Quadratic Formula

Goal: to solve any quadratic equation 2
Quadratic formula 3
Plan 4
Completing the square 5
Completing the square 6
Proving quadratic formula 7
Proving quadratic formula 8
Proving quadratic formula 9
Discriminant 10
How to apply the quadratic formula 11
How to apply the quadratic formula 12
How to apply the quadratic formula 13
When an equation is not in the standard form 14
When the quadratic formula is not the best choice 15
Summary 16

Goal: to solve any quadratic equation

In previous lecture, we learned how to solve some special quadratic equations, namely, binomial equations, that is, equations of types $a x^{2}+c=0$ or $a x^{2}+b x=0$.

In this lecture, we will learn how to solve a general quadratic equation $a x^{2}+b x+c=0$ for arbitrary coefficients $a \neq 0, b$ and c.

This will take some time and efforts,
but we'll get a formula which allows to solve any quadratic equation!
$2 / 16$

Quadratic formula

Theorem. Let $a x^{2}+b x+c=0$ be a quadratic equation
with arbitrary coefficients $a \neq 0, b$ and c.
Its solution is given by the quadratic formula

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, \text { provided } b^{2}-4 a c \geq 0
$$

If $b^{2}-4 a c<0$, then the equation has no solutions.
Remarks. We are going to prove and discuss the quadratic formula, and master it by various numerical examples.

The deduction of the quadratic formula is the most difficult part of our course.
It's normal to go over this proof several times until complete understanding.
Important. Quadratic formula will be used throughout all your math studies.
It makes sense to memorize it.

Plan

Let $a x^{2}+b x+c=0$ be a quadratic equation,
where x is unknown, a, b, c are given numbers (coefficients) and $a \neq 0$.
We have to solve this equation, that is to find the unknown x in terms of the coefficients a, b, c.
For this, we perform a standard trick which turns any quadratic trinomial into a quadratic binomial.
This trick is called completing the square.
Once the quadratic trinomial is converted to a quadratic binomial,
the equation becomes a binomial equation, which we know how to solve.
$4 / 16$

Completing the square

Let $a x^{2}+b x+c$ be a quadratic trinomial.
The expression $a x^{2}+b x$ may be considered as a "sprout" of a square, an incomplete square:

$$
a x^{2}+b x=a\left(x^{2}+\frac{b}{a} x\right)=a \underbrace{\left(x^{2}+2 \cdot x \cdot \frac{b}{2 a}\right)}
$$

incomplete square

To complete this incomplete square,
we add (and then subtract to keep the balance) the missing term, namely, $\left(\frac{b}{2 a}\right)^{2}$:
$a \underbrace{\left(x^{2}+2 \cdot x \cdot \frac{b}{2 a}\right)}_{\text {incomplete square }}=a(\underbrace{x^{2}+2 \cdot x \cdot \frac{b}{2 a}+\left(\frac{b}{2 a}\right)^{2}}_{\text {complete square }}-\left(\frac{b}{2 a}\right)^{2})=a\left(\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right)$

Completing the square

We have got that
$a x^{2}+b x=a\left(\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right)=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}$.
The trinomial may be rewritten as
$a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c$.
Note that the resulting expression is a quadratic binomial.
Indeed, x is a variable, so is $x+\frac{b}{2 a}$. Since a, b, c are constants, so is $-\frac{b^{2}}{4 a}+c$.
If we denote $x+\frac{b}{2 a}$ by y and $-\frac{b^{2}}{4 a}+c$ by d,
then the expression $a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c$ turns to $a y^{2}+d$, which is a binomial.

Proving quadratic formula

By completing the square,
$a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c$
Therefore
$a x^{2}+b x+c=0 \Longleftrightarrow a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c=0$.
Let us solve the latter binomial equation:
$a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c=0 \quad$ Move $-\frac{b^{2}}{4 a}+c$ to RHS
$a\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a}-c \quad$ Divide both sides by a
$\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a} \quad$ Combine terms in RHS: $\frac{b^{2}}{4 a^{2}}-\frac{c}{a}=\frac{b^{2}-4 a c}{4 a^{2}}$

Proving quadratic formula

$$
\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}
$$

Notice that the equation has a solution only if $\frac{b^{2}-4 a c}{4 a^{2}} \geq 0$.

$$
\frac{b^{2}-4 a c}{4 a^{2}} \geq 0 \Longleftrightarrow b^{2}-4 a c \geq 0 \quad \text { since } 4 a^{2}>0
$$

Take the square roots from both sides of the equation:
$\left|x+\frac{b}{2 a}\right|=\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \quad$ Take down the absolute value sign
$x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \quad$ Simplify the radical
$x+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \quad$ Move $\frac{b}{2 a}$ to RHS

Proving quadratic formula

$$
\begin{array}{ll}
x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} & \text { Combine terms on RHS } \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & \text { Done! }
\end{array}
$$

This is the quadratic formula for finding roots (solutions) of a quadratic equation.
It is applicable only if $b^{2}-4 a c \geq 0$.
The expression $b^{2}-4 a c$ is of special importance,
it is called the discriminant of the quadratic equation.
A quadratic equation has solutions if and only if its discriminant is non-negative.

Discriminant

What does the quadratic formula $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad$ give us?
Case 1. If the discriminant is positive, that is $b^{2}-4 a c>0$,
then the quadratic formula gives two solutions (roots):

$$
x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} .
$$

Case 2. If the discriminant equals zero, that is $b^{2}-4 a c=0$, then the quadratic formula gives one solution (root):

$$
x=-\frac{b}{2 a} .
$$

Case 3. If the discriminant is negative, that is $b^{2}-4 a c<0$, then the quadratic equation has no solutions (roots).

