Lecture 27

Quadratic Formula

Goal: to solve any quadratic equation
Quadratic formula
Plan
Completing the square
Completing the square
Proving quadratic formula
Proving quadratic formula
Proving quadratic formula
Discriminant
How to apply the quadratic formula
How to apply the quadratic formula
How to apply the quadratic formula
When an equation is not in the standard form
When the quadratic formula is not the best choice
Summary

Goal: to solve any quadratic equation

In previous lecture, we learned how to solve some special quadratic equations, namely, **binomial** equations, that is, equations of types $ax^2 + c = 0$ or $ax^2 + bx = 0$.

In this lecture, we will learn how to solve a general quadratic equation $ax^2 + bx + c = 0$ for **arbitrary** coefficients $a \neq 0, b$ and c.

This will take some time and efforts,

but we'll get a formula which allows to solve any quadratic equation!

Quadratic formula
Theorem. Let $ax^2 + bx + c = 0$ be a quadratic equation
with arbitrary coefficients $a eq 0, b$ and c .
Its solution is given by the quadratic formula
$x_{1,2}=rac{-b\pm\sqrt{b^2-4ac}}{2a}$, provided $b^2-4ac\geq 0$
If $b^2 - 4ac < 0$, then the equation has no solutions.
Remarks. We are going to prove and discuss the quadratic formula, and master it by various numerical examples.
The deduction of the quadratic formula is the most difficult part of our course.
It's normal to go over this proof several times until complete understanding.
Important. Quadratic formula will be used throughout all your math studies. It makes sense to memorize it.
3 / 1

Plan

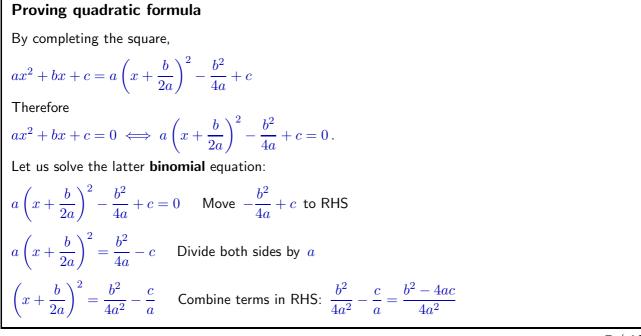
Let $ax^2 + bx + c = 0$ be a quadratic equation, where x is unknown, a, b, c are given numbers (coefficients) and $a \neq 0$. We have to **solve** this equation, that is to find the unknown x in terms of the coefficients a, b, c. For this, we perform a standard trick which turns any quadratic **tri**nomial into a quadratic **bi**nomial. This trick is called **completing the square**. Once the quadratic trinomial is converted to a quadratic binomial,

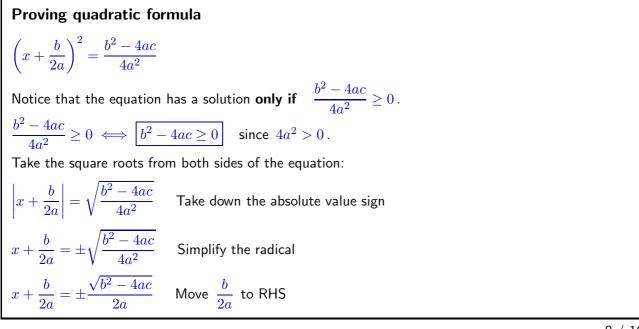
the equation becomes a **binomial equation**, which we know how to solve.

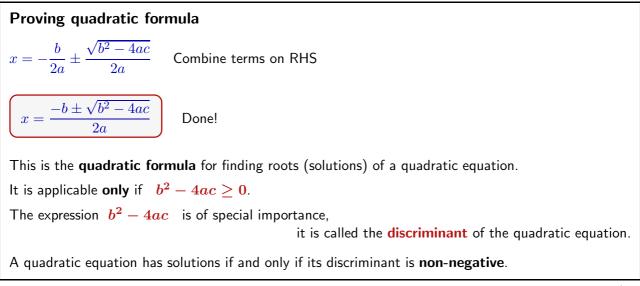
Completing the square
Let
$$ax^2 + bx + c$$
 be a quadratic trinomial.
The expression $ax^2 + bx$ may be considered as a "sprout" of a square, an **incomplete** square:
 $ax^2 + bx = a\left(x^2 + \frac{b}{a}x\right) = a\left(x^2 + 2 \cdot x \cdot \frac{b}{2a}\right)$
incomplete square
To complete this incomplete square,
we add (and then subtract to keep the balance) the missing term, namely, $\left(\frac{b}{2a}\right)^2$:
 $a\left(x^2 + 2 \cdot x \cdot \frac{b}{2a}\right) = a\left(x^2 + 2 \cdot x \cdot \frac{b}{2a} + \left(\frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2\right) = a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2\right)$
incomplete square
 $5 / 16$

Completing the square
We have got that

$$ax^2 + bx = a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2\right) = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a}$$
.
The trinomial may be rewritten as
 $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$.
Note that the resulting expression is a quadratic **binomial**.
Indeed, x is a variable, so is $x + \frac{b}{2a}$. Since a, b, c are constants, so is $-\frac{b^2}{4a} + c$.
If we denote $x + \frac{b}{2a}$ by y and $-\frac{b^2}{4a} + c$ by d ,
then the expression $a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$ turns to $ay^2 + d$, which is a **binomial**.





