij̄ − ∂z̄φ

i∂zφ
j̄gij̄

)

– the integral of the pullback of the Kähler form ω = −igij̄dzidzj̄ .
∫

Φ∗(ω) - depends only on the cohomology class of ω and
the homology class β ∈ H2(V ) of the image of the map Φ.



In physics one computes correlation functions of some oper-
ators (observables) in given theory.

Definition. Observable {Oi} – a functional of the fields,
s.t. δOi = 0.

Definition. Physical observable = a δ - cohomology class,
Oi ∼ Oi + δΨi.

Definition. Correlator - path integral:

〈
∏

a

Oa〉β = e
−2πt

∫
β
ω
∫

Bβ

Dφ Dχ Dψ e
− 1

f2 δ
∫
R ·
∏

a

Oa.

Bβ - the component of the field space for maps of degree
β = [Φ(Σ)] ∈ H2(V,Z), and 〈 〉β - degree β contribution to
the expectation value.



Correlators of the observables depend only on their
δ-cohomology class, in particular — independent of
the complex structure of Σ and V , and depend only
on the cohomology class of the Kähler form ω.

Standard argument: δ ∼ exterior derivative on the field
space B → 〈δΨ〉β = 0 for any reasonable Ψ. Thus, the Oi

should be considered as representatives of the δ-cohomology
classes.

Correlator is independent of f 2. If f2 → ∞ - Gaussian
model.

Bosonic part of the Action

it

∫
Φ∗(ω) +

1

f2

∫

Σ

gij̄(φ)∂zφ
j̄∂z̄φ

i

for given β is minimized by holomorphic map:

∂z̄φ
i = ∂zφ

ī = 0.

The entire path integral, for maps of degree β, reduces to an
integral over the space of degree β holomorphic maps Mβ .



Pick an n-form W = WI1I2...In
(φ)dφI1 ∧ dφI2 ∧ . . .∧ dφIn on

V ⇒ a local functional

OW (P ) = WI1I2...In
(Φ(P ))χI1 . . . χIn(P ).

δOW = −OdW ,

d the exterior derivative on V .

⇒ W 7→ OW - natural map from the de Rham cohomology
of V to the space of physical observables of quantum field
theory A(V ). For local operators - isomorphism.

Let d - be the DeRham differential on Σ. We have descend
equations:

dOW = δO(1)
W ,

∮
C
O(1)
W - 1-observable. The physical ob-

servable depends on the homology class of C in H1(Σ).

dO(1)
W = δO(2)

W ,
∫
Σ
O(2)
W - 2-observable.

Deformations of the theory: change the action as follows:

ST = S + T a
∫

Σ

OWa

T a are the formal parameters (nilpotent). The path integral
with the action ST computes the generating function FA(T )
of the correlation functions of the two-observables:

FA(T ) = 〈e−
∫
Σ
S(T )〉

S(0) = S, ∂S
∂T a

|T=0 =

∫

Σ

OWa



Reduction to the enumerative problem

C - submanifold of V (only its homology class matters).

The “Poincaré dual” to C - cohomology class that counts
intersections with C. Represent by a differential form W (C)
that has delta function support on C:

W (C) = δC

Conclude:

Correlators of topological observables OW (C1) . . .OW (Ck)

are integrals over Mβ of the products of delta func-
tions which pick out the holomorphic maps whose
image intersects the submanifolds C1, . . . , Cn:

Let C1, . . . , Ck ⊂ V - complex submanifolds, dimCl = dl.

ωm = W (Cm) ∈ H∗(V ) - their Poincare duals.

Let z1, . . . , zm ∈ Σ, m ≤ k be the marked points.

For a complex submanifold C ⊂ V and for 1 ≤ l ≤ m define
the following submanifolds M0

C,l ⊂ M, M2
C ⊂ M:

Definition. M0
C,l = {Φ : Σ → V |Φ ∈ M, Φ(zl) ∈ C}

Definition. M2
C = {Φ : Σ → V |Φ (Σ) ∩ C 6= ∅}



The correlation functions in the type A sigma model are
simply the intersection numbers:

〈O(0)
C1

(z1) . . .O(0)
Cm

(zm)

∫

Σ

O(2)
Cm+1

. . .

∫

Σ

O(2)
Ck

〉 =

#M0
C1,1 ∩ . . .M0

Cm,m ∩M2
Cm+1

∩ . . . ∩M2
Ck

∑
dimM0

Ci,i +
∑

dimM2
Ci

= dimMβ

otherwise 〈. . .〉 vanishes,

dimMβ =

∫

β

c1(V ) + (1 − g)dimV



Problem: Mβ is non-compact. Need to compactify it in
order to get a nice intersection theory.

Compactification is not unique.

Option I. Kontsevich stable maps.

Option II. Freckled instantons – in case where V is a sym-
plectic quotient of a G-equivariant submanifold of a vector
(affine) symplectic space A: V ⊂ A//G.

Compactification of M - Regularization

Non-compactness of M comes from ultraviolet non-compactness
of the fields space B. (UV = ‖dΦ‖2 → ∞)

Physical picture

Option I = coupling to topological gravity ≈ averaging over
conformal structures on Σ.

Option II = gauged linear sigma model with target A and
gauge group G (and perhaps superpotential).



Option I. Intersection theory of stable maps

For simplicity g = 0 - counting rational curves.

Definition.

〈
O(0)

1 O(0)
2 O(0)

3

∫

Σ

O(2)
4 . . .

∫

Σ

O(2)
k

〉

A;β

=

NC1,...,Ck;β

The curve embedded into V has a parameterization.

g = 0 - the space of all parameterizations is acted on by the
group PGL2(C) of automorphismes of P1. This freedom can
be partially fixed - the points 0, 1, ∞ on P1 are mapped to
C1, C2, C3.

The positions z4, . . . , zk - preimages of Σ∩C4, . . .Σ∩Ck, are
not fixed, can be arbitrary.

Consider the k-punctured curves - the number NC1,...,Ck
can

be expressed as the integral over the moduli space M0,k

of such curves. This space has complex dimension k − 3
and the positions of z4, . . . , zk are integrated over, hence the
asymmetry in the notations in the definition.

It follows from the connectivity of M0,k that the result is
independent on the ordering of C1, . . . , Ck.



Defintion. A stable map is the structure: (Σ, x1, . . . , xk;φ),
consisting of

A connected reduced curve Σ with k ≥ 0 pairwise dis-
tinct marked non-singular points x1, . . . , xk ∈ Σ and at
most ordinary double singular points;

A map φ : Σ → V having no non-trivial first order in-
finitesimal automorphismes, identical on V and {x1, . . . xk}
- every component of Σ of genus 0 (resp. 1) which is
mapped to a point by φ must have at least 3 (resp. 1)
marked or singular points on its normalization.

Reduced curve The compact algebraic curve is a zero
locus of an appropriate number of homogeneous polynomials
f1, . . . , fk in a projective space Pk+1. The curve is reduced if
none of the linear combinations of polynomials fi is a square
of another polynomial.

Normalization. For a curve C with only simple double
singular points (i.e. locally given by the equation xy = 0
in C2) the normalization is a (perhaps disconnected) curve
C̃ and the holomorphic map π : C̃ → C such that π is
isomorphism over the set of smooth points in C and the
preimage of each singular point consists of two points.



Lemma. The number NC1,...,Ck;β can also be represented
as: ∫

Mn+3,β

Ω
(0)
1 ∧ Ω

(0)
2 ∧ Ω

(0)
3 ∧ Ω

(2)
4 ∧ . . . ∧ Ω

(2)
k ,

Mk,β - the moduli space of stable holomorphic maps of the
k-punctured worldsheet Σ ≈ P1 to V ,

β ∈ H2(V ) - the homology class [φ(Σ)],

Ω
(i)
m - the cohomology classes of Mk,β, defined as follows.

For each m = 1, . . . , k there is evaluation map:

em : Mk,β → V

which sends a stable map (Σ, x1, . . . , xk;φ) to the image
φ(xm) ∈ V of the m’th puncture: em = φ(xm). Then

Ω(0)
m = e∗mωm, Ω(2)

m = (pm)∗ e
∗
mωm =

∫

Σ,xm

Ω(0)

where pm : Mk,β → Mk−1,β is the projection forgetting
m’th puncture (and contracting all unwanted components of
Σ which may occur).



