Lecture 16

Applications of Linear Equations

Linear equations in mathematics, physics, and beyond	2
Area of trapezoid	3
Motion with constant acceleration	4
Newton's law	5
Perimeter of a rectangle	6
Angles in a triangle	7
Uniform motion	8
Summary	9

Linear equations in mathematics, physics, and beyond

In this lecture, we will show how

- to solve linear equations originated in mathematics and physics
- how to use linear equations for solving word problems.

2 / 9

Motion with constant acceleration		
Problem. A car moving at a constant speed of v_0		
How long will it take for the car to increase the speed up to v ,		
if the initial speed v_0 , the terminal speed v , the acceleration a , and the time t		
are related by the formula $v = v_0 + at$?		
Solution. We have to solve out t from the equation $v = v_0 + at$.		
For this, we subtract v_0 from both sides: $v-v_0=at$,		
and divide both sides by $a: \frac{v-v_0}{a} = t$.		
Answer: $t = \frac{v - v_0}{a}$.		

Angles in a triangle **Problem.** In a triangle ABC, the angle B is twice as large as the angle A, and the angle C is 30° less than the angle B. Find the angles. Solution. BLet x be the measure of A. 2xThen the measure of B is 2x, and the measure of C is 2x - 30. 2x - 30xA The sum of the angles in a triangle is 180° . In our case, x + 2x + (2x - 30) = 180. This is a linear equation to solve: $x + 2x + (2x - 30) = 180 \iff 5x - 30 = 180 \iff 5x = 210 \iff x = 42.$ The measure of A is $|42^{\circ}|$, the measure of B is $2 \cdot 42 = \overline{84^{\circ}}|$, the measure of C is $84 - 30 = 54^{\circ}$

Uniform motion

Problem. A car traveled for 3 hours at a constant speed. Then it increased the speed by 8 mi/h and traveled for another 2 hours. During this trip, the car traveled for 271 miles. Find the speed of the car on both intervals of driving.

Solution. Let $x \mod h$ be the speed of the car on the first interval of driving. Then the speed on the second interval of driving is $x + 8 \mod h$.

́3 h	2h
x mi/h	(x+8) mi/h
3x miles	2(x+8) miles

The **total** distance is 3x + 2(x + 8) miles, which is equal to 271 miles. Therefore, 3x + 2(x + 8) = 271. Let us solve this equation to find x.

 $3x + 2(x + 8) = 271 \iff 3x + 2x + 16 = 271 \iff 5x = 255 \iff x = 51$

So the speed on the first interval is 51 mi/h, and the speed on the second interval is 51 + 8 = 59 mi/h.

Answer. 51 mi/h and 59 mi/h.

8 / 9

Summary

In this lecture, we have learned

Mow to solve linear equations "with letters" arising from mathematics and physics

Mow to solve word problems leading to linear equations

9 / 9