Lecture 25

Radicals as Powers with Rational Exponents

oots	2
ube root	3
dd-order roots	4
ven-order roots	5
recautions	
xamples	
roperties of n -th roots	8
adicals as powers with rational exponents	9
perating with fractional exponents	10
ummary	11

Roots

Let a be a real number. The **n-th root** of a is a number b such that $b^n = a$. If n = 2 then the n-th root is the square root which we studied in the preceding lecture. **Examples.** The **2nd** root of 49 is 7, since $7^2 = 49$ The **4th** root of 81 is 3, since $3^4 = 81$. The **5th** root of -32 is -2, since $(-2)^5 = -32$. The **4th** root of -81 does **not** exist, since there is no real number which **4th** power is negative.

2 / 11

Cube root

The **3rd** root has a special name: it is called a **cube root**. Notation for the cube root: $\sqrt[3]{}$. By definition, $b = \sqrt[3]{a} \iff b^{3} = a$. For any number a, there exists a unique cube root of a, since the equation $x^{3} = a$ has a unique solution. **Examples.** $\sqrt[3]{1} = 1$ since $1^{3} = 1$, $\sqrt[3]{8} = 2$ since $2^{3} = 8$, $\sqrt[3]{27} = 3$ since $3^{3} = 27$, $\sqrt[3]{64} = 4$ since $4^{3} = 64$, $\sqrt[3]{0} = 0$ since $0^{3} = 0$, $\sqrt[3]{-1} = -1$ since $(-1)^{3} = -1$, $\sqrt[3]{-8} = -2$ since $(-2)^{3} = -8$.

Odd-order roots Let *n* be a positive **odd** integer, and *a* be a real number. Then the equation $x^n = a$ has a unique solution. So there exists a unique *n*-th root of *a*. Notation for the *n*-th root: $\sqrt[n]{}$. By definition, $b = \sqrt[n]{a} \iff b^n = a$. The number *n* is called the **index** of the *n*-th root. **Examples.** $\sqrt[5]{1} = 1$ since $1^5 = 1$, $\sqrt[9]{-1} = -1$ since $(-1)^9 = -1$, $\sqrt[3]{-125} = -5$ since $(-5)^3 = -125$, $\sqrt[5]{243} = 3$ since $3^5 = 243$, $\sqrt[7]{128} = 2$ since $2^7 = 128$, $\sqrt[7]{-128} = -2$ since $(-2)^7 = -128$.

Even-order roots

Let *n* be a positive **even** integer, and *a* be a **non-negative** real number. Then the equation $x^n = a$ has **two** solutions, which differ by their signs. So there exist two *n*-th roots of *a*. The positive root is called the **principal** *n*-th root and denoted by $\sqrt[n]{}$. By definition, $b = \sqrt[n]{a} \iff b^n = a$. The number *n* is called the **index** of the *n*-th root. It's a custom to omit the index of 2: the second root $\sqrt[2]{a}$ is written as \sqrt{a} . **Examples.** $\sqrt[4]{1} = 1$ since $1^4 = 1$, $\sqrt[4]{16} = 2$ since $2^4 = 16$, $\sqrt[4]{-16}$ is undefined since 4 is even and -16 < 0, $\sqrt[6]{64} = 2$ since $2^6 = 64$, $\sqrt[4]{81} = 3$ since $3^4 = 81$, $\sqrt[6]{-81}$ is undefined since 6 is even and -81 < 0.

Precautions

Dealing with n-th roots, we have to distinguish two cases: when n is odd and when n is even.

• For odd n, $\sqrt[n]{a}$ is defined for all a.

In this case, $\sqrt[n]{a}$ may be positive, negative, or zero (depending on a).

• For even n, $\sqrt[n]{a}$ is defined only for **non-negative** a. In this case, $\sqrt[n]{a} \ge 0$.

Operations of taking the n-th power and n-th root are **inverse** to each other:

For even n, we have to restrict ourselves to non-negative a and b.

Then $\sqrt[n]{b^n} = b$ and $(\sqrt[n]{b})^n = b$.

