Lecture 31

Quadratic Inequalities

Quadratic inequalities
Visualization
Geometric solution
Geometric solution
What if $a < 0$?
Example 1
Example 2
Example 3
Example 4
Example 4
Summary

Quadratic inequalities

We will solve inequalities of the following types:

 $ax^2 + bx + c \ge 0$, $ax^2 + bx + c > 0$, $ax^2 + bx + c \le 0$, $ax^2 + bx + c < 0$, where $a \ne 0$, b, c are given coefficients, and x is unknown.

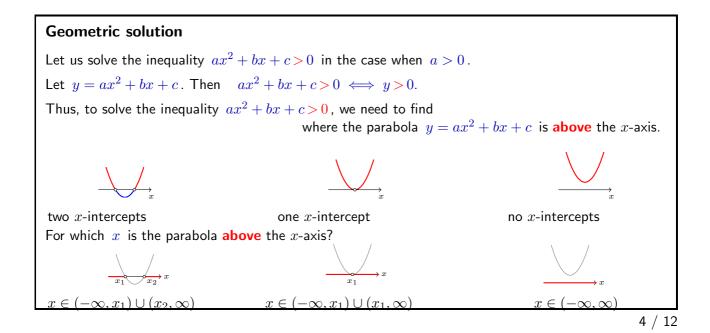
For example, $x^2 + 5x - 6 \le 0$ is a quadratic inequality. Here a = 1, b = 5, c = -6.

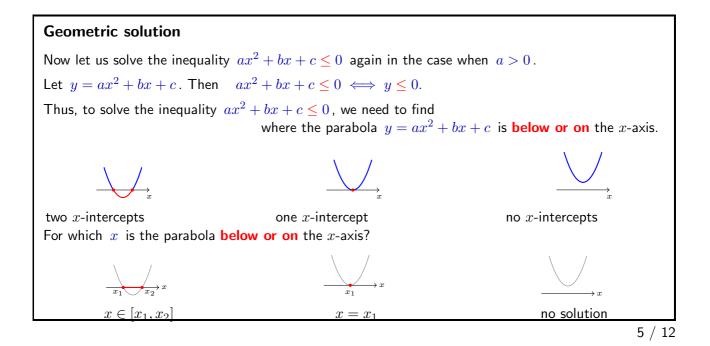
The coefficient a is **not** zero, otherwise the inequality would be not quadratic, but rather linear.

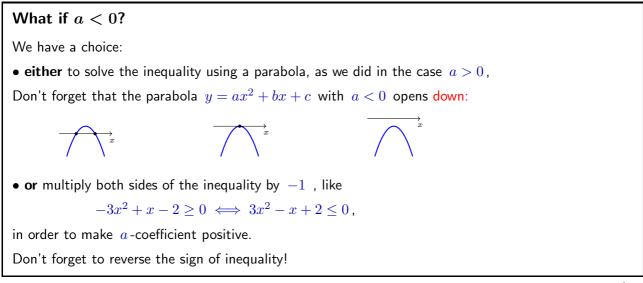
What does it mean to solve inequality?

It means to find **all** the values of unknown x for which the inequality holds true.

Visualization				
Let us draw a picture illustrating a quadratic inequality.				
We know that the equation $y=ax^2+bx+c$ defines a $$ parabola ,				
and know how to draw this parabola.				
If $a > 0$, then the parabola opens upward:				
\bigvee				
	two x-intercepts	one x -intercept	no x -intercepts	
If $a < 0$, then the parabola opens downward:				
\bigcirc	$_{x}$			
	two x-intercepts	one <i>x</i> -intercept	no x-intercepts	
			2 / 1/	



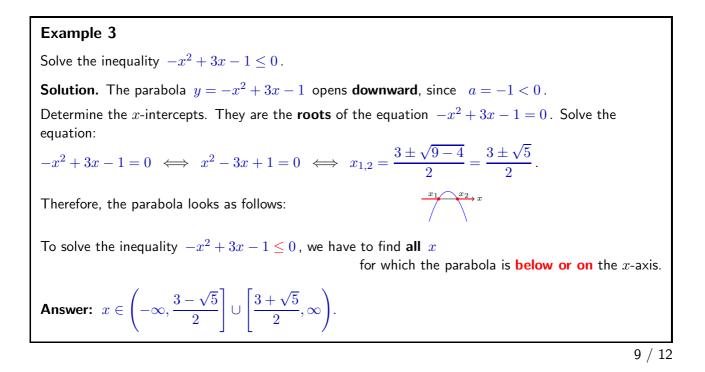




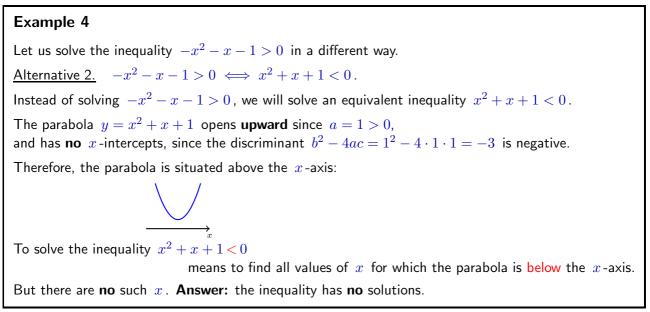
Example 1 Solve the inequality $x^2 - 4x + 3 < 0$. **Solution.** The parabola $y = x^2 - 4x + 3$ opens **upward**, since a = 1 > 0. Determine the *x*-intercepts. They are the **roots** of the equation $x^2 - 4x + 3 = 0$. $x^2 - 4x + 3 = 0 \iff (x - 1)(x - 3) = 0 \iff x_1 = 1, x_2 = 3$. Therefore, the parabola looks as follows: To solve the inequality $x^2 - 4x + 3 < 0$, we have to find **all** x for which the parabola is **below** the *x*-axis. As we see, those x fill the interval (1, 3). The **answer** can be written in several ways: 1 < x < 3, or $x \in (1, 3)$, or simply (1, 3).

Example 2

Solve the inequality $9x^2 - 6x + 1 > 0$. **Solution.** The parabola $y = 9x^2 - 6x + 1$ opens **upward**, since a = 9 > 0. Determine the *x*-intercepts. They are the **roots** of the equation $9x^2 - 6x + 1 = 0$. $9x^2 - 6x + 1 = 0 \iff (3x - 1)^2 = 0 \iff x_1 = \frac{1}{3}$. Therefore, the parabola looks as follows: $\int \frac{1}{3} \int \frac$



Example 4 Solve the inequality $-x^2 - x - 1 > 0$. **Solution**. <u>Alternative 1</u>. The parabola $y = -x^2 - x - 1$ opens **downward**, since a = -1 < 0. Determine the *x*-intercepts. They are the **roots** of the equation $-x^2 - x - 1 = 0$. $-x^2 - x - 1 = 0 \iff x^2 + x + 1 = 0 \iff x_{1,2} = \frac{-1 \pm \sqrt{1-4}}{2} = \frac{-1 \pm \sqrt{-3}}{2}$. No real roots! Therefore, the parabola looks as follows: To solve the inequality $-x^2 - x - 1 > 0$, we have to find **all** x for which the parabola is **above** the *x*-axis. As we see, there are no such x. **Answer:** no solutions. **10** / 12



Summary

In this lecture, we have learned

- what a quadratic inequality is
- what it means to **solve** a quadratic inequality
- Mow to visualize a quadratic inequality by a parabola
- Mow to solve a quadratic inequality
 - in terms of the leading coefficient and the roots
- \mathbf{V} how to write down the **answer**