Option II. Freckled Instantons

At first sight one does not need complicated objects such as
the stable maps.

Let V = CPN (one may easily generalize to the case of
submanifold in the generaic symplectic quotient), Σ = CP1.

Homogeneous coordinates in V :
(
Q0 : . . . : QN

)
, Homoge-

neous coordinates on Σ: (ξ0, ξ1).

Statement. Holomorphic degree d genus 0 map Φ : Σ =
CP1 → V is the same thing as the collection of N + 1 ho-
mogeneous polynomials:

Qi(ξ0, ξ1) =

d∑

m=0

Qimξ
m
0 ξ

d−m
1 , i = 0, . . . , N

which obey the following requirement:

for any (ξ0 : ξ1) ∈ Σ there exists i, s.t. Qi(ξ0, ξ1) 6= 0 (?)

The map is defined as follows:

Φ : ξ = (ξ0 : ξ1) ∈ Σ 7→
(
Q0(ξ) : . . . : QN (ξ)

)

Note. Multiplication of all Qim by the same number λ ∈ C∗

does not change the map ⇒ the space Md of holomor-
phic maps of degree d is a subspace in the projective space
P(N+1)(d+1)−1.



Let us relax the condition (?) to the following:

there exists (ξ0 : ξ1) ∈ Σ and i, s.t. Qi(ξ0, ξ1) 6= 0 (??)

In this way we obtain a compactification (originally due to
Drinfeld) Md = P(N+1)(d+1)−1 of the space of parameterized
holomorphic maps. What does this space parameterize?
A point Q ∈ Md determines a collection of polynomials
which may have a common factor:

Qi(ξ) = P (ξ)Q̃i(ξ)

where Q̃i do not have common factors. Let k = degP We
have:

d = degQi = degP + degQ̃

Hence Q̃ defines a degree d − k map from P1 to V . The
polynomial P plays no role in this map. It plays crucial role
in keeping the total degree conserved.

Definition. The zeroes of the polynomial P (there are k of
them) are called freckles. The structure ( a degree d − k
holomorphic map Σ → V , a set of k (perhaps coincident)
points on P1) is called a degree d freckled instanton.

Stratification:

Md = Md ∪ Md−1 × Σ ∪ . . . ∪Md−p × SympΣ ∪ . . .

The importance of the freckled instantons is that the path
integral motivated integral over the non-compact space Md

can be replaced by the intersection theory on the compact
space Md.



Intersection theory with freckles

For V = CPN or in more general case described above we
can compactify Mβ by considering the space Mβ of freckled
instantons.

In this way we get a priori another definition of the correla-
tion functions:

〈O(0)
C1

(z1) . . .O(0)
Cm

(zm)

∫

Σ

O(2)
Cm+1

. . .

∫

Σ

O(2)
Ck

〉′ =

#M0

C1,1 ∩ . . .M
0

Cm,m ∩M2

Cm+1
∩ . . . ∩M2

Ck

The computation of 〈. . .〉′ is a simple problem due to the
compactness of all submanifolds involved.

The difficulty of computing 〈. . .〉 — extracting of the bound-
ary contribution:

∆ = #M0

C1,1 ∩ . . .M
0

Cm,m ∩M2

Cm+1
∩ . . .∩M2

Ck
∩ (M\M)



Example. V = P2, Σ = P1, C1, C2, C3 are lines in V ,
C4, C5 - points. z1 = 0, z2 = 1, z3 = ∞ ∈ Σ.

• The elementary geometry tells us that 〈. . .〉 = 1 in
this case.

M = P5, M0
Cl,l

= a hyperplane in P5, M2
Cl

, l = 4, 5
are quadric hypersurfaces. Hence the Besout theorem gives:

〈. . .〉′ = 2 × 2 = 4

• The discrepancy 3 is due to the contribution of the bound-
ary: the freckles hitting the points 0, 1 or ∞ contribute 1 to
the intersection number.
This example will be studied in more detail in the last lec-
ture.

The moral. The generating function

∂3
TXTY TZFA(T ) = 〈O(0)

X (0)O(0)
Y (1)O(0)

Z (∞) exp
∑

T k
∫

Σ

O(2)
Ck

〉

differs from

∂3
tX tY tZF ′

A(t) = 〈O(0)
X (0)O(0)

Y (1)O(0)
Z (∞) exp

∑
tk
∫

Σ

O(2)
Ck

〉′

by a (triangular in the case of V with c1(V ) positive) change
of variables:

T k = T k(tk, tk−1, . . . , tk−p, . . .).



(physically - contact terms)

One can compute F ′
A for V = CPN rather easily. The

submanifolds Ck are the planes CPk ⊂ V , k = 0, . . . , N .

F ′
A(t) =

∮
dσ

σN − exp (
∑

r rtrσ
r−1)



Type B sigma models: Kodaira-Spencer theory.

Consider the space S of generalized (in the sense of Kontsevich-
Witten) deformations of complex structures of variety Ṽ (Ṽ
- mirror to V ).

The tangent space to S at some point s represented by a
variety V ′

s is given by:

TsS =
⊕

p,q

Hp
(
Ṽs,Λ

qTVs

)
≡
⊕

p,q

H−q,p(Ṽs)

Let T denote special coordinates on this space.

The right-hand side of the mirror formula - essentially a par-
tition function in type B sigma model expressed in terms of
special coordinates, whose choice is absolutely necessary for
the formulation of mirror symmetry.



Physical Picture

ψī± - sections of Φ∗(T 0,1Ṽ )

ψi+ - section of K ⊗ Φ∗(T 1,0Ṽ )

ψi− - section of K ⊗ Φ∗(T 1,0Ṽ ).

ρ - one form with values in Φ∗(T 1,0Ṽ ); ρiz = ψi+, ρiz̄ = ψi−.

all fields above are valued in Grassmann algebra

Denote:
ηī = ψī+ + ψī−

θi = gīi

(
ψī+ − ψī−

)
.

Transformations:
δφi = 0

δφi = iαηī

δηī = δθi = 0

δρi = −α dφi.

nilpotent symmetry: δ2 = 0 modulo the equations of motion.

Action:

S =
1

f2

∫

Σ

d2z
(
gIJ∂zφ

I∂z̄φ
J + iηī(Dzρ

i
z̄ +Dz̄ρ

i
z)gīi

+iθi(Dz̄ρz
i −Dzρz̄

i) +Rīijj̄ρ
i
zρ
j
z̄η
īθkg

kj̄
)
.



Again one can rewrite the action using δ:

S =
1

f2

∫
δU + S0

U = gij̄

(
ρiz∂z̄φ

j̄ + ρiz̄∂zφ
j̄
)

S0 =

∫

Σ

(
−θiDρi −

i

2
Rīijj̄ρ

i ∧ ρjηīθkgkj̄
)
.

B theory is independent of the complex structure of Σ and
the Kähler metric of Ṽ . Change of complex structure of Σ
or Kähler metric of Ṽ - Action changes by irrelevant terms
of the form δ(. . .).

The theory depends on the complex structure of Ṽ ,
which enters δ

B model is independent of f2; take limit f2 → ∞; In this
limit, one expands around minima of the bosonic part of the
Action = constant maps Φ : Σ → Ṽ :

∂zφ
i = ∂z̄φ

i = 0

The space of such constant maps is a copy of Ṽ ; the path
integral reduces to an integral over Ṽ .



Observables:

Consider (0, p) forms on Ṽ with values in ∧qT 1,0Ṽ , the qth

exterior power of the holomorphic tangent bundle of Ṽ .

W = dz̄i1dz̄i2 . . . dz̄ipWī1 ī2...̄ip
j1j2...jq

∂

∂zj1
. . .

∂

∂zjq

W is antisymmetric in the j’s as well as in the ī’s.

Form local operator:

OW = ηī1 . . . ηīpWī1...̄ip
j1...jqψj1 . . . ψjq .

δOW = −O∂̄W ,

OW is δ-invariant iff ∂̄W = 0 and δ-exact if W = ∂̄S for
some S.

W 7→ OW - natural map from ⊕p,qHp(V,∧qT 1,0V ) to the
δ-cohomology of the B model. It is isomorphism for local
operators.

The story of Correlators in B model, Descend Equations, De-

formation of the action by 2-observables, Generating func-

tion FB(T ) is completely paralell.



