## Lines on a Plane. Part 1

Cartesian coordinate system on a plane. ..... 2
Points and their coordinates ..... 3
Vertical lines ..... 4
Horizontal lines ..... 5
General linear equation in two variables ..... 6
The graph of a linear equation in two variables ..... 7
Line as the graph of a linear equation ..... 8
How to draw a line by its equation ..... 9
A line through two points ..... 10
Intercepts ..... 11
How to find intercepts ..... 12
Two-intercept form of a linear equation ..... 13
Quick drawing ..... 14
Summary ..... 15

## Cartesian coordinate system on a plane

Cartesian (or rectangular) coordinate system is defined by

- a point, called the origin,
- two perpendicular number lines drawn through the origin.


Usually, one line is drawn horizontally, and the other one vertically.
The horizontal line is called $x$-axis, the vertical line is called the $y$-axis.

## Points and their coordinates

Given the coordinate system, each point on the plane gets its coordinates two numbers which determine the location of the point on the plane.


The first number is called $x$-coordinate, the second number is called the $\boldsymbol{y}$-coordinate.
For example, the coordinates of point $A$ are $(3,2)$,
where 3 is the $x$-coordinate and 2 is the $y$-coordinate.

## Vertical lines

Example. Describe geometrically the set of all points on the coordinate plane whose $x$-coordinate is 3 .

Solution. These are the points with coordinates $(3, y)$, where $y$ is an arbitrary number.


All such points form a vertical line passing through the point 3 on the $x$-axis.

This vertical line is the graph of the equation $x=3$.

The graph of the equation $x=a$, where $a$ is a number,
is the vertical line passing through the point $a$ on the $x$-axis.
The $y$-axis, which is a vertical line, has the equation $x=0$.

## Horizontal lines

Example. Draw the graph of the equation $y=-1$.
Solution. The graph of $y=-1$ is the set of all points on the plane
whose coordinates are $(x,-1)$, where $x$ is an arbitrary number.
It is a horizontal line passing through the point -1 on the $y$-axis.


The graph of the equation $y=b$, where $b$ is a number,
is the horizontal line passing through the point $b$ on the $y$-axis.
The $x$-axis, which is a horizontal line, has the equation $y=0$.

## General linear equation in two variables

The equation $A x+B y=C$, where $A, B, C$ are given numbers and $x, y$ are variables, is called a linear equation in two variables.

The numbers $A, B, C$ are called the coefficients.
Examples of linear equations in two variables:
$-2 x+y=4 \quad(A=-2, B=1, C=4)$,
$x=1 \Longleftrightarrow x+0 \cdot y=1 \quad(A=1, B=0, C=1)$,
$y=0 \Longleftrightarrow 0 \cdot x+y=0 \quad(A=0, B=1, C=0)$,
$0=3 \Longleftrightarrow 0 \cdot x+0 \cdot y=3 \quad(A=0, B=0, C=3)$,
$0=0 \Longleftrightarrow 0 \cdot x+0 \cdot y=0 \quad(A=0, B=0, C=0)$.
The graph of an equation is the set of all points on the plane whose coordinates satisfy the equation.

## The graph of a linear equation in two variables

What is the graph of the equation $A x+B y=C$ ? It depends on the coefficients $A, B, C$.

- If all the coefficients are zeros, that is $A=B=C=0$, then the equation is

$$
0 \cdot x+0 \cdot y=0 \Longleftrightarrow 0=0
$$

and it is satisfied by any pair of numbers $(x, y)$. Therefore, its graph is the entire plane.

- If $A=B=0$ and $C \neq 0$ then the equation is

$$
0 \cdot x+0 \cdot y=C \Longleftrightarrow 0=C
$$

and there are no $(x, y)$ satisfying it. Its graph is the empty set.

- If $A, B$ are not both zero, that is either $A \neq 0$ or $B \neq 0$, then the graph is a straight line.


## Line as the graph of a linear equation

If $A, B$ are not both zero, then there are infinitely many points $(x, y)$
satisfying the equation $A x+B y=C$.
They are located on a straight line. This line is the graph of the equation $A x+B y=C$.


A line is determined by any two of its points. Therefore, to draw the line, it is enough to specify the location of two points on it.

