Lecture 17

Linear Inequalities

What a linear inequality is
Solution
Intervals
Equivalent inequalities
Add the same to both sides
Fast track. \ldots \ldots \ldots \ldots \ldots \ldots $\overline{7}$
Multiply both sides by the same positive number
Multiply by negative number and reverse the sign
Elementary transformations
Examples
Examples
Writing down the answer
Systems of linear inequalities \ldots \ldots \ldots 14
Solution of a system
Summary \ldots \ldots \ldots \ldots \ldots \ldots 16

What a linear inequality is

There are four inequality signs: $\langle , \leq , \rangle , \geq$. a < b a is less than b $a \leq b$ a is less than or equal to b $a \geq b$ a is greater than b $a \geq b$ a is greater than or equal to bA linear inequality consists of two linear expressions connected by one of the inequality signs. For example, $3(x - 1) \leq 4 + 5x$ is a linear inequality in one variable. Evaluation of both sides of an inequality at a number gives rise to a numerical inequality, which may be either true or false. For example, at x = 0 the inequality above holds true: $3(0 - 1) \leq 4 + 5 \cdot 0 \iff -3 \leq 4$ \checkmark 2 / 16

Solution

To solve an inequality means to find all values of the variable, for which the inequality holds true.

These values form a **solution set**.

A linear **inequality** is very similar to a linear **equation**.

As we remember, the solution set of a linear equation

- either consists of a single number (when the equation has one solution),
- or is empty (when the equation has no solutions),
- or is the entire number line (when the equation has infinitely many solutions).

The solution set of a linear inequality is quite different.

Consider a simple inequality $x \le 2$. Its solution set consists of all numbers ≤ 2 and is denoted by $\{x \mid x \le 2\}$. One can **graph** the solutions on the number line:

The solution set is an **interval**. It is denoted by $(-\infty, 2]$.

3 / 16

 $\overline{2}$

Intervals				
Let us review intervals that we may encounter solving linear inequalities.				
inequality	solution	graph	interval	
x < a	$\{x \mid x < a\}$		$(-\infty,a)$	
$x \leq a$	$\{x \mid x \le a\}$		$(-\infty,a]$	
x > a	$\{x \mid x > a\}$		(a,∞)	
$x \ge a$	$\{x \mid x \ge a\}$		$[a,\infty)$	
4 / 16				

Equivalent inequalities

Two inequalities are called equivalent if they have the same solution sets.

It means that each solution of the first inequality is a solution of the second one, and vice versa: each solution of the second inequality is a solution of the first one.

If two inequalities are equivalent, we write the equivalence sign " \iff " between them, like this

 $x+1>3 \iff x>2$.

How to transform an inequality into an equivalent inequality?

To this end, we will use three **elementary** transformations.

Elementary transformations

Elementary transformations of an inequality are

- adding the same expression to both sides of an inequality,
- multiplying both sides by the the same positive number, and
- multiplying both sides by the the same negative number and reversing the sign of the inequality.

See how a sequence of elementary transformations brings an inequality

to a simple equivalent inequality.

10 / 16

Examples

Example 1. Solve the inequality $7x - 5 \le 2x + 1$. Give the answer in interval notation. Show the solution on the number line.

Examples

Example 2. Solve the inequality $-\frac{x}{2} + 3 < x + 4$. Give the answer in interval notation. Show the solution on the number line.

Solution.

Move 3 to the RHS:	$-\frac{x}{2} < x + 4 - 3$
Simplify:	$-\frac{\bar{x}}{2} < x+1$
Multiply by (-2) :	$(-2)\left(-\frac{x}{2}\right) > (-2)(x+1)$
Simplify:	x > -2x - 2
Move $-2x$ to the LHS:	x + 2x > -2
Simplify:	3x > -2
Divide by 3:	$x > -\frac{2}{3}$

Summary

In this lecture, we have learned

- what a **linear inequality** is
- what the **solution** of an inequality is
- which **intervals** on a real line may appear as solutions of inequalities
- which inequalities are called **equivalent**
- what **elementary transformations** of inequalities are
 - adding the same expression to both sides
 - multiplying both sides by the same **positive** number
 - multiplying both sides by the same negative number and reversing the sign of the inequality
- Mow to solve inequalities efficiently
- Mow to write down the solution of an inequality
- \blacksquare how to show the solution on a **number line**
- \mathbf{V} how to solve a **system** of inequalities