• Interesting examples of the deformations:

W = µj
ī
∂
∂zj dz̄

j̄ - deformation of the complex structure of Ṽ

W = W (z) - holomorphic function (for non-compact Ṽ )- sin-
gularity (Landau-Ginzburg in physical terminology) theory

W = 1
2π

ij ∂
∂zi ∧ ∂

∂zj - non-commutative deformation



Example. For variation of complex structure of a Calabi-
Yau manifold the (projective) special coordinates are given
by periods of a holomorphic top form.

Ṽs – family of d complex dimensional projective varieties
with c1(Ṽs) = 0.
Unique up to a multiplicative constant holomorphic (d, 0)
form Ω.

M - moduli of cmplx structures Ṽs0

Ts0M ≈ Hd−1,1(Ṽs0)

The universal cover M̃ has special coordinates T i, i = 0, . . . , hd−1,1(Ṽ ):

Let αI(s), β
I(s), I = 0, . . . , hd−1,1(Y ) be a symplectic basis

in Hd(Ṽs,Z):

αI ∩ αJ = βI ∩ βJ = 0, αI ∩ βJ = δJI

On the M̃ this basis is defined uniquely once it is chosen at
some marked point p0 ∈ M̃.
Let

AI(s) =

∫

αI(s)

Ω, AD,I(s) =

∫

βI(s)

Ω

Ω - defined uniquely up to a constant. Let us fix this freedom
by choosing a distinguished cycle α0 and demanding A0 = 1.
Then

T i = Ai, i = 1, . . . , dimM



There exists a function FB on M̃ such that

dFB =
∑

i

AD,idA
i

Locally FB can be viewed as a function of T i and it is in
this sense that it appears in the right-hand-side of the 2d
mirror formula.

Physical motivation: For d = 3:

∂3F
∂T i∂T j∂T k

=

∫

Ṽs

Ω ∧ ιµi∧µj∧µk
Ω

-the three point function on a sphere. µi- Beltrami differen-
tials:

ιµi
Ω =

(
∂Ω

∂T i

)2,1

Mirror symmetry: A=B

not only for CY, but more general

Special case of CY threefolds: physical intuition



As N = 2 SCFT’s the theories A and B don’t differ (internal
authomorphism of the N = 2 algebra maps A to B and vice
versa)

SCFT has different large volume limits - the same theory
looks as different sigma models with different target spaces
V and Ṽ in different limits.

T-duality - the simplest example.



LECTURE 2

FOUR DIMENSIONAL THEORY A

REFINED

DONALDSON-WITTEN THEORY

• X – compact smooth Riemannian manifold;

• bi = bi(X) – Betti numbers.

• On H∗(X): intersection form (, ); metric 〈, 〉:

(ω1, ω2) =

∫

X

ω1 ∧ ω2, 〈ω1, ω2〉 =

∫

X

ω1 ∧ ?ω2

? - the Hodge star operation.

b±2 – dim’s of the positive and negative subspaces of H2(X).

ω ∈ H2(X): ω± – orthogonal projections to the spaces of
self- and antiselfdual classes: H2,±(X) – (ω±, ·) = ±〈ω±, ·〉,
ω = ω+ + ω−.

χ =
∑4
i=0(−1)ibi, – the Euler characteristics of X

σ = b+2 − b−2 the signature of X



• eα is a basis in H∗(X,C),

• eα the dual basis in H∗(X,C):

(eα, ω) =

∫

eα

ω

for any ω ∈ H∗(X).

G′ = SU(r + 1), G = G′/Z, Z ≈ Zr+1, g = LieG.

T = U(1)r – maximal torus of G, W = Sr+1 the Weyl group,

g = Lie(G), t = Lie(T).

h = r + 1 – dual Coxeter number.

` = (w2; k), k ∈ Z, w2 ∈ H2(X,Z) – generalized Stiefel-
Whitney class.

P` - a principal G bundle over X and E` the associated
vector bundle with w2(E`) = w2,

c2(E`) + 1
2w2 · w2 = k.



A` - the space of connections in P`.

G` - the group of gauge transformations of P`.

The Lie algebra of G` - the algebra of sections of the asso-
ciated adjoint bundle g` = P` ×Ad g. φ - an element of
LieG`.

For the connection A (= the gauge field) let FA denote its
curvature (it is a section of Λ2T ∗

X ⊗ g`).

Definition. G-instanton is the solution to the equation
F+
A = 0 where + acts on the Λ2T ∗

X part of FA.

Definition. a G-instanton A is called irreducible if there are
no infinitesimal gauge transformations, preserving A. This
condition is equivalent to the absence of the solutions to the
equation

dAφ = 0, 0 6= φ ∈ Γ(g`)

where dA is the connection on g` associated with A.

Definition. a G-instanton is called unobstructed if there
are no solutions to the equation (d+

A)∗χ = 0, 0 6= χ ∈
Γ
(
Λ2,+T ∗

X ⊗ g`
)
.

Definition. The moduli space M` of G-instantons is the
space of all irreducible unobstructed G-instantons modulo
action of G`. For the instanton A let [A] denote its gauge
equivalence class - a point in M`.



The tangent space to M` at A is the middle cohomology
group of the Atiyah-Hitchin-Singer (AHS) complex of bun-
dles over X:

0 → Λ0T ∗
X ⊗ g` → Λ1T ∗

X ⊗ g` → Λ2,+T ∗
X ⊗ g` → 0

the first arrow is dA, the second is d+
A = P+dA.

P+ - the projection Λ2T ∗
X ⊗ g` → Λ2,+T ∗

X ⊗ g`.
d+
A ◦ dA = F+

A = 0 → the sequence is the complex.

H0(AHS) = 0 for irred. instantons. H2(AHS) = 0 - ob-
struction space; absent for unobstructed instantons.

Lemma. The dimension of the moduli space M`:

dimM` = 4hk − dimG
χ+ σ

2

Proof: index theorem applied to the AHS complex.



Remark. M` is non-compact. Sometimes it can be com-
pactified (Donaldson-Uhlenbeck) by adding the point-like in-
stantons:

M` = M` ∪M`−(0;1) ×X ∪ . . . ∪M`−(0;k) × SkX

For A from class [A] ∈ M` the space T[A]M` can be identi-
fied with the space of solutions α:

d+
Aα = 0, d∗Aα = 0

α ∈ Γ
(
Λ1T ∗X ⊗ g`

)
.



Consider the product M`×X and form the universal bundle

E` - the bundle whose restriction onto [A] × X ⊂ M` × X
coincides with E`.

d be the differential in the DeRham complex on M` × X
and dm, d be its components along M`, X respectively.

Definition. The universal connection is the G-connection
a in E` with the following properties:

1. a|[A]×X ∈ [A]

2. a|M`×{x} = 1
∆A

d∗AdmA with ∆A = d∗AdA

Lemma. The curvature of the universal connection can be
expanded as:

Fa = FA + ψ + φ

ψ is the fundamental solution to the equations:

d+
Aψ = 0, d∗Aψ = 0

φ is given by:

φ =
1

∆A
[ψ, ?ψ]

Comments. We view ψ as the mixed (M`, X) component
of the curvature of a. It means that locally we view ψ as
one-form on M` with values in g. Using metric on X and
the induced metric on M` we identify T[A]M` with T ∗

[A]M`.



Similarly φ is the (M`,M`) component of the curvature of
a.

{Ik} - additive basis in the space of invariants: Fun(g)G ≈
Fun(t)W .

dk - the degree of Ik.

Oα
n =

∫
eα
In

(
φ+ψ+FA

2πi

)
.

Examples. I1(φ) = Trφ2, d1 = 2, I2(φ) = Trφ3, I3 =

Trφ4, I4 =
(
Trφ2

)2
, d2 = 3, d3 = d4 = 4.

Denote M = q`M`, E = qE`. There is a a characteristic
class cI(E) associated to each invariant I ∈ Fun(g)G.

Let Ωαn be the slant product
∫
eα
cIn

(E) ∈ H2dn−dimeα(M).