Examples Example 1. Find the value of the following expressions: $\sqrt[3]{5^3}$, $\sqrt[3]{(-5)^3}$, $\sqrt[3]{-5^3}$, $(\sqrt[3]{5})^3$, $(-\sqrt[3]{5})^3$, $(\sqrt[3]{-5})^3$. **Solution.** $\sqrt[3]{5^3} = 5$, $\sqrt[3]{(-5)^3} = -5$, $\sqrt[3]{-5^3} = \sqrt[3]{-125} = -5$, $(\sqrt[3]{5})^3 = 5$, $(-\sqrt[3]{5})^3 = -(\sqrt[3]{5})^3 = -5$, $(\sqrt[3]{-5})^3 = -5$. **Example 2.** Find the value of the following expressions: $\sqrt[4]{5^4}$, $\sqrt[4]{(-5)^4}$, $\sqrt[4]{-5^4}$, $(\sqrt[4]{5})^4$, $(-\sqrt[4]{5})^4$, $(\sqrt[4]{-5})^4$. **Solution.** Caution! 4 is even and $\sqrt[4]{}$ may be not defined. $\sqrt[4]{5^4} = 5$, $\sqrt[4]{(-5)^4} = \sqrt[4]{5^4} = 5$, $\sqrt[4]{-5^4} = \sqrt[4]{-625}$ is undefined. $(\sqrt[4]{5})^4 = 5$, $(-\sqrt[4]{5})^4 = (\sqrt[4]{5})^4 = 5$, $(\sqrt[4]{-5})^4$ is undefined. $(\sqrt[4]{5})^4 = 5$, $(-\sqrt[4]{5})^4 = (\sqrt[4]{5})^4 = 5$, $(\sqrt[4]{-5})^4$ is undefined. 7/11

Properties of *n*-th roots

Let a, b be numbers for which *n*-th roots are defined. Then $\sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab}$ and $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Indeed, $(\sqrt[n]{a}\sqrt[n]{b})^n = (\sqrt[n]{a})^n (\sqrt[n]{b})^n = ab$. Therefore, $\sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab}$. $\left(\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\right)^n = \frac{(\sqrt[n]{a})^n}{(\sqrt[n]{b})^n} = \frac{a}{b}$. Therefore, $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$.

8 / 11

Radicals as powers with rational exponents Reminder: If *n* is a **positive** integer, then $x^n = \underbrace{x \cdot x \cdots x}_{n \text{ times}}$, and $x^{-n} = \frac{1}{x^n}$. If *n* = 0, then $x^0 = 1$. What is $x^{\frac{1}{n}}$? Calculate the *n*-th power of $x^{\frac{1}{n}}$: $\left(x^{\frac{1}{n}}\right)^n = \underbrace{x^{\frac{1}{n}} \cdot x^{\frac{1}{n}} \cdots x^{\frac{1}{n}}_{n}}_{n \text{ times}} = x^{\frac{1}{n} + \frac{1}{n} + \cdots + \frac{1}{n}} = x^{n \cdot \frac{1}{n}} = x^1 = x$. This means that *n*-th power of $x^{\frac{1}{n}}$ is *x*, therefore, $x^{\frac{1}{n}} = \sqrt[n]{x}$. For positive integers *m* and *n*, define a power with **fractional** exponent as follows: $x^{\frac{m}{n}} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m$. One can prove that all power rules are valid for fractional exponents.

Operating with fractional exponents

Example. Simplify the following expressions:

 $25^{\frac{3}{2}}, \quad 27^{-\frac{5}{3}}, \quad (64)^{\frac{2}{3}}, \quad (-64)^{\frac{2}{3}}, \quad (64)^{\frac{3}{2}}, \quad (-64)^{\frac{3}{2}}.$ Solution. $25^{\frac{3}{2}} = 25^{\frac{1}{2} \cdot 3} = (25^{\frac{1}{2}})^3 = (\sqrt{25})^3 = 5^3 = 125$ $27^{-\frac{5}{3}} = \frac{1}{27^{\frac{5}{3}}} = \frac{1}{(\sqrt[3]{27})^5} = \frac{1}{3^5} = \frac{1}{243}$ $(64)^{\frac{2}{3}} = (\sqrt[3]{64})^2 = 4^2 = 16$ $(-64)^{\frac{2}{3}} = (\sqrt[3]{-64})^2 = (-4)^2 = 16$ $(64)^{\frac{3}{2}} = (\sqrt{64})^3 = 8^3 = 512$ $(-64)^{\frac{3}{2}} = (\sqrt{-64})^3 \text{ is undefined since } -64 < 0.$

Summary In this lecture, we have learned \checkmark what the *n*-th root is \checkmark what $\sqrt[n]{a}$ is \checkmark the difference between cases when *n* is **odd** and **even** \checkmark defining identities for *n*-th root: $(\sqrt[n]{x})^n = x$, $\sqrt[n]{x^n} = x$ for $x \ge 0$ \checkmark properties of *n*-th root \checkmark that radicals may be written as **powers** with rational exponents: $x^{\frac{m}{n}} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m$ \checkmark how to operate with rational exponents