Linear Systems. Part 3

Applications of linear systems 2
On a farm 3
Solve a system 4
In a movie theater 5
Solve a system 6
In a winery 7
Solve a system 8
Summary 9

Applications of linear systems

In this lecture, we will learn how to solve word problems using systems of linear equations.

On a farm

Problem. On a farm, there are sheep and chicken.

All together,
they have 44 feet and 17 heads. How many sheep and how many chicken are on the farm?

Solution. Let x be the number of sheep, and y be the number of chicken.
How many feet do all sheep have? $4 x$
How many feet do all chicken have? $2 y$
How many feet do sheep and chicken have all together? $4 x+2 y$
How many heads do they have all together? $x+y$
What is given in the problem?

- all together they have 44 feet, so $4 x+2 y=44$.
- all together they have 17 heads, so $x+y=17$.

Solve a system

How to find x, the number of sheep, and y, the number of chicken?
Solve the system

$$
\left\{\begin{array} { r }
{ 4 x + 2 y = 4 4 } \\
{ x + y = 1 7 }
\end{array} \Longleftrightarrow \left\{\begin{array} { r }
{ 2 x + y = 2 2 } \\
{ x + y = 1 7 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ x = 5 } \\
{ x + y = 1 7 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=5 \\
y=12
\end{array}\right.\right.\right.\right.
$$

Therefore, the number of sheep is 5 , the number of chicken is 12 .
Let us check if our answer is correct.
How many feet do 5 sheep and 12 chicken have?

$$
4 \cdot 5+2 \cdot 12=20+24=44 \checkmark
$$

How many heads do 5 sheep and 12 chicken have?

$$
5+12=17 \checkmark
$$

The problem is solved correctly!
Answer. There are 5 sheep and 12 chicken on the farm.

In a movie theater

Problem. A family of two adults and five children pays $\$ 61$ for tickets in a movie theater.
A family of three adults and two children pays $\$ 53$.
Find a ticket price for an adult and a ticket price for a child.
Solution. Let $\$ x$ be the price for an adult ticket, and $\$ y$ be the price for a child ticket.
How much a family of two adults and five children will pay then? $\$(2 x+5 y)$
How much a family of three adults and two children will pay? $\$(3 x+2 y)$
What is given in the problem?
A family of two adults and five children pays $\$ 61$. So $2 x+5 y=61$.
A family of three adults and two children pays $\$ 53$. So $3 x+2 y=53$.
How to find x and y ?

Solve a system

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ 2 x + 5 y = 6 1 } \\
{ 3 x + 2 y = 5 3 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ 6 x + 1 5 y = 1 8 3 } \\
{ 6 x + 5 y = 1 0 6 }
\end{array} \Longleftrightarrow \left\{\begin{array}{r}
11 y=77 \\
3 x+2 y=53
\end{array} \Longleftrightarrow\right.\right.\right. \\
& \left\{\begin{array} { c }
{ 1 1 2 } \\
{ y = 7 } \\
{ 3 x + 2 \cdot 7 = 5 3 }
\end{array} \Longleftrightarrow \left\{\begin{array} { c }
{ y = 7 } \\
{ 3 x = 5 3 - 1 4 }
\end{array} \Longleftrightarrow \left\{\begin{array} { c }
{ y = 7 } \\
{ 3 x = 3 9 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=13 \\
y=7
\end{array}\right.\right.\right.\right.
\end{aligned}
$$

Therefore, the price for an adult ticket is $\$ 13$, and the price for a children ticket is $\$ 7$.
Let us check if our answer is correct.
How much a family of two adults and five children will pay, in dollars?

$$
2 \cdot 13+5 \cdot 7=26+35=61
$$

How much a family of thee adults and two children will pay, in dollars?

$$
3 \cdot 13+2 \cdot 7=39+14=53 \checkmark
$$

Answer. The ticket price for an adult is $\$ 13$, the ticket price for a child is $\$ 7$.

In a winery

Problem. A winemaker has in his cellar 1620 liters of wine aging in three small and five large barrels. Find the volumes of the barrels if a large barrel
contains 20 liters more than a small one.

Solution. Let x be the volume (in liters) of a small barrel, and y be the volume (in liters) of a large barrel.
What is the total volume of three small and five large barrels?

$$
3 x+5 y \text { (liters) }
$$

What is the difference in volumes between a large and a small barrel? $y-x$
What is given in the problem?

- total volume: $3 x+5 y=1620$
- the difference in volumes: $y-x=20$

Solve a system

$\left\{\begin{array}{l}3 x+5 y=1620 \\ -x+y=20\end{array} \Longleftrightarrow\left\{\begin{array}{l}3 x+5 y=1620 \\ y=x+20\end{array} \Longleftrightarrow\left\{\begin{array}{l}3 x+5(x+20)=1620 \\ y=x+20\end{array}\right.\right.\right.$
$\left\{\begin{array}{l}3 x+5 x+100=1620 \\ y=x+20\end{array} \Longleftrightarrow\left\{\begin{array}{l}8 x=1520 \\ y=x+20\end{array} \Longleftrightarrow\left\{\begin{array}{l}x=190 \\ y=190+20\end{array} \Longleftrightarrow\right.\right.\right.$

$$
\left\{\begin{array}{l}
x=190 \\
y=210
\end{array}\right.
$$

and a large one contains 210 liters.
Let us check if our answer is correct.
What is the total volume of three small barrels and five large ones?

$$
3 \cdot 190+5 \cdot 210=570+1050=1620 \checkmark
$$

How many liters more does a large barrel contain than a small one?
Answer. 190 and 210 liters.

$$
210-190=20 \checkmark
$$

Summary

In this lecture, we have learned
\checkmark how to solve word problems using linear systems
how to check if the answer is correct