Definition. The following integral over M is the attempt
to define the intersection theory of Ωαn

〈
Ωα1
n1
. . .Ωαk

nk

〉
=
∑

`

∫

M`

Oα1
n1

∧ . . . ∧ Oαk
nk

• the problem is with the choice of representatives of a coho-
mology classes on a non-compact manifolds, see Donaldson’s
papers for r = 1, n = 1 case

Definition. The prepotential of the refined Donaldson-
Witten theory is the generating function:

ZA(T ) =
〈
exp

(
T kαΩαk

)〉
≡

∑ 1

k!
Tn1
α1
. . . Tnk

αk

〈
Ωα1
n1
. . .Ωαk

nk

〉



Physical Picture

The fields: twisted N = 2 vector multiplet

Bosons: gauge field A = Aµdx
µ, the complex scalar φ and

its conjugate φ̄, self-dual two form H

Fermions: the one-form ψ, the scalar η and the self-dual
two-form χ.

All fields take values in the adjoint representation.

Nilpotent Symmetry:

δφ = 0, δφ̄ = η, δη = [φ, φ̄]

δχ = H, δH = [φ, χ]

δA = ψ, δψ = DAφ

δ2 = infinitesimal gauge transformation generated by φ ⇒
nilpotent on the gauge invariant functionals of the fields
(equivariant cohomology).

Definition. Observables - gauge invariant functionals of the
fields, annihilated by δ.

The correlation functions of observables do not change under
a small variation of metric on the four-manifold X.



Observables: Invariant polynomial P =
∑

k t
kIk on the alge-

bra g, Ck, k = 0, . . .4 – closed k-cycles on X. Their homol-
ogy cycles are denoted as [Ck] ∈ Hk(X;C). The observables
form the descend sequence:

O(0) = P(φ), δO(0) = 0

dO(0) = −δO(1) (O(1), [C1]) ≡
∫

C(1)

O(1) ≡
∫

C1

∂P
∂φa

ψa

dO(1) = −δO(2) (O(2), [C2]) =

∫

C2

O(2) =

∫

C2

∂P
∂φa

F a +
1

2

∂2P
∂φa∂φb

ψa ∧ ψb

. . .

top degree observable: O(4)
P = 1

2
∂2P

∂φa∂φbF
aF b+

+
1

3!

∂3P
∂φa∂φb∂φc

F aψbψc +
1

4!

∂4P
∂φa∂φb∂φc∂φd

ψaψbψcψd



Action S equals the sum of the 4-observable, constructed out
of the prepotential F and the δ-exact term:

S = O(4)
F + δR

The standard choice: F =
(
iθ

8π2 + 1
e2

)
Trφ2,

R =
1

e2
Tr
(
χF+ − χH +DAφ̄ ? ψ + η ? [φ, φ̄]

)
,

Tr denotes the Killing form.

The bosonic part of the action S is then:

S =

∫

X

τTrF ∧ F+

+
1

e2
(
TrF ∧ ?F + TrDAφ ∧ ?DAφ̄+ Tr[φ, φ̄]2

)

τ =
θ

2π
+

4πi

e2

The e2-dependence – only via δ (. . .) terms ⇒ can take e2 →
0 limit for correlators of observables: the path integral mea-
sure gets localized near solutions to F+ = 0, DAφ = 0

Moral. The correlation functions of observables re-
duce to the integrals over M`.



• Donaldson theory (G = SU(2) or G = SO(3)): aim is to
compute:

〈exp((O(2)
u , w) + λO(0)

u )〉,

for w ∈ H2(X,R), O(0)
u = u ≡ Trφ2,

(O(2)
u , w) = − 1

4π2

∫

X

Tr(φF +
1

2
ψψ) ∧ w

• Refinement: generating function of all correlators of all
observables:

ZA(T k) = 〈eT
k,α(O

(4−dα)

Ik
,eα)〉

T k = T k,αeα ∈ V = ⊕4
p=0H

p(X,C)

This is a physical definition of the four dimensional
type A theory



Problem. M` is non-compact. Need to compactify it in
order to have a nice intersection theory.

• Donaldson compactification: add point-like instantons as
above (for high enough instanton charges get a manifold,
perhaps with orbifold singularities)

• For Kähler X a refinement of the compactification above:
Gieseker compactification:

Idea: On Kähler X with Kähler form ω :

F+ = 0 ⇔ ∂̄2
A = 0, F ∧ ω = 0

∂̄A defines a holomorphic bundle E over X: its local sec-
tions are annihilated by ∂̄A. Then F ∧ ω = 0 is a stability
condition.

Replace E by its (holomorphic) sheaf of sections. Consider

the moduli space MG

` of sheaves which are torsion free as
OX -modules. The latter has sheaves which are not locally

free, i.e. which are not holomorphic bundles. However, for
each such sheaf E ′ there is a zero-dimensional subscheme
Z ⊂ X, such that on X\Z E ′ is a holomorphic bundle and
has a connection.



Problem. Find an analogue of Kontsevich compactifica-
tion.

Problem. Find a physical realization of all these compact-
ifications.

Partial answer to the last problem: On X = CP2 the
compactification by sheaves corresponds to the gauge theory

on a non-commutative space.



Intersection theory with freckles in four dimensions

Take X = CP2, G = U(r), w - Kähler form.

p ∈ H2(X,Z), k ∈ H4(X,Z).

• Monad construction of the torsion free sheaves on X: Let
V0, V1, V2 be the complex vector spaces of dimensions v0,1,2

respectively. Consider the complex of bundles over X:

0 → V0 ⊗O(−1) −→a V1 ⊗O −→b V2 ⊗O(1) → 0

In down-to-earth terms this sequence has the following mean-
ing. The maps a, b in the homogeneous coordinates (z0 :
z1 : z2) are the matrix-valued linear functions: a(z) =
zαaα, b(z) = zαbα. The words “complex” mean that

b(z) · a(z) = zαzβbαaβ = 0 ⇔

bαaα = 0, α = 0, 1, 2, bαaβ + bβaα = 0, α 6= β

For the pair (b, a) of the maps between the sheaves obeying
this condition we can define a sheaf F over X, whose space
of sections over an open set U is

Γ (F|U ) = Kerb(z)/Ima(z), for (z0 : z1 : z2) ∈ U

βij(z)Ψj(z) = 0, modulo Ψj(z) = ajk(z)Ψ̃k(z)

Definition:The space of monads is the spaceMmon of triples
of matrices aβ ∈ Hom(V0, V1), bα ∈ Hom(V1, V2) obeying
b(z)a(z) = 0. This space is acted on by the group

Gcmon = (GL(V0) × GL(V1) × GL(V2)) /C
?



(b, a) 7→ g · (b, a) = (g2bg
−1
1 , g1ag

−1
0 ), for (g0, g1, g2) ∈ Gcmon

The sheaves defined by the pairs (b, a) and g · (b, a) are iso-
morphic. The maximal compact subgroup of Gcmon

Gmon ≈ (U(V0) × U(V1) × U(V2)) /U(1)

acts in Mmon preserving its natural symplectic structure

Ω =
1

2i

∑

β

Trδaβ ∧ δa†β +
1

2i

∑

α

Trδb†α ∧ δbα

Fix the real numbers r0, r1, r2, such that
∑

α vαrα = 0,
r0, r2 > 0. Write the moment maps:

µ1 = −r01v0 +
∑

β

a†βaβ

µ2 = −r11v1 +
∑

α

b†αbα −
∑

β

aβa
†
β

µ3 = −r21v2 +
∑

α

bαb
†
α

Then the moduli space of the semistable sheaves is

Mc∗ =
(
µ−1

1 (0) ∩ µ−1
2 (0) ∩ µ−1

3 (0)
)
/Gmon

The compactness of the space is obvious: if we first per-
form a reduction with respect to the groups U(V0) × U(V2)
then the resulting space is the product of two Grassmanians:



Gr(v0, 3v1)×Gr(v2, 3v1) which is already compact. The sub-
sequent reduction does not spoil this.

The Chern classes, c∗ = {r, c1, c2}, of the sheaf F determined
by the pair (b, a) are:

r = v1−v0−v2, c1 = (v0 − v2)ω, c2 =
1

2

(
(v2 − v0)

2
+ v0 + v2

)

Let (iψ, iφ, iχ) denote the elements of the Lie algebra of
Gmon, i.e. iψ ∈ u(V0), iφ ∈ u(V1), iχ ∈ u(V2) and (ψ, φ, χ) ∼
(ψ + 1v0 , φ+ 1v1 , χ+ 1v2). We are interested in computing
certain integrals over Mc∗ . This can be accomplished by
computing an integral over Mmon with the insertion of the
delta function in µi and dividing by the volume of Gmon

provided that the expression we integrate is Gmon-invariant:

∫

Mc∗

(. . .) =

1

Vol(Gmon)

∫

LieGmon

dψdφdχeiTrψµ1+iTrφµ2+iTrχµ3 (. . .)