How to apply the quadratic formula

Example 1. Solve the equation $x^{2}+2 x-3=0$.
Solution. The quadratic equation is written in the standard form

$$
a x^{2}+b x+c=0 \text { with } a=1, b=2 \text { and } c=-3 .
$$

The solution is given by the quadratic formula $x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
In our case,
$x_{1,2}=\frac{-2 \pm \sqrt{2^{2}-4 \cdot 1 \cdot(-3)}}{2 \cdot 1}=\frac{-2 \pm \sqrt{4+12}}{2}=\frac{-2 \pm \sqrt{16}}{2}=\frac{-2 \pm 4}{2}$.
From this, $x_{1}=\frac{-2+4}{2}=1 \quad$ and $\quad x_{2}=\frac{-2-4}{2}=-3$.
Answer. $x=1$ or $x=-3$.

How to apply the quadratic formula

Example 2. Solve the equation $2 x^{2}-3 x-1=0$.
Solution. In this case, $a=2, b=-3, c=-1$. The solution is

$$
\begin{aligned}
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & =\frac{-(-3) \pm \sqrt{(-3)^{2}-4 \cdot 2 \cdot(-1)}}{2 \cdot 2} \\
& =\frac{3 \pm \sqrt{9+8}}{4}=\frac{3 \pm \sqrt{17}}{4} .
\end{aligned}
$$

Answer. $x_{1,2}=\frac{3 \pm \sqrt{17}}{4}$
Example 3. Solve the equation $x^{2}-x+1=0$.
Solution. In this case, $a=1, b=-1, c=1$. The solution is
$x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-1) \pm \sqrt{(-1)^{2}-4 \cdot 1 \cdot 1}}{2 \cdot 1}=\frac{1 \pm \sqrt{-3}}{2}$
This equation has no real solutions.

How to apply the quadratic formula

Example 4. Solve the equation $-x^{2}+6 x-9=0$.
Solution. In this case, $a=-1, b=6, c=-9$. The solution is

$$
\begin{aligned}
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & =\frac{-6 \pm \sqrt{6^{2}-4 \cdot(-1) \cdot(-9)}}{2 \cdot(-1)} \\
& =\frac{-6 \pm \sqrt{36-36}}{-2}=\frac{-6}{-2}=3 .
\end{aligned}
$$

Answer. $x=3$.
Remark. Let us have another look on the equation:
$-x^{2}+6 x-9=0 \Longleftrightarrow x^{2}-6 x+9=0$. The left hand side on the latter equation is, actually, a perfect square trinomial: $x^{2}-6 x+9=(x-3)^{2}$.
Therefore, $x^{2}-6 x+9=0 \Longleftrightarrow(x-3)^{2}=0 \Longleftrightarrow x-3=0 \Longleftrightarrow x=3$.

When an equation is not in the standard form

Example 5. Solve the equation $5+x(2-x)=4+x^{2}$.
Solution. To use the quadratic formula, we have to bring the equation into the standard form:
$5+x(2-x)=4+x^{2} \Longleftrightarrow 5+2 x-x^{2}=4+x^{2} \Longleftrightarrow 0=2 x^{2}-2 x-1$.
The equation is in the standard form with $a=2, b=-2, c=-1$.
The solution is
$x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \cdot 2 \cdot(-1)}}{2 \cdot 2}=\frac{2 \pm \sqrt{4+8}}{4}$
Let us bring the answer to simplest radical form:

$$
=\frac{2 \pm \sqrt{12}}{4} .
$$

$\frac{2 \pm \sqrt{12}}{4}=\frac{2 \pm 2 \sqrt{3}}{4}=\frac{2(1 \pm \sqrt{3})}{4}=\frac{1 \pm \sqrt{3}}{2}$.
Answer. $x_{1,2}=\frac{1 \pm \sqrt{3}}{2}$

When the quadratic formula is not the best choice

If a quadratic equation is not a trinomial, but a binomial,
then the quadratic formula is valid, but is not the most efficient tool for solving the equation.
Example. Solve the equation $4 x^{2}-x=0$.
Solution. Alternative 1 (using the quadratic formula) $a=4, b=-1, c=0$
$x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-1) \pm \sqrt{(-1)^{2}-4 \cdot 4 \cdot 0}}{2 \cdot 4}=\frac{1 \pm \sqrt{1}}{8}=\frac{1 \pm 1}{8}$.
By this, $x_{1}=\frac{1+1}{8}=\frac{1}{4} \quad$ and $\quad x_{2}=\frac{1-1}{8}=0$.
Alternative 2 (by factoring):
$4 x^{2}-x=0 \Longleftrightarrow x(4 x-1)=0 \Longleftrightarrow x=0$ or $4 x-1=0$

$$
\Longleftrightarrow x=0 \text { or } x=\frac{1}{4}
$$

Answer. $x=0$ or $x=\frac{1}{4}$

Summary

In this lecture, we have learned
\boxtimes the quadratic formula $\quad x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

- how to complete the square
\square how to prove the quadratic formula
\square when the quadratic formula is valid
\checkmark what the discriminant of a quadratic equation is
\square how many solutions a quadratic equation has depending on its determinant
\checkmark how to apply the quadratic formula to solving quadratic equations
\checkmark when the quadratic formula is not the best tool to solve a quadratic equation

