\qquad

1. Use the product rule to multiply.

$$
\begin{aligned}
& \quad \sqrt[3]{6} \cdot \sqrt[3]{7} \\
& \sqrt[3]{6} \cdot \sqrt[3]{7}= \\
& \text { (Type an exact answer, using radicals as needed. Simplify your answer.) }
\end{aligned}
$$

2. Use the product rule to multiply. Assume that all variables represent positive real numbers.
$\sqrt[4]{2 x^{3}} \cdot \sqrt[4]{3}$
$\sqrt[4]{2 x^{3}} \cdot \sqrt[4]{3}=$
(Type an exact answer, using radicals as needed. Simplify your answer.)
3. Use the quotient rule to simplify.

$$
\sqrt[3]{\frac{7}{27}}
$$

$\sqrt[3]{\frac{7}{27}}=$ \qquad
(Type an exact answer, using radicals as needed. Simplify your answer.)
4. Simplify.
$\sqrt[3]{135}$
5. Use the quotient rule to divide. Then simplify if possible.

$$
\frac{3 \sqrt[4]{48}}{\sqrt[4]{3}}
$$

$\frac{3 \sqrt[4]{48}}{\sqrt[4]{3}}=$ \qquad
(Type an exact answer, using radicals as needed. Simplify your answer.)
6. Rationalize the denominator of $\frac{7}{\sqrt[3]{6}}$.
$\frac{7}{\sqrt[3]{6}}=$ \qquad (Type an exact answer, using radicals as needed.)

1. $\sqrt[3]{42}$
2. $\sqrt[4]{6 x^{3}}$
3. $\frac{\sqrt[3]{7}}{3}$
4. $3 \sqrt[3]{5}$
5. 6
6. $\frac{7 \sqrt[3]{36}}{6}$