The useful fact is that the observables of the gauge the-
ory we are interested in are the gauge-invariant functions on
(ψ, φ, χ) only. More specifically, there is a universal sheaf

U over Mc∗ ×X, defined again as Kerb(z)/Ima(z) but now
the space of parameters contains (b, a) in addition to z. Its
Chern character is given by:

Ch(U) = Treφ − Treψ−ω − Treχ+ω



In particular:

O(0)
u1

=
1

2

(
Trχ2 + Trψ2 − Trφ2

)
,

∫

X

ω ∧ O(2)
u1

= Trχ− Trψ

Since the observables are expressed through ψ, φ, χ only we
can integrate out aβ, bα to obtain:

〈exp t1O(0)
u1

+ T1

∫

S

ω ∧O(2)
u1

〉torsion free =

∮ ∏

i,j,k

dψidχjdψk

∏
i′<i′′ (ψi′ − ψi′′)

2∏
j′<j′′ (φj′ − φj′′)

2

∏
i,j (φj − ψi + i0)

3

∏
k′<k′′ (χk′ − χk′′)

2∏
i,k (χk − ψi)

6

∏
j,k (χk − φj + i0)

3

×et1
1
2

(∑
k
χk

2+
∑

i
ψ2

i −
∑

j
φ2

j

)
+T1(

∑
k
χk−
∑

i
ψi)×

e
ir1
∑

i
ψi+ir2

∑
j
φj+ir3

∑
k
χk

this integral formula is the four dimensional analogue of
the integral formulae of two dimensional sigma models with
freckles.



LECTURE 3

FOUR DIMENSIONAL THEORY B

DEFORMATIONS OF COMPLEX
LAGRANGIAN SUBMANIFOLDS

General setup. We study holomorphic symplectic mani-
folds, i.e. complex varieties M2r of complex dimensiuon 2r
with holomorphic (2, 0)-form ω such that ωr is nowhere zero.

“Symplectic ” - means “holomorphic symplectic”.

“Lagrangian submanifold” = complex subvariety Lr ⊂M2r

of complex dimension r s. t. ω|L vanishes.

Definition. Algebraically integrable system is the quadru-
ple (V2r, ω,Br, π) where

• V2r is an algebraic variety over C of dimension 2r;

• ω is a symplectic form on V2r;

• Br is an algebraic variety of dimension r;

• π : V → B is the projection, whose fibers are Lagrangian
with respect to ω (i.e. ω|π−1(u) = 0 for any u ∈ B) and are
in addition polarized abelian varieties (this means that every
fiber has a distinguished (1, 1) cohomology class t which is
also integral).

For u ∈ B let Ju = π−1(u).



BASIC EXAMPLE

(S, ωS) - a symplectic surface (e.g. S = T ∗Σ, where Σ is an
algebraic curve, or S can be a K3 surface);

β ∈ HBM
2 (S,Z) (Borel-Moore homology) - a two-cycle rep-

resented by a algebraic curve.

MS,β - space of pairs (C,L);

C - a smooth curve in S whose homology class equals β;

L - a degree h line bundle on C.

h - the genus of C, which depends only on β (for example
h = 1 + β · β for compact S).

BS,β - the space of smooth compact curves C ⊂ S whose
homology class equals β.

π : MS,β → BS,β - the projection forgetting the line bundles.



Lemma. The space MS,β has a natural symplectic form ω.
The quadruple (MS,β ;ω;BS,β ;π) is algebraically integrable
system.

Proof. Fix the curve C. Let i : C → S be the embedding.
Notice that it is Lagrangian with respect to ωS .

Normal bundle NC to the curve C in S – canonically ≈ T ∗C.

Follows from the exact sequence of holomorphic bundles:

0 → TC → TS|C → T ∗C → 0

second arrow: i∗ - differential of the map i;

third arrow: v 7→ i∗ιvωS ∈ T ∗C.

Tangent space T = T(C,L)MS,β at (C,L) fits into the exact
sequence:

0 → V ∗ → T → V → 0

V = H0(C,NC) ≈ tangent space to BS,β ,

V ∗ ≈ tangent space to the Jacobian of C:

H1(C,OC) ≈ H0(C,KC)∗ (Serre duality), KC = T ∗C.

Canonical pairing V ×V ∗ → C induces symplectic form ω on
T . Restriction of ω on the fiber of π is zero. By construction
the fiber (Jacobian of C) is a polarized abelian variety.



Moreover, ω is closed. Darboux coordinates: choose a set of
A-cycles σi ∈ H1(C,Z), i = 1, . . . , h, they define a set of h
closed one-forms on BS,β :

dai =

∮

σi

ωS

The same set of A-cycles define a set of h closed one-forms
on the Jacobian Jac(C) of C: let $i ∈ H0(C,KC) be the
basis in the space of holomorphic differentials on C which
are normalized as: ∮

σj

$i = δij ;

define dϕi ∈ T ∗Jac(C) as follows: for ξ ∈ H0(C,KC)∗

dϕi(ξ) = $i(ξ)

It is easy to check that

ω =

h∑

i=1

dai ∧ dϕi

The lemma is proved.



SECONDARY INTEGRABLE SYSTEM

Consider an algebraic integrable system. Suppose that the
generic fiber Ju = π−1(u), u ∈ B is compact.

Let Σ ⊂ B be the setof u ∈ B, s.t. Ju is singular or non-
compact. L - the universal cover of B −Σ, and π̃ : L → B -
the projection.

Choose a basepoint p0 ∈ L. Let u0 = π̃(p0) ∈ B − Σ,
WZ = H1(π−1(u0),Z), WC = WZ ⊗ C.

Lemma. WC is a symplectic vector space.

Proof. Consider the class
[
tr−1

]
of the fiber π−1(u0). By

Poincare duality it determines a class t∗ ∈ H2(π
−1(u0),C).

Define the symplectic form Ω on WC as follows: for α, β ∈
WC

Ω(α, β) =

∫

t∗

α ∧ β

It is obviously non-degenerate.

Let Γ be the image of π1(B−Σ, u0) in the symplectic group
Sp(WZ) under the monodromy map.



Theorem. There exists a canonical embedding ρ : L →
WC, whose image L = ρ(L) is

a) Lagrangian with respect to Ω;

b) Γ-invariant.

Proof. Consider a flat vector bundle W over L, whose fiber
over p ∈ L is H1(π−1(π̃(p)),Z) ⊗ C.
• L is simply-connected ⇒ the bundle W is trivial.
• The choice of p0 identifies W with L ×WC.
• Let W ′

Z
= H1(π

−1(u0),Z).
• For p ∈ L we identify H1(π

−1(π̃(p)),Z) with W ′
Z
.



Define ρ: ρ(p) is the element of WC whose value on the
element σ ∈W ′

Z
is equal to:

ρ(p)[σ] =

∫

γp
p0

×σ

ω

where γpp0 is any path connecting p0 and p. The property
a) of ρ follows from symmetricity of the period matrix of
abelian variety, the property b) follows from the definition
of Γ.



Let αi, β
j , i = 1, . . . , r be a canonical (up to the action

Sp(WZ) basis in WZ (with respect to the intersection form∫
t∗
α∧β). It determines distinguished (again up to Sp(WZ))

Darboux coordinates ai, aD,i, 1 = 1, . . . , r on WC:

dai =

∮

αi

ω, daD,i =

∮

βi

ω

Let θ = aD,ida
i be one-form on WC such that dθ = Ω.

• This form is not invariant under the action of Sp(WZ), but
the form: θ̃ = θ − 1

2d
∑r
i=1

(
aiaD,i

)
is.

Definition. On L there is a well-defined Generating func-

tion F0, such that dF0 =
∑

i aD,ida
i|L, F0(ρ(p0)) = 0.

Locally F0 can be viewed as a function on ai.

Consider the space S of formal Γ-invariant deformations of
L leaving it Lagrangian.

