Equations Reducible to Quadratic

Applications of quadratic equations 2
Polynomial Equations 3
Biquadratic equations 4
Rational equations 5
Rational equations 6
Word problems 7
Word problems 8
Word problems 9
Word problems 10
Summary 11

Applications of quadratic equations

In this lecture we will learn how to apply our knowledge about quadratic equations to other problems. We will discuss

- Polynomial equations
- Biquadratic equations
- Rational equations
- Word problems leading to quadratic equations

Polynomial Equations

Example 1. Solve the equation $x^{3}-3 x^{2}-4 x=0$.
Solution. This is a polynomial equation, since $x^{3}-4 x^{2}-3 x$ is a polynomial.
To solve the equation, we factor LHS:
$x^{3}-4 x^{2}-3 x=0 \Longleftrightarrow x\left(x^{2}-4 x-3\right)=0$.
The product of two factors, x and $x^{2}-4 x-3$, equals 0

$$
\text { if and only if } x=0 \text { or } x^{2}-4 x-3=0 \text {. }
$$

By this, the first root is $x_{1}=0$. To find other roots,
we have to solve the quadratic equation $x^{2}-4 x-3=0$.

$$
\begin{aligned}
x^{2}-4 x-3=0 \Longleftrightarrow x & =\frac{4 \pm \sqrt{(-4)^{2}-4 \cdot 1 \cdot(-3)}}{2 \cdot 1}=\frac{4 \pm \sqrt{16+12}}{2} \\
& =\frac{4 \pm \sqrt{28}}{2}=\frac{4 \pm 2 \sqrt{7}}{2}=2 \pm \sqrt{7} .
\end{aligned}
$$

Therefore, the equation has three roots: $x_{1}=0, x_{2}=2+\sqrt{7}, \quad x_{3}=2-\sqrt{7}$.

Biquadratic equations

Example 2. Solve the equation $x^{4}+2 x^{2}-3=0$.
Solution. This equation is called biquadratic.
It is solved by the substitution $t=x^{2}$. Observe that $t \geq 0$.

$$
\begin{aligned}
x^{4}+2 x^{2}-3=0 \Longleftrightarrow t^{2}+2 t-3=0 & \Longleftrightarrow(t-1)(t+3)=0 \\
& \Longleftrightarrow t=1 \text { or } t=-3 .
\end{aligned}
$$

Since $t \geq 0$, we reject the negative root $t=-3$.
By this, the only solution is given by $t=1$, that is $x^{2}=1$. So $x= \pm 1$.
Answer. $x= \pm 1$

Rational equations

Example 3. Solve the equation $\frac{1}{x}+\frac{2}{x+1}=1$.
Solution. This equation is called rational, since it contains rational expressions.
To solve the equation, we bring RHS to 0 :
$\frac{1}{x}+\frac{2}{x+1}=1 \Longleftrightarrow \frac{1}{x}+\frac{2}{x+1}-1=0$.
Bring all terms to the common denominator:
$\frac{x+1}{x(x+1)}+\frac{2 x}{x(x+1)}-\frac{x(x+1)}{x(x+1)}=0$
Combine the terms in a single fraction:
$\frac{x+1+2 x-x(x+1)}{x(x+1)}=0$ and simplify
$\frac{-x^{2}+2 x+1}{x(x+1)}=0$

Rational equations

We have got that the original equation is equivalent to the following equation:
$\frac{-x^{2}+2 x+1}{x(x+1)}=0$.
When is a fraction equal to 0 ?
Only if its numerator equals 0 and the denominator is not equal to 0
(since one can't divide by 0).
Therefore,
$\frac{-x^{2}+2 x+1}{x(x+1)}=0 \Longleftrightarrow-x^{2}+2 x+1=0$ and $x \neq 0, x \neq-1$.
Let us solve the quadratic equation:
$-x^{2}+2 x+1=0 \Longleftrightarrow x^{2}-2 x-1=0$
$\Longleftrightarrow x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \cdot 1 \cdot(-1)}}{2 \cdot 1}=\frac{2 \pm \sqrt{8}}{2}=\frac{2 \pm 2 \sqrt{2}}{2}=1 \pm \sqrt{2}$
We accept both roots, since none of them is 0 or -1 .

