Quadratic Equations

Quadratic polynomials 2
Quadratic polynomials 3
Quadratic equations and their roots 4
How to solve a binomial quadratic equation 5
Solution in simplest radical form 6
Quadratic equations with no roots 7
Solving binomial equations by factoring 8
Don't lose roots! 9
Summary 10

Quadratic polynomials

A quadratic polynomial is a polynomial of degree two.
It can be written in the standard form $a x^{2}+b x+c$,
where x is a variable, a, b, c are constants (numbers) and $a \neq 0$.
The constants a, b, c are called the coefficients of the polynomial.
Example 1 (quadratic polynomials).

$$
\begin{aligned}
& -3 x^{2}+x-\frac{4}{5} \quad\left(a=-3, b=1, c=-\frac{4}{5}\right) \\
& x^{2} \quad(a=1, b=c=0) \\
& \frac{x^{2}}{7}-5 x+\sqrt{2} \quad\left(a=\frac{1}{7}, b=-5, c=\sqrt{2}\right) \\
& 4 x(x+1)-x
\end{aligned} \quad \begin{aligned}
& \text { (this is a quadratic polynomial which is not written in the standard form. } \\
& \\
& \text { Its standard form is } \left.4 x^{2}+3 x, \text { where } a=4, b=3, c=0\right)
\end{aligned}
$$

Quadratic polynomials

Example 2 (polynomials, but not quadratic)
$x^{3}-2 x+1$ (this is a polynomial of degree 3 , not 2)
$3 x-2$ (this is a polynomial of degree 1 , not 2)
Example 3 (not polynomials)
$x^{2}+x^{\frac{1}{2}}+1, x-\frac{1}{x}$ are not polynomials
A quadratic polynomial $a x^{2}+b x+c$ is called sometimes a quadratic trinomial.
A trinomial consists of three terms.
Quadratic polynomials of type $a x^{2}+b x$ or $a x^{2}+c$
are called quadratic binomials. A binomial consists of two terms.
Quadratic polynomials of type $a x^{2}$ are called quadratic monomials.
A monomial consists of one term.
Quadratic polynomials (together with polynomials of degree 1 and 0) are the simplest polynomials.
Due to their simplicity, they are among the most important algebraic objects.

Quadratic equations and their roots

A quadratic equation is an equation that can be written in the standard form $a x^{2}+b x+c=0$, where x is an unknown, a, b, c are constants and $a \neq 0$.
Examples. $-x^{2}+3 x+5=0$ is quadratic equation in standard form with

$$
a=-1, b=3, c=5
$$

$x+1=2 x(3-4 x)$ is a quadratic equation, but not in standard form.
We obtain its standard form as follows:
$x+1=2 x(3-4 x) \Longleftrightarrow x+1=6 x-8 x^{2} \Longleftrightarrow 8 x^{2}-5 x+1=0$.
To solve an equation means to find all values of the unknown
which turn the equation into a numerical identity.
The values of x that turn the equation $a x^{2}+b x+c=0$ into a numerical identity are called the roots or solutions of the equation.

Also, they are called the roots of the polynomial $a x^{2}+b x+c$.

How to solve a binomial quadratic equation

Example 1. Solve the equation $x^{2}-3=0$.
Solution. Alternative 1.
$x^{2}-3=0 \Longleftrightarrow x^{2}=3 \Longleftrightarrow \sqrt{x^{2}}=\sqrt{3} \Longleftrightarrow|x|=\sqrt{3}$
One can shorten the answer: $x= \pm \sqrt{3}$.

$$
\Longleftrightarrow x=\sqrt{3} \text { or } x=-\sqrt{3} .
$$

Alternative 2. Let us write 3 as $(\sqrt{3})^{2}$ and use the difference of squares formula:
$x^{2}-3=0 \Longleftrightarrow x^{2}-(\sqrt{3})^{2}=0 \Longleftrightarrow(x-\sqrt{3})(x+\sqrt{3})=0$.
The product of two terms, $(x-\sqrt{3})$ and $(x+\sqrt{3})$, equals 0
if and only if either one term equals 0 , or the other term equals 0 :
$(x-\sqrt{3})(x+\sqrt{3})=0 \Longleftrightarrow x-\sqrt{3}=0$ or $x+\sqrt{3}=0$
$\Longleftrightarrow x=\sqrt{3}$ or $x=-\sqrt{3}$
Answer. $x= \pm \sqrt{3}$.