THE SECONDARY SYSTEM, associated to the origi-
nal algebraic integrable system governs the formal deforma-
tions of L in the class of Γ-invariant Lagrangian submanifolds
and the special coordinates on the space S.



Theorem. The tangent space to the space S of such de-
formations is the space T of Γ-invariant exact one-forms on
L.

Proof. The tangent space to the space of all deformations is
the space of the holomorphic sections v of the normal bundle
NL to L. The latter is the quotient of the restriction TC2r|L
of the tangent bundle TC2r to L by the tangent bundle of
L.
Claim: NL ≈ T ∗L. Indeed, the following sequence is exact:

0 → TL → TC2r|L → T ∗L → 0

the second arrow is the natural embedding,
the third arrow is the map which sends v ∈ Γ

(
TC2r|L

)

ιvω ∈ Γ (T ∗L).

The sequence is exact ⇔ L – Lagrangian.

• v determines a Lagrangian deformation of L ⇒ dιvω = 0.
For simply-connected L ⇒ ιvω = dfv.

• Deformed L – Γ-invariant ⇒ dfv is Γ-invariant.

• In particular, Γ-invariant functions u on L

determine infinitesimal deformations of L.



Physical Picture

The physical arena for the constructions above is the four
dimensional N = 2 supersymmetry.

Fields: r abelian twisted N = 2 vector multiplets:

bosons: ai - complex scalar, Hi - self-dual two-form, Ai =
Aiµdx

µ U(1)-gauge field;

fermions: ψi-one-form, χi - self-dual two-form, η ī - scalar

Nilpotent symmetry: δAi = ψi, δψi = dai δai = 0,

δāī = ηī, δηī = 0, δχi = Hi, δHi = 0

Just like in two dimensions

Observables: are identified with the deformations of the the-
ory. 0-observables: local functionals of the fields, annhilated
by δ. Higher observables are the functionals of the fields, an-
nihilated by δ, taking values in forms onX. The deformation
of the action is achieved by means of 4-observables.

Action:

S =

∫

X

i

4
O(4) + δR0

again a sum of the 4-observable, constructed out of the holo-
morphic function F(a):

O(4)
F =

1

2
τF ∧ F +

1

2

∂τ

∂a
Fψ2 +

1

24

∂2τ

∂a2
ψ4 + FFD



τij =
∂2F
∂ai∂aj

,

we write FD = dAD in order to stress the fact that FD may
be closed, but not exact form with integral periods,

and a δ-exact term δR0, which would enforce electric-magnetic
duality, discussed below:

R0 = τ2
(
χ(F+ −H) + dā ? ψ

)
+

1

2

dτ2
da

ψ2χ+
1

6

dτ2
dā

χ3

Expanding δ(. . .) out we get:

L =
i

8
τF 2 + FFD + τ2

(
H(F+ −H) + da ? dā

)
+

+ τ2
(
χ(dψ)+ + ηd∗ψ

)
+

+
i

8

dτ

da
Fψ2 +

dτ

da
χ(da ∧ ψ) +H

(
dτ2
dā

(
1

2
χ2 + χη) +

1

2

dτ2
da

ψ2

)

+
i

96

d2τ

da2
ψ4 − 1

2

dlogτ2
dā

dτ

da
χηψ2 − 1

12

d2(τ−2
2 )

dā2
η(τ2χ)3

Gaussian integration over H gives:

H =
1

2
F+ +

1

τ2

(
dτ2
dā

(
1

2
(χ2)+ + χη) +

dτ2
da

(ψ2)+
)

and

−iL =
1

2
(τ(F−)2 − τ̄(F+)2) + τ2(χ(dψ)+ + ηd∗ψ + da ? dā)

+
1

2

dτ

da
F (ψ2)− +

dτ

da
χ(da ∧ ψ) + FFD+

+ F+ dτ2
dā

(
1

2
(χ2)+ + χη) + . . .

where . . . denote the quartic fermionic terms.



Electric-magnetic duality

The rôle of the discrete group Γ is very important. It re-
flects the electric-magnetic duality of the gauge fields in four
dimensions.

Maxwell equations. A-gauge field, F = dA - curvature.

dF = 0, d ? F = 0

The equations are invariant under the following symmetry:

F ↔ ?F

Literally does not quite make sense – F must be integral
∈ H2(X, 2πiZ), while ?F needs not. Nevertheless, look at
the canonical approach.



Classical story

• Space-timeX = M3×R1,M3 - Riemannian three-dimensional
manifold.

• Vector space t ≈ Rr, lattice Λ ⊂ t,Λ ≈ Zr, torus T = t/Λ.
Let e1, . . . , er ∈ t be the basis in Λ and in t = Λ ⊗ R.

Notation: Ωi(M3, t) - t-valued i-forms on M3

ΩiΛ(M3, t) - t-valued i-forms on M3 whose peri-
ods belong to Λ.

• Phase space X = set of pairs: (F,E),
F = F iei ∈ Ω2

Λ(M3, t), E ∈ Ω2(M3, t∗)

• X = cotangent bundle to the space of connections A in all
T-bundles over M3.

• Choose a metric gij and a symmetric pairing θij on t -
couplings.

• Symplectic form on X : Ω =
∫
M3 δA

i ∧ δEi+ θijδA
i ∧dδAj

where dδA = δF , and we use the canonical pairing between
E and A.

• Hamiltonian: H =
∫
M3

1
2gijdA

i ∧ ?dAj + 1
2g
ijEi ∧ ?Ej

where we used the metric gij on t∗ induced from (, ).

• Gauge group G ≈ Ω1
Λ(M3, t) acts on X symplectically:

E 7→ E, A 7→ A+ `, ` ∈ Ω1
Λ(M3, t)



• Exact sequence: Gp → G → H1(M3,Λ),with Gp ≈ Maps(M3,T):
where the first arrow is the map ϕ 7→ dϕ and the second ar-
row is ` 7→ l = [`] ∈ H1(M3,Λ).

• The moment map takes values in Lie∗Gp: µ = dE

• The reduced phase space P = µ−1(0)/G.

Quantization of the Maxwell Theory

♠ Quantize P = Quantize X and then impose the gauge
invariance.

♦ Quantized X = the space HM3 of functionals Ψ on Ω2
Λ(M3, t).

Exact sequence:

Ω1(M3, t) → Ω2
Λ(M3, t) → H2(M3,Λ)

the first arrow: A 7→ dA, the second: F 7→ [F ] ∈ H2(M3,Λ).
♠ Hence the functional Ψ on Ω2

Λ(M3, t) = a collection of the
functionals:

Ψ(F ) = {Ψm(A)}, A ∈ Ω1(M3, t), m ∈ H2(M3,Λ)

♣ The G invariance of Ψ:

Ψm(A+ `) = exp 2πiθij(l
i,mj) Ψm(A)

where (, ) denotes the intersection pairing in H∗(M3,R).
♦ The function E on X becomes an operator in HM3 :

Ei 7→ Êi = −i δ

δAi
+ θijF

j



♠ In the sector m: A = A0 + α, where
• A0 is a T-connection whose curvature F0 = dA0 is har-
monic: d ? F0 = 0; [F0] = m ∈ H2(M3, t), α ∈ Ω1(M3, t),

∫

M3

αi ∧ ?Hi = 0

for any Hi ∈ Ω2(M3, t∗), dHi = d ? Hi = 0. Two choices
of A0 differ by an element of H1(M3, t).

• Under the action of G A0 is transformed by the shifts by
l ∈ H1(M3,Λ), while α 7→ α+ dϕ, ϕ ∈ Gp.

• Ψm(A) = ψm(A0)Ψ(α):

ψm(A0 + l) = exp 2πiθij(l
i,mj)ψm(A0)

Ψ(α+ dϕ) = Ψ(α)

The Hilbert space HM3 splits as an infinite direct sum:

HM3 =
⊕

m∈H2(M3,Λ),m∗∈H2(M3,Λ∗)

HM3 [m,m∗]



where HM3 [m,m∗] =
⊗

♦ of the one-dimensional space of the sections of a trivial
U(1)-line bundle over the torus

H1(M3, t)/H1(M3,Λ)

of the form: exp 2πi
(
−m∗

i + θijm
j , Ai0

)

♦ and the space F of functionals ψ([α]) on Ω1(M3, t)/dΩ0(M3, t).

