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What a linear inequality is

There are four inequality signs: < , ≤ , > , ≥ .

a < b a is less than b

a ≤ b a is less than or equal to b

a > b a is greater than b

a ≥ b a is greater than or equal to b

A linear inequality consists of two linear expressions connected by one of the inequality signs.

For example, 3(x− 1) ≤ 4 + 5x is a linear inequality in one variable.

Evaluation of both sides of an inequality at a number

gives rise to a numerical inequality, which may be either true or false.

For example, at x = 0 the inequality above holds true:

3(0− 1) ≤ 4 + 5 · 0 ⇐⇒ −3 ≤ 4 X
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Solution

To solve an inequality means to find all values of the variable, for which the inequality holds true.

These values form a solution set.

A linear inequality is very similar to a linear equation.

As we remember, the solution set of a linear equation
• either consists of a single number (when the equation has one solution),
• or is empty (when the equation has no solutions),
• or is the entire number line (when the equation has infinitely many solutions).

The solution set of a linear inequality is quite different.

Consider a simple inequality x ≤ 2 . Its solution set consists of all numbers ≤ 2
and is denoted by {x | x ≤ 2} . One can graph the solutions on the number line:

2

The solution set is an interval. It is denoted by (−∞, 2] .
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Intervals

Let us review intervals that we may encounter solving linear inequalities.

inequality solution graph interval

x < a {x | x < a}
a

(−∞, a)

x ≤ a {x | x ≤ a}
a

(−∞, a]

x > a {x | x > a}
a

(a,∞)

x ≥ a {x | x ≥ a}
a

[a,∞)
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Equivalent inequalities

Two inequalities are called equivalent if they have the same solution sets.

It means that each solution of the first inequality is a solution of the second one, and vice versa: each
solution of the second inequality is a solution of the first one.

If two inequalities are equivalent, we write the equivalence sign “ ⇐⇒ ” between them, like this

x+ 1 > 3 ⇐⇒ x > 2 .

How to transform an inequality into an equivalent inequality?

To this end, we will use three elementary transformations.

5 / 16

3



Add the same to both sides

Any inequality is equivalent to the inequality obtained from it by
adding the same expression to both sides.

Example 1. Consider the inequality x− 1 > 2 . If we add 1 to both sides,
then we get an equavalent inequality:

x− 1 > 2 ⇐⇒ x− 1 + 1 > 2 + 1 ⇐⇒ x > 3

Example 2. 5− x ≤ 0 ⇐⇒ 5− x+ x ≤ 0 + x ⇐⇒ 5 ≤ x ⇐⇒ x ≥ 5

Example 3.

5− x < 2 ⇐⇒ 5− x+ (x− 2) < 2 + (x− 2) ⇐⇒

5− x+ x− 2 < 2 + x− 2 ⇐⇒ 3 < x ⇐⇒ x > 3

Similarly, subtracting the same expression from both sides of an inequality
gives rise to an equivalent inequality:

x+ 2 ≥ 6 ⇐⇒ x+ 2−2 ≥ 6−2 ⇐⇒ x ≥ 4
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Fast track

There is a trick that may help you to operate more efficiently with inequalities.

The subtraction of x from both sides of the inequality 2x− 1 ≤ 5 + x , namely

2x− 1 ≤ 5 + x ⇐⇒ 2x− 1− x ≤ 5 + x− x ⇐⇒ x− 1 ≤ 5

is equivalent to relocation x from the right hand side (RHS) of the inequality
to the left hand side (LHS) with the opposite sign:

2x− 1 ≤ 5+ x

−

⇐⇒ 2x−x− 1 ≤ 5 ⇐⇒ x− 1 ≤ 5

Look how fast we can solve the inequality:

2x− 1 ≤ 5+ x

−

⇐⇒ x− 1 ≤ 5

+

⇐⇒ x ≤ 6 .

7 / 16

4



Multiply both sides by the same positive number

Any inequality is equivalent to the inequality obtained from it by
multiplying both sides by the same positive number.