Solution in simplest radical form

Example 2. Solve the equation $3 x^{2}-5=0$. Give the answer in simplest radical form.
Solution.
$3 x^{2}-5=0 \Longleftrightarrow 3 x^{2}=5 \Longleftrightarrow x^{2}=\frac{5}{3} \Longleftrightarrow x= \pm \sqrt{\frac{5}{3}}$.
To write the number $\sqrt{\frac{5}{3}}$ in the simplest radical form,
we have to get rid of the radical in the denominator:
$\sqrt{\frac{5}{3}}=\frac{\sqrt{5}}{\sqrt{3}}=\frac{\sqrt{5} \sqrt{3}}{\sqrt{3} \sqrt{3}}=\frac{\sqrt{15}}{3}$.
Therefore, the solution is $x= \pm \sqrt{\frac{5}{3}}= \pm \frac{\sqrt{15}}{3}$.
Answer. $x= \pm \frac{\sqrt{15}}{3}$.

Quadratic equations with no roots

Example 3. Solve the equation $x^{2}+4=0$.
Solution. $x^{2}+4=0 \Longleftrightarrow x^{2}=-4$.
We know that the square of any real numbers is non-negative (positive or zero).
Therefore, the equation has no real solutions.
Example 4. Solve the equation $x(2-3 x)=(x+1)^{2}$.
Solution. The equation is not in the standard form. Let us bring it to this form.
$x(2-3 x)=(x+1)^{2} \Longleftrightarrow 2 x-3 x^{2}=x^{2}+2 x+1$

$$
\Longleftrightarrow-4 x^{2}=1 \Longleftrightarrow x^{2}=-\frac{1}{4} .
$$

The square of a real number can't be negative, therefore, the equation has no real solutions.

Solving binomial equations by factoring

Example 5. Solve the equation $-3 x^{2}+4 x=0$.
Solution. By factoring, we get
$-3 x^{2}+4 x=0 \Longleftrightarrow x(-3 x+4)=0$.
The product of two unknown numbers, x and $-3 x+4$ equals zero.
This may happen if and only if either one number equals 0 , or the other number equals 0 :
$x(-3 x+4)=0 \Longleftrightarrow x=0$ or $-3 x+4=0 \Longleftrightarrow x=0$ or $x=\frac{4}{3}$.
Answer. $x=0$ or $x=\frac{4}{3}$

Don't lose roots!

Example 6. Solve the equation $x(x-1)=x$.
Solution. Rewrite the equation to bring it to the standard form:
$x(x-1)=x \Longleftrightarrow x^{2}-x=x \Longleftrightarrow x^{2}-2 x=0$.
Solve this binomial equation by factoring:
$x^{2}-2 x=0 \Longleftrightarrow x(x-2)=0 \Longleftrightarrow x=0$ or $x=2$.
Warning. Let us have a look on an "alternative solution":
$\mathscr{X} x(x-1)=\mathscr{X} x \Longleftrightarrow x-1=1 \Longleftrightarrow x=2$.
We have got only one solution, the other solution, $x=0$, has been lost.
The reason for this is an illegal cancellation of x.
A cancellation of x is the division by x, which makes sense only if $x \neq 0$.
But $x=0$ is in fact a solution,
and cancellation of it leads to the loss of this solution.
Don't cancel anything unknown while solving an equation!

Summary

In this lecture, we have learned
\checkmark what a quadratic polynomial is