The Hamiltonian H acts in H preserving the spaces HM3 [m,m∗]:

H|HM3 [m,m∗] =

=
1

2
gij〈mi,mj〉 +

1

2
gij〈m∗

i − θikm
k,m∗

j − θjlm
l〉+

+H̃ |F
where

H̃ |F =:

(
−i δ
δαi

+ θijdα
j

)2

+ gijdα
i ∧ ?dαj :

and we denoted by 〈·, ·〉 = (·, ?·) the pairing in cohomology
induced from the metric on M3.



Duality, at last

♠ The space T = t ⊕ t∗ is a symplectic vector space.

• The group Γ =Sp(2r,Z) acts there
preserving the lattice

∧
= Λ ⊕ Λ∗.

♣ This action can be extended to the action of Γ in H. The
obvious action on [m,m∗] is supplemented by the non-trivial
Bogolyubov transform on F .

♦ The latter is obtained by quantizing the infinite-dimensional
space X̃ = Ω1(M3, T )/dΩ0(M3,

∧
) on which Γ acts preserv-

ing its symplectic form.

• The Γ action on H transforms the couplings: introduce
the matrix τij = θij + igij of an operator τ : t → t∗. Then

(
A B
C D

)
τ = (Cτ +D)

−1
(Aτ +B)



Supersymmetry

Relates the scalars ai to the gauge field Ai. Also the cou-
plings gij , θij are not constant but rather depend on a in a
peculiar way:

τij =
∂2F
∂ai∂aj

where F is holomorphic.
♦ The electric-magnetic duality acting on the gauge fields
extends to the action of (a subgroup of, in general) Sp(2r,Z)
on the scalars ai.
♠ This action transforms the couplings τij as before and
therefore transforms F . It turns out that the geometric
meaning of these transformations is:

Claim. F is a generating function of a Lagrangian subman-
ifold L in C2r invariant under a subgroup Γ of Sp(2r,Z).
The four dimensional fields are the (super)maps of ΠTX
into ΠTL.

♣ The gauge fields arise as particular components of these
supermaps. Other components are the fermions, auxilliary
fields and so on.

• Just like in two dimensions, the correlators of the observ-
ables reduce to the integrals over the target space L/Γ.

♦ For r = 1 the typical subgroups Γ ⊂ SL2(Z) are Γ(2) and
Γ0(4).



Periodic Toda system.

The theory B connected with the theory A which we de-
scribed earlier revolves around the following algebraically
integrable system:
♠ Base B is the space Cr of hyperelliptic curves Cu of the
form:

z +
1

z
= Pu(x) ≡ xr+1 + u1x

r−1 + . . . ur

♣ Fiber Ju over a point u = (u1, . . . , ur) is the Jacobian of
Cu.
• Let ∆(u) be the discriminant of the polynomial P 2

u(x)−4.
Let Σ = ∆−1(0) ⊂ B.

Theorem. The space of pairs (Cu, Lu), where u ∈ B − Σ,
Lu ∈ Ju is an algebraically integrable system.

Proof. We can view the curves Cu as compact algebraic
curves embedded in S = T ∗CP1 by rewriting the equation
of the curve in the homogeneous form:

z2
0 + z2

1 − z0z1Pu(x) = 0

The symplectic form ωS is equal to 1
2πidx ∧ dz

z . We are in
the situation of the lemma from the basic example where the
homology class β is equal to

β = (r + 1) [{x = 0}] + [{z0 = 0}] + [{z1 = 0}]



Lemma. In this example the map ρ can be written explicitly
as:

ai(p) =
1

2πi

∮

αi

x
dz

z
, aD,i(p) =

1

2πi

∮

βi

x
dz

z
,

where now αi and βi denote A- and B-cycles on the curve
Cu defined as follows:

Let x±i be the roots of the equation Pu(x
±) = ±2. Of course

there is no natural ordering for x+
i ’s and x−i ’s, so our con-

struction is canonical up to the action of W ×W :
♦ the cycle βi is represented by the curve surrounding the
cut in the x-plane going from x+

i+1 to x+
i ,

♦ αi = ei+1 − ei, ei is the path going from x−i to x+
i , i =

1, . . . , r.

• It is clear from the construction that the monodromy
around the locus where at least one ai → ∞ generates the
subgroup of Γ isomorphic to W .



Special coordinates on S

Strategy. For any Γ-invariant Lagrangian submanifold Lt
of C2r which is sufficiently close to L ≡ L0 define a dis-
tinguished basis f tk in the space Tt of Γ-invariant functions.
Then the special coordinates Tk and the deformed generating
function F(a, T ) as a function of ai and special coordinates
are defined by the partial differential equations:

∂F(a, T )

∂Tk
= f

t(T )
k (a)

Conditions on f tk

1. f tk extends to a Γ-equivariant holomorphic function in the
neighbourhood of Lt in C2r;

2. as ai → ∞ f tk can be viewed as a function of ai. Then
f tk(sa

1, . . . , sar) = sdkIk(a) + o(s−1) for s→ ∞;

Conjecture. These conditions are sufficient for determining
Tk.

At the moment we can prove that the conditions above define
the basis f tk unambiguously at least in the case where dk−2 <
2h.



Integrability

The system of equations defining Tk is integrable and gener-
alizes to higher dimensions the Whitham hierarchy.

• Let us assign to the special coordinates Tk degree dk − 2,
and to ai degree zero.

♦ One can show that the definition of the special coordinates
agrees with the homogeneity properties of the prepotential
ZA(T ), and that it predicts correct terms (determined by
blowup arguments) in Ft(T ) whose total degree does not
exceed 2h.

♣ To prove our conjecture one has to show that the special
coordinates defined above do realize the four dimensional
mirror symmetry described in the next lecture.



LECTURE 4

FOUR DIMENSIONAL MIRROR SYMMETRY

AND EXAMPLES

♠ Assume that we are given Γ-invariant deformed Lagrangian
submanifold Lt ⊂ C2r of the type described in the previous
lecture.

♦ Take its Zariski closure in C2r, L̄t. It is Γ-invariant.

♣ Denote by Lt the quotient L̄t/Γ and by Σt =
(
L̄t\Lt

)
/Γ.

♥ For a 4-foldX let lt(X) denote the supermanifold: lt(X) =[
ΠTLt

⊗ H1(X,R)
]
× H2(X,Λ), fibered over Lt.

Let µX(t) be a measure on lt which is the sum

• of the “bulk” term

• and the “boundary ” Seiberg-Witten contributions of the
discriminant loci.

♠ Both will be described below



Then 4d mirror is the equality:

4d mirror formula

ZA(T kα) =

∫

lt(X)

µX
(
t
(
T kαe

α
))



Bulk contribution to µX(t)

• Let ψ denote the (fermionic) coordinate on ΠH1(X, t) (=
the fiber of ΠTLt

⊗ H1(X,R)), and λ ∈ H2(X,Λ). Then

µX(t) = DaDψ∆(t)
σ
8$(t)

χ
2 exp

(∫

X

Ft(a+ ψ + λ) + ∂̄(R)

)

• $ - ratio of a suitably transported (from t = 0) r-form on
Lt to the r-form Da ≡ da1 ∧ . . . ∧ dar,

• ∆(t) - function on Lt whose divisor of zeroes is Σt and has
the same asymptotics as ai → ∞ as ∆.

• The form R can be written given Ft. One does not need
the explicit form of R if the measure µX is considered as
a holomorphic top form which is to be integrated over a
(r|rb1)- dimensional submanifold of lt(X)



Seiberg-Witten contributions

• to µX(t): involve Parshin residues at Σt of the form

DaDψ
(

∆(t)∏
i a
i

)σ
8

$(t)
χ
2

∑

λ

∫

MSW (λ)

1∏
i(a

i + c1(Li))
exp(

∫

X

F̃t(a+ ψ + λ))

• “renormalized generating function” : F̃ = F−∑i
1
2

(
ai
)2

logai

♠ The space MSW (λ) is the moduli space of solutions to
the generalized Seiberg-Witten equations:

1. F+
A = M̄ΓM

2. DM = 0

• A - a connection in the T bundle L̃ (actually, Spinc ⊗ T
structure) over X with c1 = λ,

• M - a section of S+ ⊗ L̃,

• Γ : S+ ⊗ S+ → Λ2,+T ∗X is the intertwiner, and the solu-
tions are identified if they differ by a gauge transformation.