Example 1.
x

2
> 3 ⇐⇒

x

2
· 2 > 3 · 2 ⇐⇒ x > 6

Example 2. 3x ≤ 5 ⇐⇒ 3x ·
1

3
≤ 5 ·

1

3
⇐⇒ x ≤

5

3

Similarly, dividing both sides of an inequality by the same positive number
gives rise to an equivalent inequality:

2x ≥ 8 ⇐⇒
2x

2
≥

8

2
⇐⇒ x ≥ 4
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Multiply by negative number and reverse the sign

What happens if we multiply an inequality by a negative number?

Consider the inequality x > 2 . Move x to RHS, and move 2 to LHS
(don’t forget to change the signs):

x > 2 ⇐⇒ −2 > −x .

This inequality says that −2 is greater than −x . This is the same as −x is less than −2 :

−2 > −x ⇐⇒ −x < −2 .

Therefore, x > 2 ⇐⇒ −x < −2 .

In general, if we multiply both sides of an inequality by a negative number,
we have to reverse the sign of the inequality.

Example 1. −
x

3
< 2 ⇐⇒ (−3) ·

(

−
x

3

)

>(−3) · 2 ⇐⇒ x > −6.

The same rule is valid if we divide an inequality by a negative number.

Example 2. −2x ≤ 6 ⇐⇒
−2x

−2
≥

6

−2
⇐⇒ x ≥ −3 .
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Elementary transformations

Elementary transformations of an inequality are

• adding the same expression to both sides of an inequality,

• multiplying both sides by the the same positive number, and

• multiplying both sides by the the same negative number and reversing the sign of the inequality.

See how a sequence of elementary transformations brings an inequality
to a simple equivalent inequality.
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Examples

Example 1. Solve the inequality 7x− 5 ≤ 2x+ 1 . Give the answer in interval notation. Show the
solution on the number line.

Solution. Move 2x to the LHS: 7x−2x− 5 ≤ 1

Simplify: 5x− 5 ≤ 1

Move −5 to the RHS: 5x ≤ 1+5

Simplify: 5x ≤ 6

Divide by 5 : x ≤
6

5

6

5

6

5
Answer.

(

−∞,
6

5

]
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Examples

Example 2. Solve the inequality −
x

2
+ 3 < x+ 4 . Give the answer in interval notation. Show the

solution on the number line.

Solution.

Move 3 to the RHS: −
x

2
< x+ 4−3

Simplify: −
x

2
< x+ 1

Multiply by (−2): (−2)
(

−
x

2

)

>(−2)(x+ 1)

Simplify: x > −2x− 2

Move −2x to the LHS: x+2x > −2

Simplify: 3x > −2

Divide by 3 : x > −
2

3
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Writing down the answer

The answer can be written as an inequality x > −
2

3
,

or as a set

{

x
∣

∣ x > −
2

3

}

,

or as an interval

(

−
2

3
,∞

)

on a number line:

−
2

3
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Systems of linear inequalities

Two inequalities with the same single variable may form a system.

To solve a system means
to find all the values of the variable that satisfy both inequalities.

Example. Solve the system

{

3x− 2 ≤ 2x− 1

−2x+ 3 < 4.
Write the answer in interval notation. Show the solution on the number line.

Solution.
{

3x− 2 ≤ 2x− 1

−2x+ 3 < 4
⇐⇒

{

3x− 2x ≤ −1 + 2

−2x < 1
⇐⇒







x ≤ 1

x > −
1

2

⇐⇒ −
1

2
< x ≤ 1

1
−
1

2
1

−
1

2

Answer:

(

−
1

2
, 1

]
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Solution of a system

Geometrically, the solution of a system of two linear inequalities in one variable
is the intersection of two intervals.

The intersection consists of all points belonging to both intervals.

As the intersection, we may get a finite interval, for example, a ≤ x < b :

ba
[a, b)

an infinite interval, for example x ≤ a :

ba
(−∞, a]

or the empty set (when the system has no solutions):

ba
∅
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Summary

In this lecture, we have learned

�✓ what a linear inequality is
�✓ what the solution of an inequality is
�✓ which intervals on a real line may appear as solutions of inequalities
�✓ which inequalities are called equivalent

�✓ what elementary transformations of inequalities are
• adding the same expression to both sides
• multiplying both sides by the same positive number
• multiplying both sides by the same negative number and reversing the sign of the inequality

�✓ how to solve inequalities efficiently

�✓ how to write down the solution of an inequality
�✓ how to show the solution on a number line

�✓ how to solve a system of inequalities
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