Radicals as Powers with Rational Exponents

Roots 2
Cube root 3
Odd-order roots 4
Even-order roots 5
Precautions 6
Examples 7
Properties of \boldsymbol{n}-th roots 8
Radicals as powers with rational exponents 9
Operating with fractional exponents 10
Summary 11

Roots

Let a be a real number. The n-th root of a is a number b such that $b^{n}=a$. If $n=2$ then the n-th root is the square root which we studied in the preceding lecture.

Examples. The 2nd root of 49 is 7 , since $7^{2}=49$
The 4 th root of 81 is 3 , since $3^{4}=81$.
The 5 th root of -32 is -2 , since $(-2)^{5}=-32$.
The 4th root of -81 does not exist,
since there is no real number which 4th power is negative.
$2 / 11$

Cube root

The 3 rd root has a special name: it is called a cube root.
Notation for the cube root: $\sqrt[3]{ }$. By definition, $b=\sqrt[3]{a} \Longleftrightarrow b^{3}=a$.
For any number a, there exists a unique cube root of a, since the equation $x^{3}=a$ has a unique solution.

Examples. $\sqrt[3]{1}=1$ since $1^{3}=1$,
$\sqrt[3]{8}=2$ since $2^{3}=8$,
$\sqrt[3]{27}=3$ since $3^{3}=27$,
$\sqrt[3]{64}=4$ since $4^{3}=64$,
$\sqrt[3]{0}=0$ since $0^{3}=0$,
$\sqrt[3]{-1}=-1$ since $(-1)^{3}=-1$,
$\sqrt[3]{-8}=-2$ since $(-2)^{3}=-8$.

Odd-order roots

Let n be a positive odd integer, and a be a real number.
Then the equation $x^{n}=a$ has a unique solution. So there exists a unique n-th root of a.
Notation for the n-th root: $\sqrt[n]{ }$. By definition, $b=\sqrt[n]{a} \Longleftrightarrow b^{n}=a$.
The number n is called the index of the n-th root.
Examples. $\sqrt[5]{1}=1$ since $1^{5}=1$,
$\sqrt[9]{-1}=-1$ since $(-1)^{9}=-1$,
$\sqrt[3]{-125}=-5$ since $(-5)^{3}=-125$,
$\sqrt[5]{243}=3$ since $3^{5}=243$,
$\sqrt[7]{128}=2$ since $2^{7}=128$,
$\sqrt[7]{-128}=-2$ since $(-2)^{7}=-128$.

Even-order roots

Let n be a positive even integer, and a be a non-negative real number.
Then the equation $x^{n}=a$ has two solutions, which differ by their signs.
So there exist two n-th roots of a.
The positive root is called the principal n-th root and denoted by $\sqrt[n]{ }$.
By definition, $b=\sqrt[n]{a} \Longleftrightarrow b^{n}=a$.
The number n is called the index of the n-th root.
It's a custom to omit the index of 2 : the second root $\sqrt[2]{a}$ is written as \sqrt{a}.
Examples. $\sqrt[4]{1}=1$ since $1^{4}=1$,
$\sqrt[4]{16}=2$ since $2^{4}=16$,
$\sqrt[4]{-16}$ is undefined since 4 is even and $-16<0$,
$\sqrt[6]{64}=2$ since $2^{6}=64$,
$\sqrt[4]{81}=3$ since $3^{4}=81$,
$\sqrt[6]{-81}$ is undefined since 6 is even and $-81<0$.

Precautions

Dealing with n-th roots, we have to distinguish two cases: when n is odd and when n is even.

- For odd $n, \sqrt[n]{a}$ is defined for all a.

In this case, $\sqrt[n]{a}$ may be positive, negative, or zero (depending on a).

- For even $n, \sqrt[n]{a}$ is defined only for non-negative a. In this case, $\sqrt[n]{a} \geq 0$.

Operations of taking the n-th power and n-th root are inverse to each other:

For even n, we have to restrict ourselves to non-negative a and b.
Then $\sqrt[n]{b^{n}}=b$ and $(\sqrt[n]{b})^{n}=b$.