• Li is the U(1) bundle over MSW (λ) which consists of all
the solutions to the equations above up to the gauge trans-
formations whose i’th U(1) part is identity at some marked
point x ∈ X.



EXAMPLES

Different X’s, different G’s.....

Answers on the A side, answers on the B side...

Comparison with the two dimensional mirror symmetry....

If b+2 (X) > 1 then the bulk contribution vanishes

If X supports a metric of positive scalar curvature then
boundary contribution vanishes.



X = S2 × S2, G = SU(2)

♠ Let us denote by u = − 1
8π2 Trφ2 (recall the notations from

the lecture 2).

♦ H∗(X,R) = R4, with basis
e0 = 1, e1 = W

(
S2

1

)
, e2 = W

(
S2

2

)
, e3 = e1e2 = W (pt)

Specialization of the 4d mirror formula to this case

〈exp

(
T 3

1 u+

∫

S2
2

T 1
1 O(2)

u +

∫

S2
1

T 2
1O(2)

u + T 0
1

∫

X

O(4)
u

)
〉 =

=

∮ ∑

N∈Z

(du)2

Nda+ T 1
1 du

eT
1
1 T

2
1G(u)+T 3

1 u

• the contour is around u = ∞,

a(u) =

∫ Λ

−Λ

dx

√
x− u√
x2 − Λ4

=
√
u+ . . . , u→ ∞

• Λ = expT 0
1 , G(u) = aduda − 2a

♠ The asymmetry between T 1
1 and T 2

1 in this case is a reflec-
tion of the non-invariance of Donaldson invariants under
the changes of metric in the b+2 (X) = 1 case: one must spec-
ify the relative position of the lattice H2(X,Z) and the real
line H2,+(X) (period point) - we take S2

1 � S2
2.

♦ The formula agrees with the computations of Göttche and
Zagier, Moore and Witten.



X = K3, G = SU(2)

• H∗(X,R) = R24, with the basis:
e0 = 1, e24 = W (pt), γi = W (Σi) ∈ H2(X,Z), i = 1, . . . , 23

〈exp

(
T 24

1 u+
1

2

∫

Σi

T i1O(2)
u + T 0

1

∫

X

O(4)
u

)
〉 =

2coshΛ2


T 24

1 +
1

2

∑

i,j

T i1T
j
1 (γi, γj)




♦ in agreement with the results of Kronheimer and Mrowka.

♥ In this case the bulk contribution vanishes while the
boundary contribution is non-trivial only for λ = 0.



X = S2 × S2 , G = SU(r + 1)

In the case r > 1 there is no mathematical computation at
this point.

♠ Here is our prediction: for ui = TrΛi+1Cr+1φ

〈exp

(
T 3
i O(0)

ui +

∫

S2
2

T 1
i O(2)

ui +

∫

S2
1

T 2
i O(2)

ui + T 0
1

∫

X

O(4)
u1

)
〉 =

∮ ∑

~N∈Zr

du1 ∧ . . . ∧ dur
∂W
∂a1 . . .

∂W
∂ar

exp

(
1

2
T 1
i T

2
j G

ij(u) + T 0
i u

i

)

• ai are αi the periods of the x dzz differential from
the Periodic Toda System of the last lecture.

• Gij = ∂ui

∂al
∂uj

∂ak
d
dτkl

logΘ(τ)

Θ(τ) =
∑

~λ∈Zr

(−1)
∑

r

i=1
(r+1−2i)λi exp


πi

∑

k,l

τklλkλl




• τkl is the period matrix of the Toda spectral curve, and
finally

W =

r∑

i=1

Nia
i + T 1

i u
i



X = S2 × Σ, G = SU(2)

• Σ is the genus g > 1 Riemann surface.

In the chamber where Σ � S2 the moduli space of SU(2)
instantons contains as an open dense subset the moduli space
of holomorphic maps S2 → Mg to the moduli space of G-flat
connections on Σ.

♦ Instanton ⇒ stable holomorphic bundle E . Restrict E
onto a fiber Σ over a point w ∈ S2. For generic w we get a
semi-stable bundle over it ⇒ a point mm ∈ Mg.

♠ The map w 7→ mw is holomorphic

♥ However, for special w = w∗ the restriction is unstable -
we get a freckle of the lecture 1.

♠ Some correlators are not affected by freckles ⇒

4d mirror ⇒ 2d mirror

♠ Most of the correlators are affected by freckles ⇒

4d mirror does not follow from 2d mirror



A compactification of the moduli space of instantons on X

via stable maps from S2 to Mg does not seem to provide
us with a way of computing the refined Donaldson-Witten
invariants of X.

Nevertheless one may deduce some useful information us-
ing Witten-Dijkgraaf-Verlinde-Verlinde equations applied to
Mg.



Quantum cohomology of Mg

is not sensitive to the details of the compactification, here
is the answer from the 4d theory: for G = SO(3) case with
(w2, [Σ]) 6= 0.

• The classical cohomology ring of Mg is generated by the
observables in the two dimensional Yang-Mills theory:

a =

∫

Σ

O(2)
Trφ2 , b = O((0)

Trφ2

c =

g∑

i=1

∫

Ai

O(1)
Trφ2

∫

Bi

O(1)
Trφ2

〈exp (ε1a+ ε2b+ ε3c)〉 =
∮

dudz

(u2 − 1)gzg+1
e2ε2u+(ε1u+ε3(u2−1))z σ3(ε1 + z)

σ(ε1)σ3(z)

• σ3(z) = 1 + u
24z

2 + . . ., σ(z) = z + . . .

are the Weierstraß elliptic functions associated to the curve:

y2 = 4x3 − x

4

(
u2

3
− 1

4

)
− 1

48

(
2u3

9
− u

4

)



The last illustrative example: freckled instantons in 2d

In Lecture 1 we looked at the charge 1 freckled instantons in
the CP2 sigma model. We shall conclude these lectures by
carefully studying this example in details.

• Recall: V = CP2 = {
(
Q0 : Q1 : Q2

)
}.

• M1 - moduli space of holomorphic degree 1 maps P1 → V ,
M1 - freckled instantons of charge 1.

• M1 = P5 = {
(
Q0

0 : Q0
1 : Q1

0 : Q1
1 : Q2

0 : Q2
1

)
}.

♠ Let Lk, k = 1, 2, 3 denote the lines in V . Each line is the
set of solutions to the linear equation:

Lk ↔
2∑

m=0

Qm`km = 0

♠ Let Pk, k = 1, 2 denote the points in V . Each point is the
set of solutions to the system of linear equations:

Pk ↔
2∑

m=0

Qmρk,am = 0, a = 1, 2



In Lecture 1 we defined the submanifolds

M0
1,Lk

(z),M2
1,Pk

⊂ M1

and their closures M0

1,Lk
(z),M2

1,Pk
⊂ M1:

♦ hyperplane M0

1,Lk
(z) :

∑2
m=0

∑1
c=0Q

m
c z

c`km = 0

♦ quadric M2

1,Pk
: Detac‖

∑2
m=0 ρ

k
m,aQ

m
c ‖ = 0

The intersection

M0

1,L1
(0) ∩M0

1,L2
(1) ∩M0

1,L3
(∞) ∩M2

P1
∩M2

P2

consists of 2 × 2 = 4 points (product of the degrees).

How many of these points correspond to the actual maps?

How many are freckles?



• Freckles: Qma = qmpa:

q = (q0 : q1 : q2) ∈ V, p = (−p1 : p0) ∈ P1

the image of the degree 0 map and the location of the freckle
respectively.

Hence M1 = M1 ∪P1 × V ,

with (q, p) parameterizing the second piece

♠ The point (q, p) obviously belongs to M2

1,Pk
for any k.

The point (q, p) belongs to M0

1,Pk
(z) iff either z = p, or

q ∈ Lk

♦ Hence we find the following three freckles in the intersec-
tion of the five submanifolds:

(L2 ∩ L3, 0) (L1 ∩ L3, 1) (L1 ∩ L2,∞)



The rest 4 − 3 = 1 must come from the regular maps:

Indeed,

there is exactly one straight line passing through two generic

points in P2.

This line L crosses the fixed lines L1, L2, L3 at the points
z1, z2, z3 ∈ L.

There exists a unique parameterization of L in which

z1 = 0, z2 = 1, z3 = ∞

Q.E.D.


