## Lecture 21

## Linear Systems. Part 1

| What is a linear system?              | 2 |
|---------------------------------------|---|
| How many solutions may a system have? | 3 |
| How to solve a system?                | 4 |
| Elementary transformations            | 5 |
| Elementary transformations            | 6 |
| Summary                               | 7 |

What is a linear system? We will study systems consisting of two linear equations in two unknowns, like this:  $\begin{cases} -2x + 3y = -8 \\ 5x + 2y = 1 \end{cases}$ x, y are called unknowns. To solve a system means to find all values of x and y which satisfy both equations. The brace  $\begin{cases} means that both equations should be satisfied by the same values of x and y. \end{cases}$ The values x = 1 and y = -2 satisfy  $\begin{cases} -2x + 3y = -8 \\ 5x + 2y = 1, \end{cases}$ because  $\begin{cases} -2 \cdot 1 + 3(-2) = -2 + (-6) = -8 \\ 5 \cdot 1 + 2(-2) = -5 + (-4) = 1. \end{cases}$ Therefore,  $\begin{cases} x = 1 \\ y = -2 \end{cases}$ (or just the pair (1, -2)) is a solution of  $\begin{cases} -2x + 3y = -8 \\ 5x + 2y = 1, \end{cases}$ Are there other solutions? To solve a system means to find all its solutions!

2 / 7



| How to solve a system?                                                                                                             |                                                                                                                    |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|
| Some systems are easy.                                                                                                             |                                                                                                                    |  |  |  |
| $\begin{cases} x = -2\\ y = 3 \end{cases}$                                                                                         | is a linear system,<br>but it looks like a solution,<br>and it is a <b>solution</b> for itself.<br>y = 3<br>x = -2 |  |  |  |
| To solve a more complicated system, we propose to turn it into an easy one<br>by a sequence of elementary <b>transformations</b> . |                                                                                                                    |  |  |  |
| The transformations must preserve the set of all solutions.                                                                        |                                                                                                                    |  |  |  |
| If two systems have the same solutions, we call them equivalent.                                                                   |                                                                                                                    |  |  |  |
| and write $\iff$ between the systems,                                                                                              |                                                                                                                    |  |  |  |
| like this:                                                                                                                         | $\begin{cases} x+3=1\\ 2y=6 \end{cases} \iff \begin{cases} x=-2\\ y=3 \end{cases}$                                 |  |  |  |
|                                                                                                                                    | 4 / 7                                                                                                              |  |  |  |

## **Elementary transformations**

There are **three** elementary transformations.

1. Adding equations, that is replacing one equation by its sum with the other equation.

$$\begin{cases} -x + 2y = 3 & \xrightarrow{\text{sum up}} \\ x - y = 0 & \xrightarrow{\text{keep}} \end{cases} \iff \begin{cases} -x + 2y + (x - y) = 3 + 0 \\ x - y = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} -x + 2y + (x - y) = 3 + 0 \\ x - y = 0 \end{cases} \iff \begin{cases} y = 3 \\ x - y = 0 \end{cases}$$

Adding the first equation to the second one completes the solution:

$$\begin{cases} y=3\\ x-y=0 \end{cases} \iff \begin{cases} y=3\\ x-y+y=0+3 \end{cases} \iff \begin{cases} y=3\\ x=3 \end{cases}$$

5 / 7



6 / 7

| Summary                                                                                                                                                                                                                                                                            |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| In this lecture, we have learned                                                                                                                                                                                                                                                   |       |
| <ul> <li>what a linear system is</li> <li>what solutions of a linear system are</li> <li>what it means to solve a system</li> <li>how many solutions a linear system may have</li> <li>which systems are called equivalent</li> <li>what elementary transformations are</li> </ul> |       |
|                                                                                                                                                                                                                                                                                    | 7 / 7 |