## How to draw a line by its equation

Example. Draw the line $3 x-4 y=12$ on the coordinate plane.
Solution. Let us pick up two points on the line. A point on the line is defined by a pair of numbers $(x, y)$, satisfying the equation $3 x-4 y=12$.
For simplicity, let us choose $x=0$. Then

$$
3 \cdot 0-4 y=12 \Longleftrightarrow-4 y=12 \Longleftrightarrow y=-3
$$

Therefore, $(0,-3)$ is a point on the line.
Now put $y=0$. Then

$$
3 x-4 \cdot 0=12 \Longleftrightarrow 3 x=12 \Longleftrightarrow x=4 .
$$

Therefore, $(4,0)$ is a point on the line.

Draw a line through $(0,-3)$ and $(4,0)$ :


## A line through two points

Remark. When we search for two points belonging to the line $3 x-4 y=12$, it is convenient to put the coordinates in the table:

| $x$ | $y$ |
| :---: | :---: |
| 0 | -3 |
| 4 | 0 |

$$
\begin{aligned}
& x=0 \Longrightarrow y=-3 \\
& y=0 \Longrightarrow x=4
\end{aligned}
$$

One may choose any two other points on the line, for example,

| $x$ | $y$ |  |
| :---: | :---: | :---: |
| 2 | $-\frac{3}{2}$ | $x=2 \Longrightarrow 3 \cdot 2-4 y=12 \Longrightarrow 6-4 y=12 \Longrightarrow y=-\frac{3}{2}$ |
| $\frac{16}{3}$ | 1 | $y=1 \Longrightarrow 3 x-4 \cdot 1=12 \Longrightarrow 3 x=16 \Longrightarrow x=\frac{16}{3}$ |



## Intercepts

The point where the line intersects the $x$-axis is called the $x$-intercept.
The $x$-intercept has coordinates $(x, 0)$, its $y$-coordinate equals 0 .

The point where the line intersects the $y$-axis is called the $y$-intercept.
The $y$-intercept has coordinates $(0, y)$, its $x$-coordinate equals 0 .


## How to find intercepts

Example. Determine the intercepts of the line $2 x+3 y=4$.
Draw the line on the coordinate system.

## Solution.

The $x$-intercept is the point where $y=0$. Plug in $y=0$ into the equation: $2 x+3 \cdot 0=4 \Longleftrightarrow 2 x=4 \Longleftrightarrow x=2$. So the $x$-intercept is $(2,0)$.

The $y$-intercept is the point where $x=0$. Plug in $x=0$ into the equation: $2 \cdot 0+3 y=4 \Longleftrightarrow 3 y=4 \Longleftrightarrow y=4 / 3$. So the $y$-intercept is $(0,4 / 3)$.


## Two-intercept form of a linear equation

The equation $\frac{x}{a}+\frac{y}{b}=1$ where $x, y$ are variables and $a, b$ are non-zero numbers,
is called the two-intercept equation of a line.
The coefficients $a$ and $b$ represent the $x$ - and $y$-intercepts respectively.
Indeed, $(a, 0)$ and $(0, b)$ satisfy the equation:

$$
\frac{a}{a}+\frac{0}{b}=1 \text { and } \frac{0}{a}+\frac{b}{b}=1
$$



## Quick drawing

The two intercept form of the equation helps to draw a line in no time.
Example. Draw the line $3 x-2 y=6$.
Solution. Rewrite the equation in the two-intercept form:
$3 x-2 y=6 \Longleftrightarrow \frac{3 x}{6}-\frac{2 y}{6}=1 \Longleftrightarrow \frac{x}{2}+\frac{y}{-3}=1$.
The $x$-intercept is $(2,0)$, the $y$-intercept is $(0,-3)$.


## Summary

In this lecture, we have learned
$\checkmark$ what a Cartesian coordinate system is
$\checkmark$ what the equation of a vertical line is $(x=a)$
$\square$ what the equation of a horizontal line is $(y=b)$
$\square$ what the general linear equation in two variables is $(A x+B y=C)$
$\square$ what the graph of a linear equation is

- how to draw a line by its equation
$\checkmark$ what the intercepts are
『 what the two-intercept equation is $\left(\frac{x}{a}+\frac{y}{b}=1\right)$

