Radicals

Squares and square roots 2
Definition of radical 3
Radicals and perfect squares 4
Precautions 5
Taking principal square root is opposite to squaring 6
Properties of radicals 7
What is $\sqrt{x^{2}}$? 8
Why $\sqrt{x+y} \neq \sqrt{x}+\sqrt{y}$? 9
Simplest radical form 10
Simplest radical form 11
Operating with radical expressions 12
Summary 13

Squares and square roots

A number and its opposite have the same square:
for example, $3^{2}=9$ and $(-3)^{2}=9$.
Number 9 is called the square of 3 (or -3).
Numbers 3 and -3 are called the square roots of 9 .
Let a be a non-negative number. A square root of a is a number b such that $b^{2}=a$.
If a is positive, then there are two numbers, b and $-b$, whose square is a :

If $a=0$, then there is only one number, 0 , whose square is $0: 0=0^{2}$.

Definition of radical

Let a be a non-negative number.
The principal square root of a is a non-negative number b such that $b^{2}=a$.
principal square root

Notation for the principal square root: $\quad \sqrt{a}=b$
The symbol $\sqrt{ }$ is called a radical sign.
The formula $\sqrt{a}=b$ reads "the square root of a is equal to b ".
By definition, $\sqrt{a}=b \Longleftrightarrow b^{2}=a \quad$ for non-negative a and b.

Radicals and perfect squares

Examples. $\sqrt{0}=0$ since $0^{2}=0$,

$$
\begin{aligned}
& \sqrt{1}=1 \text { since } 1^{2}=1 \\
& \sqrt{4}=2 \text { since } 2^{2}=4 \\
& \sqrt{9}=3 \text { since } 3^{2}=9 \\
& \sqrt{16}=4 \text { since } 4^{2}=16
\end{aligned}
$$

A number a is called a perfect square if \sqrt{a} is an integer.
Here are some perfect squares: $0,1,4,9,16,25,36,49,64,81,100$.

Precautions

- When we work with real numbers, the number under the radical sign should be non-negative: \sqrt{a} is defined only for $a \geq 0$.
For example, $\sqrt{-9}$ is not defined.
- A square root is always non-negative: $\sqrt{a} \geq 0$.

For example, it is incorrect to write $\sqrt{9}=-3$, since $\sqrt{9}$, by definition, should be non-negative.

Taking principal square root is opposite to squaring

It means that $\quad \sqrt{3^{2}}=3 \quad$ and $\quad(\sqrt{9})^{2}=9$.
For any non-negative $a, \sqrt{a^{2}}=a$ and $(\sqrt{a})^{2}=a$.
Example. Find the value of the following expressions:

$$
\sqrt{5^{2}}, \sqrt{(-5)^{2}}, \sqrt{-5^{2}},(\sqrt{5})^{2},(-\sqrt{5})^{2},(\sqrt{-5})^{2}
$$

Solution. $\sqrt{5^{2}}=5, \quad \sqrt{(-5)^{2}}=\sqrt{5^{2}}=5, \quad \sqrt{-5^{2}}=\sqrt{-25} \quad$ is undefined
$(\sqrt{5})^{2}=5, \quad(-\sqrt{5})^{2}=(\sqrt{5})^{2}=5, \quad(\sqrt{-5})^{2} \quad$ is undefined