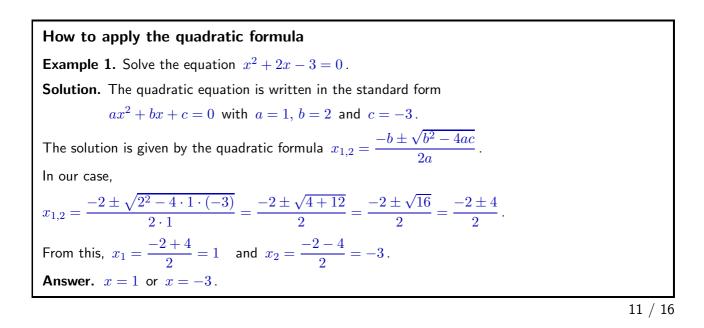


Discriminant

What does the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ give us? **Case 1.** If the discriminant is positive, that is $b^2 - 4ac > 0$, then the quadratic formula gives **two** solutions (roots): $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ and $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$. **Case 2.** If the discriminant equals zero, that is $b^2 - 4ac = 0$, then the quadratic formula gives **one** solution (root):

$$x = -\frac{b}{2a}$$

Case 3. If the discriminant is negative, that is $b^2 - 4ac < 0$, then the quadratic equation has **no** solutions (roots).



How to apply the quadratic formula

Example 2. Solve the equation $2x^2 - 3x - 1 = 0$. **Solution.** In this case, a = 2, b = -3, c = -1. The solution is $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2}$ $= \frac{3 \pm \sqrt{9 + 8}}{4} = \frac{3 \pm \sqrt{17}}{4}$. **Answer.** $x_{1,2} = \frac{3 \pm \sqrt{17}}{4}$ **Example 3.** Solve the equation $x^2 - x + 1 = 0$. **Solution.** In this case, a = 1, b = -1, c = 1. The solution is $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{1 \pm \sqrt{-3}}{2}$ This equation has **no** real solutions.

12 / 16

How to apply the quadratic formula Example 4. Solve the equation $-x^2 + 6x - 9 = 0$. Solution. In this case, a = -1, b = 6, c = -9. The solution is $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-6 \pm \sqrt{6^2 - 4 \cdot (-1) \cdot (-9)}}{2 \cdot (-1)}$ $= \frac{-6 \pm \sqrt{36 - 36}}{-2} = \frac{-6}{-2} = 3$. Answer. x = 3. Remark. Let us have another look on the equation: $-x^2 + 6x - 9 = 0 \iff x^2 - 6x + 9 = 0$. The left hand side on the latter equation is, actually, a perfect square trinomial: $x^2 - 6x + 9 = (x - 3)^2$. Therefore, $x^2 - 6x + 9 = 0 \iff (x - 3)^2 = 0 \iff x - 3 = 0 \iff x = 3$. 13 / 16

When an equation is not in the standard form
Example 5. Solve the equation
$$5 + x(2 - x) = 4 + x^2$$
.
Solution. To use the quadratic formula, we have to bring the equation into the standard form:
 $5 + x(2 - x) = 4 + x^2 \iff 5 + 2x - x^2 = 4 + x^2 \iff 0 = 2x^2 - 2x - 1$.
The equation is in the standard form with $a = 2, b = -2, c = -1$.
The solution is
 $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} = \frac{2 \pm \sqrt{4 + 8}}{4}$
Let us bring the answer to simplest radical form:
 $\frac{2 \pm \sqrt{12}}{4} = \frac{2 \pm 2\sqrt{3}}{4} = \frac{2(1 \pm \sqrt{3})}{4} = \frac{1 \pm \sqrt{3}}{2}$.
Answer. $x_{1,2} = \frac{1 \pm \sqrt{3}}{2}$

14 / 16

When the quadratic formula is not the best choice If a quadratic equation is not a trinomial, but a binomial, then the quadratic formula is valid, but is not the most efficient tool for solving the equation. Example. Solve the equation $4x^2 - x = 0$. Solution. Alternative 1 (using the quadratic formula) a = 4, b = -1, c = 0 $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 4 \cdot 0}}{2 \cdot 4} = \frac{1 \pm \sqrt{1}}{8} = \frac{1 \pm 1}{8}$. By this, $x_1 = \frac{1+1}{8} = \frac{1}{4}$ and $x_2 = \frac{1-1}{8} = 0$. Alternative 2 (by factoring): $4x^2 - x = 0 \iff x(4x - 1) = 0 \iff x = 0 \text{ or } 4x - 1 = 0$ $\iff x = 0 \text{ or } x = \frac{1}{4}$. Answer. x = 0 or $x = \frac{1}{4}$

Summary

☑

In this lecture, we have learned

$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

- the quadratic formula \mathbf{V} how to complete the square
- Mow to prove the quadratic formula
- ☑ when the quadratic formula is valid
- what the discriminant of a quadratic equation is
- how many solutions a quadratic equation has depending on its determinant
- how to apply the quadratic formula to solving quadratic equations
- ☑ when the quadratic formula is not the best tool to solve a quadratic equation