Examples

Example 1. Find the value of the following expressions:

$$
\sqrt[3]{5^{3}}, \sqrt[3]{(-5)^{3}}, \sqrt[3]{-5^{3}},(\sqrt[3]{5})^{3},(-\sqrt[3]{5})^{3},(\sqrt[3]{-5})^{3}
$$

Solution. $\quad \sqrt[3]{5^{3}}=5, \quad \sqrt[3]{(-5)^{3}}=-5, \quad \sqrt[3]{-5^{3}}=\sqrt[3]{-125}=-5$,

$$
(\sqrt[3]{5})^{3}=5, \quad(-\sqrt[3]{5})^{3}=-(\sqrt[3]{5})^{3}=-5, \quad(\sqrt[3]{-5})^{3}=-5
$$

Example 2. Find the value of the following expressions: $\sqrt[4]{5^{4}}, \sqrt[4]{(-5)^{4}}, \sqrt[4]{-5^{4}},(\sqrt[4]{5})^{4},(-\sqrt[4]{5})^{4},(\sqrt[4]{-5})^{4}$.
Solution. Caution! 4 is even and $\sqrt[4]{ }$ may be not defined.
$\sqrt[4]{5^{4}}=5, \quad \sqrt[4]{(-5)^{4}}=\sqrt[4]{5^{4}}=5, \quad \sqrt[4]{-5^{4}}=\sqrt[4]{-625}$ is undefined.
$(\sqrt[4]{5})^{4}=5, \quad(-\sqrt[4]{5})^{4}=(\sqrt[4]{5})^{4}=5, \quad(\sqrt[4]{-5})^{4}$ is undefined.

Properties of \boldsymbol{n}-th roots

Let a, b be numbers for which n-th roots are defined. Then $\sqrt[n]{a} \sqrt[n]{b}=\sqrt[n]{a b}$ and $\frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}$.
Indeed, $(\sqrt[n]{a} \sqrt[n]{b})^{n}=(\sqrt[n]{a})^{n}(\sqrt[n]{b})^{n}=a b$. Therefore, $\quad \sqrt[n]{a} \sqrt[n]{b}=\sqrt[n]{a b}$.
$\left(\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\right)^{n}=\frac{(\sqrt[n]{a})^{n}}{(\sqrt[n]{b})^{n}}=\frac{a}{b}$. Therefore, $\frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}$.

Radicals as powers with rational exponents

Reminder:
If n is a positive integer, then $x^{n}=\underbrace{x \cdot x \cdots \cdots x}_{n \text { times }}$, and $x^{-n}=\frac{1}{x^{n}}$.
If $n=0$, then $x^{0}=1$.
What is $x^{\frac{1}{n}}$? Calculate the n-th power of $x^{\frac{1}{n}}$:
$\left(x^{\frac{1}{n}}\right)^{n}=\underbrace{x^{\frac{1}{n}} \cdot x^{\frac{1}{n}} \cdots \cdots x^{\frac{1}{n}}}_{n \text { times }}=x^{\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}}=x^{n \cdot \frac{1}{n}}=x^{1}=x$.
This means that n-th power of $x^{\frac{1}{n}}$ is x, therefore, $x^{\frac{1}{n}}=\sqrt[n]{x}$.
For positive integers m and n, define a power with fractional exponent as follows:
$x^{\frac{m}{n}}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}$.
One can prove that all power rules are valid for fractional exponents.

Operating with fractional exponents

Example. Simplify the following expressions:
$25^{\frac{3}{2}}, \quad 27^{-\frac{5}{3}}, \quad(64)^{\frac{2}{3}}, \quad(-64)^{\frac{2}{3}}, \quad(64)^{\frac{3}{2}}, \quad(-64)^{\frac{3}{2}}$.

Solution.

$25^{\frac{3}{2}}=25^{\frac{1}{2} \cdot 3}=\left(25^{\frac{1}{2}}\right)^{3}=(\sqrt{25})^{3}=5^{3}=125$
$27^{-\frac{5}{3}}=\frac{1}{27^{\frac{5}{3}}}=\frac{1}{(\sqrt[3]{27})^{5}}=\frac{1}{3^{5}}=\frac{1}{243}$
$(64)^{\frac{2}{3}}=(\sqrt[3]{64})^{2}=4^{2}=16$
$(-64)^{\frac{2}{3}}=(\sqrt[3]{-64})^{2}=(-4)^{2}=16$
$(64)^{\frac{3}{2}}=(\sqrt{64})^{3}=8^{3}=512$
$(-64)^{\frac{3}{2}}=(\sqrt{-64})^{3}$ is undefined since $-64<0$.

Summary

In this lecture, we have learned
\square what the n-th root is

- what $\sqrt[n]{a}$ is
\square the difference between cases when n is odd and even
\checkmark defining identities for n-th root: $\quad(\sqrt[n]{x})^{n}=x, \quad \sqrt[n]{x^{n}}=x$ for $x \geq 0$
- properties of n-th root
\square that radicals may be written as powers with rational exponents:
$x^{\frac{m}{n}}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}$
\checkmark how to operate with rational exponents

