Applications of Linear Equations

Linear equations in mathematics, physics, and beyond 2
Area of trapezoid 3
Motion with constant acceleration 4
Newton's law 5
Perimeter of a rectangle 6
Angles in a triangle 7
Uniform motion 8
Summary 9

Linear equations in mathematics, physics, and beyond

In this lecture, we will show how

- to solve linear equations originated in mathematics and physics
- how to use linear equations for solving word problems.

Area of trapezoid

Problem 1. The area A of a trapezoid with bases a, b and the height h is given by the formula

$$
A=\frac{a+b}{2} h
$$

Using this formula, express b in terms of A, a, and h.
Solution. We have to solve out b from the equation $A=\frac{a+b}{2} h$.
Multiply the equation by $2: \quad 2 A=(a+b) h$,
divide both sides by $h: \quad \frac{2 A}{h}=a+b$,
and move a to LHS: $\frac{2 A}{h}-a=b$.
Answer: $b=\frac{2 A}{h}-a$.

Motion with constant acceleration

Problem. A car moving at a constant speed of v_{0} starts to accelerate with a constant acceleration of a.
How long will it take for the car to increase the speed up to v,
if the initial speed v_{0}, the terminal speed v, the acceleration a, and the time t
are related by the formula $v=v_{0}+a t$?
Solution. We have to solve out t from the equation $v=v_{0}+a t$.
For this, we subtract v_{0} from both sides: $v-v_{0}=a t$, and divide both sides by $a: \frac{v-v_{0}}{a}=t$.

Answer: $t=\frac{v-v_{0}}{a}$.

Newton's law

Example. According to Newton's law of universal gravitation,

$$
F=G \frac{m_{1} m_{2}}{R^{2}}
$$

where F is the gravitational force between masses m_{1} and m_{2}, G is the gravitational constant, and R is the distance between the centers of the masses.
Use this equation to find m_{1} in terms of F, G, m_{2}, and R.
Solution. To solve out m_{1} from the equation $F=G \frac{m_{1} m_{2}}{R^{2}}$, multiply both sides by $R^{2}: F R^{2}=G m_{1} m_{2}$, and divide by $G m_{2}: \quad \frac{F R^{2}}{G m_{2}}=m_{1}$.
Answer: $m_{1}=\frac{F R^{2}}{G m_{2}}$

Perimeter of a rectangle

Problem. In a rectangle, one side is 3 feet longer than the other side.
Find the lengths of the sides, if the perimeter of the rectangle is 34 feet.
Solution.

Let x be the length of the short side.
Then the length of the long side is $x+3$.

The perimeter is the sum of the lengths of all sides: $\quad x+(x+3)+x+(x+3)$.
Simplify this expression: $\quad x+(x+3)+x+(x+3)=4 x+6$.
Since the perimeter is 34 feet, $\quad 4 x+6=34$.
Solve this equation: $4 x+6=34 \Longleftrightarrow 4 x=28 \Longleftrightarrow x=7$ feet.
The short side is 7 feet, the long side is $7+3=10$ feet.
Answer. The lengths of the sides are 7 and 10 feet.

Angles in a triangle

Problem. In a triangle $A B C$, the angle B is twice as large as the angle A, and the angle C is 30° less than the angle B. Find the angles.

Solution.

Let x be the measure of A.
Then the measure of B is $2 x$,
and the measure of C is $2 x-30$.

The sum of the angles in a triangle is 180°. In our case,

$$
x+2 x+(2 x-30)=180
$$

This is a linear equation to solve:
$x+2 x+(2 x-30)=180 \Longleftrightarrow 5 x-30=180 \Longleftrightarrow 5 x=210 \Longleftrightarrow x=42$.
The measure of A is 42°, the measure of B is $2 \cdot 42=84^{\circ}$, the measure of C is $84-30=54^{\circ}$.

Uniform motion

Problem. A car traveled for 3 hours at a constant speed. Then it increased the speed by $8 \mathrm{mi} / \mathrm{h}$ and traveled for another 2 hours. During this trip, the car traveled for 271 miles. Find the speed of the car on both intervals of driving.

Solution. Let $x \mathrm{mi} / \mathrm{h}$ be the speed of the car on the first interval of driving. Then the speed on the second interval of driving is $x+8 \mathrm{mi} / \mathrm{h}$.

The total distance is $3 x+2(x+8)$ miles, which is equal to 271 miles.
Therefore, $3 x+2(x+8)=271$. Let us solve this equation to find x.
$3 x+2(x+8)=271 \Longleftrightarrow 3 x+2 x+16=271 \Longleftrightarrow 5 x=255 \Longleftrightarrow x=51$
So the speed on the first interval is $51 \mathrm{mi} / \mathrm{h}$, and the speed on the second interval is $51+8=59$ mi / h.

Answer. $51 \mathrm{mi} / \mathrm{h}$ and $59 \mathrm{mi} / \mathrm{h}$.

Summary

In this lecture, we have learned
how to solve linear equations "with letters" arising from mathematics and physics
\checkmark how to solve word problems leading to linear equations