Word problems

Problem 1. The hypotenuse of a right triangle is 8 cm long.
One leg is 2 cm shorter than the other. Find the lengths of the legs of the triangle.

Solution.

Let $x \mathrm{~cm}$ be the length of the shorter leg.
Then the other leg has the length of $x+2 \mathrm{~cm}$.
The hypotenuse is 8 cm .

By the Pythagorean theorem, $x^{2}+(x+2)^{2}=8^{2}$.
To find x, we have to solve this quadratic equation.

Word problems

To solve the equation, we have bring it to the standard form.

$$
\begin{aligned}
x^{2}+(x+2)^{2}=8^{2} \Longleftrightarrow x^{2}+x^{2}+4 x+4=64 & \Longleftrightarrow 2 x^{2}+4 x-60=0 \\
& \Longleftrightarrow x^{2}+2 x-30=0 .
\end{aligned}
$$

The equation is in the standard form now, and we can use the quadratic formula:
$x_{1,2}=\frac{-2 \pm \sqrt{2^{2}-4 \cdot 1 \cdot(-30)}}{2}=\frac{-2 \pm \sqrt{124}}{2}=\frac{-2 \pm 2 \sqrt{31}}{2}=-1 \pm \sqrt{31}$.
We have got two solutions, $x_{1}=-1+\sqrt{31}$ and $x_{2}=-1-\sqrt{31}$.
One of the solutions, $x_{2}=-1-\sqrt{31}$, is negative, and should be rejected, since x, being the length of a side in a triangle, is positive.

Therefore, one leg is $-1+\sqrt{31} \mathrm{~cm}$ long, the other leg is $-1+\sqrt{31}+2=1+\sqrt{31} \mathrm{~cm}$ long.
Answer. The lengths of the legs are $-1+\sqrt{31} \mathrm{~cm}$ and $1+\sqrt{31} \mathrm{~cm}$.

Word problems

Problem 2. Two parallel resistors provide the total resistance of 2 Ohms.
Find the value of each resistor if one of them is 3 Ohms more than the other.
Use the law for parallel resistors:

$$
\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} .
$$

Solution.

To find R_{1}, we have to solve this rational equation.

Word problems

$\frac{1}{2}=\frac{1}{R_{1}}+\frac{1}{R_{1}+3} \Longleftrightarrow \frac{1}{R_{1}}+\frac{1}{R_{1}+3}-\frac{1}{2}=0$
Bring all terms to the common denominator:
$\frac{2\left(R_{1}+3\right)}{2 R_{1}\left(R_{1}+3\right)}+\frac{2 R_{1}}{2 R_{1}\left(R_{1}+3\right)}-\frac{R_{1}\left(R_{1}+3\right)}{2 R_{1}\left(R_{1}+3\right)}=0 \quad$ Combine the terms in a single fraction: $\frac{2\left(R_{1}+3\right)+2 R_{1}-R_{1}\left(R_{1}+3\right)}{2 R_{1}\left(R_{1}+3\right)}=0 \quad$ Simplify:
$\frac{-R_{1}^{2}+R_{1}+6}{2 R_{1}\left(R_{1}+3\right)}=0 \Longleftrightarrow-R_{1}^{2}+R_{1}+6=0 \Longleftrightarrow R_{1}^{2}-R_{1}-6=0$
$\Longleftrightarrow\left(R_{1}-3\right)\left(R_{1}+2\right)=0 \Longleftrightarrow R_{1}=3$ or $R_{1}=-2$.
We reject the negative root $R_{1}=-2$ since a negative resistance makes no sense.
So $R_{1}=3$ Ohms and $R_{2}=R_{1}+3=3+3=6$ Ohms.

Summary

In this lecture, we have learned
\square how to solve polynomial equations reducible to quadratic ones
\checkmark how to solve biquadratic equations
\checkmark how to solve rational equations
\checkmark how to solve word problems leading to quadratic equations