Properties of radicals

Let a, b be non-negative numbers. Then $\sqrt{a} \sqrt{b}=\sqrt{a b} \quad$ and $\quad \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$.
Indeed, $(\sqrt{a} \sqrt{b})^{2}=(\sqrt{a})^{2}(\sqrt{b})^{2}=a b$. Therefore, $\sqrt{a} \sqrt{b}=\sqrt{a b}$.
$\left(\frac{\sqrt{a}}{\sqrt{b}}\right)^{2}=\frac{(\sqrt{a})^{2}}{(\sqrt{b})^{2}}=\frac{a}{b}$. Therefore, $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$.
Example. Simplify the following expressions: $\sqrt{3} \sqrt{12}, \quad \sqrt{75}, \frac{\sqrt{27}}{\sqrt{12}}$.
Solution. $\sqrt{3} \sqrt{12}=\sqrt{3} \sqrt{3 \cdot 4}=\sqrt{3} \sqrt{3} \sqrt{4}=(\sqrt{3})^{2} \sqrt{2^{2}}=3 \cdot 2=6$.
Another way to calculate: $\sqrt{3} \sqrt{12}=\sqrt{3 \cdot 12}=\sqrt{36}=\sqrt{6^{2}}=6$.
$\sqrt{75}=\sqrt{3 \cdot 25}=\sqrt{3 \cdot 5^{2}}=\sqrt{3} \sqrt{5^{2}}=\sqrt{3} \cdot 5=5 \sqrt{3}$.
$\frac{\sqrt{27}}{\sqrt{12}}=\frac{\sqrt{3 \cdot 9}}{\sqrt{3 \cdot 4}}=\frac{\sqrt{3} \cdot \sqrt{9}}{\sqrt{3} \cdot \sqrt{4}}=\frac{\sqrt{3^{2}}}{\sqrt{2^{2}}}=\frac{3}{2}$.

What is $\sqrt{x^{2}}$?
We know that x^{2} is non-negative for any value of x. So $\sqrt{x^{2}}$ is defined.
Is it true that $\sqrt{x^{2}}=x$ for all x ? No!
For non-negative $x, \sqrt{x^{2}}=x$ by definition of the radical.
For negative $x, \sqrt{x^{2}}=-x$, since $-x>0$ and $(-x)^{2}=x^{2}$.
Therefore, $\sqrt{x^{2}}=|x|$. Reminder: $|x|=\left\{\begin{aligned} x, & x \geq 0 \\ -x, & x<0\end{aligned}\right.$
Example 1. $\sqrt{(-5)^{2}}=|-5|=5$.
Example 2. Simplify the following expressions: $\sqrt{x^{4}}, \sqrt{x^{6}}$.
Solution. $\sqrt{x^{4}}=\sqrt{\left(x^{2}\right)^{2}}=\left|x^{2}\right|=x^{2}$
$\sqrt{x^{6}}=\sqrt{\left(x^{3}\right)^{2}}=\left|x^{3}\right|=\left|x^{2} \cdot x\right|=\left|x^{2}\right| \cdot|x|=x^{2} \cdot|x|$

Why $\sqrt{x+y} \neq \sqrt{x}+\sqrt{y}$?
It is not true that $\sqrt{x+y}=\sqrt{x}+\sqrt{y}$ for arbitrary x, y.
Indeed, if $x=9$ and $y=16$, then
$\left.\sqrt{x+y}\right|_{x=9, y=16}=\sqrt{9+16}=\sqrt{25}=5$, while
$\left.(\sqrt{x}+\sqrt{y})\right|_{x=9, y=16}=\sqrt{9}+\sqrt{16}=3+4=7$ and $5 \neq 7$.
Are there any x, y for which $\sqrt{x+y}=\sqrt{x}+\sqrt{y}$? Yes!
For example, $x=y=0: \quad \sqrt{0+0}=\sqrt{0}+\sqrt{0}$
or $x=1$ and $y=0: \quad \sqrt{1+0}=\sqrt{1}+\sqrt{0}$.
Actually, $\sqrt{x+y}=\sqrt{x}+\sqrt{y}$ only if at least one of x, y is zero.

Simplest radical form

An expression involving radicals can be written in many different forms. For example,
$\sqrt{\frac{4}{3}}=\frac{\sqrt{4}}{\sqrt{3}}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}}=\frac{2 \sqrt{3}}{3}$.
It is a custom to write radical expressions in a special form, which is called simplest radical form.
In simplest radical form, the expression

- doesn't contain perfect square factors:
$\sqrt{12}$ is not in the simplest form, but $2 \sqrt{3}$ is. $(\sqrt{12}=\sqrt{4 \cdot 3}=2 \sqrt{3})$
- doesn't contain fractions under the radical:

$$
\sqrt{\frac{3}{4}} \text { is not in the simplest form, but } \frac{\sqrt{3}}{2} \text { is. }\left(\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{\sqrt{4}}=\frac{\sqrt{3}}{2}\right)
$$

