Quadratic Inequalities

Quadratic inequalities 2
Visualization 3
Geometric solution 4
Geometric solution 5
What if $\boldsymbol{a}<\mathbf{0}$? 6
Example 1 7
Example 2 8
Example 3 9
Example 4 10
Example 4 11
Summary 12

Quadratic inequalities

We will solve inequalities of the following types:
$a x^{2}+b x+c \geq 0, a x^{2}+b x+c>0, a x^{2}+b x+c \leq 0, a x^{2}+b x+c<0$,
where $a \neq 0, b, c$ are given coefficients, and x is unknown.
For example, $x^{2}+5 x-6 \leq 0$ is a quadratic inequality.
Here $a=1, b=5, c=-6$.
The coefficient a is not zero, otherwise the inequality would be not quadratic, but rather linear.
What does it mean to solve inequality?
It means to find all the values of unknown x for which the inequality holds true.

Visualization

Let us draw a picture illustrating a quadratic inequality.
We know that the equation $y=a x^{2}+b x+c$ defines a parabola,
and know how to draw this parabola.
If $a>0$, then the parabola opens upward:

two x-intercepts

one x-intercept

no x-intercepts

If $a<0$, then the parabola opens downward:
 one x-intercept no x-intercepts

Geometric solution

Let us solve the inequality $a x^{2}+b x+c>0$ in the case when $a>0$.
Let $y=a x^{2}+b x+c$. Then $a x^{2}+b x+c>0 \Longleftrightarrow y>0$.
Thus, to solve the inequality $a x^{2}+b x+c>0$, we need to find
where the parabola $y=a x^{2}+b x+c$ is above the x-axis.

two x-intercepts
For which x is the parabola above

$x \in\left(-\infty, x_{1}\right) \cup\left(x_{1}, \infty\right)$ \qquad

Geometric solution

Now let us solve the inequality $a x^{2}+b x+c \leq 0$ again in the case when $a>0$.
Let $y=a x^{2}+b x+c$. Then $a x^{2}+b x+c \leq 0 \Longleftrightarrow y \leq 0$.
Thus, to solve the inequality $a x^{2}+b x+c \leq 0$, we need to find where the parabola $y=a x^{2}+b x+c$ is below or on the x-axis.

two x-intercepts

one x-intercept

no x-intercepts

For which x is the parabola below or on the x-axis?

$x \in\left[x_{1}, x_{2}\right]$

$x=x_{1}$

no solution

What if $a<0$?

We have a choice:

- either to solve the inequality using a parabola, as we did in the case $a>0$,

Don't forget that the parabola $y=a x^{2}+b x+c$ with $a<0$ opens down:

- or multiply both sides of the inequality by -1 , like

$$
-3 x^{2}+x-2 \geq 0 \Longleftrightarrow 3 x^{2}-x+2 \leq 0,
$$

in order to make a-coefficient positive.
Don't forget to reverse the sign of inequality!

Example 1

Solve the inequality $x^{2}-4 x+3<0$.
Solution. The parabola $y=x^{2}-4 x+3$ opens upward, since $a=1>0$.
Determine the x-intercepts. They are the roots of the equation $x^{2}-4 x+3=0$.
$x^{2}-4 x+3=0 \Longleftrightarrow(x-1)(x-3)=0 \Longleftrightarrow x_{1}=1, x_{2}=3$.

Therefore, the parabola looks as follows:

To solve the inequality $x^{2}-4 x+3<0$, we have to find all x for which the parabola is below the x-axis.

As we see, those x fill the interval $(1,3)$.
The answer can be written in several ways:

$$
1<x<3 \text {, or } x \in(1,3) \text {, or simply }(1,3) .
$$

Example 2

Solve the inequality $9 x^{2}-6 x+1>0$.
Solution. The parabola $y=9 x^{2}-6 x+1$ opens upward, since $a=9>0$.
Determine the x-intercepts. They are the roots of the equation $9 x^{2}-6 x+1=0$.
$9 x^{2}-6 x+1=0 \Longleftrightarrow(3 x-1)^{2}=0 \Longleftrightarrow x_{1}=\frac{1}{3}$.

Therefore, the parabola looks as follows:

To solve the inequality $9 x^{2}-6 x+1>0$, we have to find all x for which the parabola is above the x-axis.
As we see, those x fill the whole line except the point $\frac{1}{3}$.
The answer can be written as $\left(-\infty, \frac{1}{3}\right) \cup\left(\frac{1}{3}, \infty\right)$ or $\mathbb{R} \backslash\left\{\frac{1}{3}\right\}$.

Example 3

Solve the inequality $-x^{2}+3 x-1 \leq 0$.
Solution. The parabola $y=-x^{2}+3 x-1$ opens downward, since $a=-1<0$.
Determine the x-intercepts. They are the roots of the equation $-x^{2}+3 x-1=0$. Solve the equation:
$-x^{2}+3 x-1=0 \Longleftrightarrow x^{2}-3 x+1=0 \Longleftrightarrow x_{1,2}=\frac{3 \pm \sqrt{9-4}}{2}=\frac{3 \pm \sqrt{5}}{2}$.
Therefore, the parabola looks as follows:

To solve the inequality $-x^{2}+3 x-1 \leq 0$, we have to find all x
for which the parabola is below or on the x-axis.
Answer: $x \in\left(-\infty, \frac{3-\sqrt{5}}{2}\right] \cup\left[\frac{3+\sqrt{5}}{2}, \infty\right)$.

Example 4

Solve the inequality $-x^{2}-x-1>0$.
Solution. Alternative 1. The parabola $y=-x^{2}-x-1$ opens downward, since $a=-1<0$.
Determine the x-intercepts. They are the roots of the equation $-x^{2}-x-1=0$.
$-x^{2}-x-1=0 \Longleftrightarrow x^{2}+x+1=0 \quad \Longleftrightarrow$
$x_{1,2}=\frac{-1 \pm \sqrt{1-4}}{2}=\frac{-1 \pm \sqrt{-3}}{2}$. No real roots!

Therefore, the parabola looks as follows:

To solve the inequality $-x^{2}-x-1>0$, we have to find all x for which the parabola is above the x-axis.

As we see, there are no such x.
Answer: no solutions.

Example 4

Let us solve the inequality $-x^{2}-x-1>0$ in a different way.
Alternative 2. $-x^{2}-x-1>0 \Longleftrightarrow x^{2}+x+1<0$.
Instead of solving $-x^{2}-x-1>0$, we will solve an equivalent inequality $x^{2}+x+1<0$.
The parabola $y=x^{2}+x+1$ opens upward since $a=1>0$,
and has no x-intercepts, since the discriminant $b^{2}-4 a c=1^{2}-4 \cdot 1 \cdot 1=-3$ is negative.
Therefore, the parabola is situated above the x-axis:

To solve the inequality $x^{2}+x+1<0$
means to find all values of x for which the parabola is below the x-axis.
But there are no such x. Answer: the inequality has no solutions.

Summary

In this lecture, we have learned
\checkmark what a quadratic inequality is
\checkmark what it means to solve a quadratic inequality
\checkmark how to visualize a quadratic inequality by a parabola
\checkmark how to solve a quadratic inequality
in terms of the leading coefficient and the roots
\square how to write down the answer