- doesn't contain radicals in denominators:

$$
\frac{1}{\sqrt{2}} \text { is not in the simplest form, but } \frac{\sqrt{2}}{2} \text { is. }\left(\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{\sqrt{2} \cdot \sqrt{2}}=\frac{\sqrt{2}}{2}\right)
$$

Simplest radical form

Example. Bring the following expressions in simplest radical form:

$$
\frac{1}{\sqrt{3}}, \quad \sqrt{\frac{2}{5}}, \quad \frac{1}{3-\sqrt{2}}
$$

Solution. $\frac{1}{\sqrt{3}}=\frac{1 \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}}=\frac{\sqrt{3}}{(\sqrt{3})^{2}}=\frac{\sqrt{3}}{3}$
$\sqrt{\frac{2}{5}}=\frac{\sqrt{2}}{\sqrt{5}}=\frac{\sqrt{2} \cdot \sqrt{5}}{\sqrt{5} \cdot \sqrt{5}}=\frac{\sqrt{10}}{(\sqrt{5})^{2}}=\frac{\sqrt{10}}{5}$
$\frac{1}{3-\sqrt{2}}=\frac{1 \cdot(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}=\frac{3+\sqrt{2}}{3^{2}-(\sqrt{2})^{2}}=\frac{3+\sqrt{2}}{9-2}=\frac{3+\sqrt{2}}{7}$
Remember: $(a-b)(a+b)=a^{2}-b^{2}$, so

$$
(3-\sqrt{2})(3+\sqrt{2})=3^{2}-(\sqrt{2})^{2}
$$

Operating with radical expressions

Example 1. Simplify the expression: $\sqrt{6}(\sqrt{18}-\sqrt{24})$
Solution. $\sqrt{6}(\sqrt{18}-\sqrt{24})=\sqrt{6} \sqrt{18}-\sqrt{6} \sqrt{24}=\sqrt{6 \cdot 18}-\sqrt{6 \cdot 24}=$
$\sqrt{6 \cdot 6 \cdot 3}-\sqrt{6 \cdot 6 \cdot 4}=\sqrt{6^{2} \cdot 3}-\sqrt{6^{2} \cdot 2^{2}}=\sqrt{6^{2}} \sqrt{3}-\sqrt{6^{2}} \sqrt{2^{2}}=$

$$
6 \sqrt{3}-6 \cdot 2=6 \sqrt{3}-12 .
$$

Example 2. Bring the expression in simplest radical form: $\frac{\sqrt{6}-3}{\sqrt{3}-\sqrt{2}}$.

Solution.

$$
\begin{aligned}
\frac{\sqrt{6}-3}{\sqrt{3}-\sqrt{2}} & =\frac{\sqrt{3 \cdot 2}-(\sqrt{3})^{2}}{\sqrt{3}-\sqrt{2}}=\frac{\sqrt{3} \sqrt{2}-(\sqrt{3})^{2}}{\sqrt{3}-\sqrt{2}}=\frac{\sqrt{3}(\sqrt{2}-\sqrt{3})}{\sqrt{3}-\sqrt{2}} \\
& =\frac{\sqrt{3}(-1)(\sqrt{3}-\sqrt{2})}{\sqrt{3}-\sqrt{2}}=\frac{\sqrt{3}(-1)(\sqrt{3}-\sqrt{2})}{\sqrt{3}-\sqrt{2}}=-\sqrt{3} .
\end{aligned}
$$

Summary

In this lecture, we have learned
\checkmark what the square roots of a non-negative number are

- what the principal square root is
what the perfect squares are
\checkmark the defining identities for radical: $\sqrt{a^{2}}=a$ and $(\sqrt{a})^{2}=a$
\checkmark the properties of radicals: $\sqrt{a} \sqrt{b}=\sqrt{a b}, \quad \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$
- $\sqrt{x^{2}}=|x|$ that for all x
- $\sqrt{x+y} \neq \sqrt{x}+\sqrt{y}$ for arbitrary x, y
\checkmark what the simplest radical form is
\checkmark how to operate with radical expressions

