Linear Equations

Equation and its solutions 2
Equivalent equations 3
Add the same to both sides 4
Example 5
Fast track 6
Multiply both sides by the same non-zero number 7
Example of elementary transformations 8
Linear equations 9
Example 10
Number of solutions of a linear equation 11
Examples of linear equations 12
How to check if solution is correct 13
Summary 14

Equation and its solutions

Recall that an equation is an equality between two algebraic expressions.
The variables in equation are called unknowns.
For example, $3 x+1=7$ is an equation with one unknown x.
To solve an equation means to find all its solutions,
that is all the values of the variables which satisfy the equation.
In other words, to find all values of the unknowns which turn the equation into a true numerical equality.

For example, $x=2$ is a solution of the equation $3 x+1=7$, since it satisfies the equation: $3 \cdot 2+1=7$.
$2 / 14$

Equivalent equations

Some equations are easy.
Example. $x=2$ is an equation. But it looks like a solution, and it is a solution for itself!
Often, more complicated equations are replaced by simpler equations which have the same solutions. If two equations have the same solutions,
that is if
any solution of the first equation is a solution of the second one and vice versa:
each solution of the second equation is a solution of the first one then we call the equations equivalent,
and write the equivalence sign " \Longleftrightarrow " between them, like this:

$$
x+1=3 \Longleftrightarrow x=2 .
$$

How to transform an equation into an equivalent equation?
To this end, we will use two elementary transformations.

Add the same to both sides

> Any equation is equivalent to the equation obtained from it by adding the same expression to both sides.

Example 1. Consider the equation $x-1=2$. If we add 1 to both sides,
then we get an equavalent equation:

$$
x-1=2 \Longleftrightarrow x-1+1=2+1 \Longleftrightarrow x=3
$$

Example 2. $5-x=0 \Longleftrightarrow 5-x+x=0+x \Longleftrightarrow 5=x \Longleftrightarrow x=5$

Example 3.

$5-x=2 \Longleftrightarrow 5-x+(x-2)=2+(x-2) \Longleftrightarrow$

$$
5-x+x-2=2+x-2 \Longleftrightarrow 3=x \Longleftrightarrow x=3
$$

Similarly, subtracting the same expression from both sides of an equation
gives rise to an equivalent equation:

$$
x+2=6 \Longleftrightarrow x+2-2=6-2 \Longleftrightarrow x=4
$$

Example

$$
\left.\begin{aligned}
2 x-1=5+x \xrightarrow{\text { subtract } x} 2 x-1-x=5+x-x \\
\text { simplify }
\end{aligned} \begin{array}{r}
\downarrow \\
x-1=5 \xrightarrow{\text { add } 1} \\
x-1+1=5+1 \\
\text { simplify }
\end{array} \right\rvert\, \begin{gathered}
\downarrow \\
x=6
\end{gathered}
$$

These transformations are written as follows:
$2 x-1=5+x \Longleftrightarrow 2 x-1-x=5+x-x \Longleftrightarrow$

$$
x-1=5 \Longleftrightarrow x-1+1=5+1 \Longleftrightarrow x=6
$$

Fast track

There is a trick that may help you to operate more efficiently with equations.
The subtraction of x from both sides of the equation $2 x-1=5+x$, namely
$2 x-1=5+x \Longleftrightarrow 2 x-1-x=5+x-x \Longleftrightarrow x-1=5$
is equivalent to relocation x from the right hand side (RHS) of the equation
to the left hand side (LHS) with the opposite sign:

Look how fast we can solve the equation:

Multiply both sides by the same non-zero number

Any equation is equivalent to the equation obtained from it by multiplying both sides by the same non-zero number.

Example 1. $\frac{x}{2}=3 \Longleftrightarrow \frac{x}{2} \cdot 2=3 \cdot 2 \Longleftrightarrow x=6$
Example 2. $\quad 3 x=5 \Longleftrightarrow 3 x \cdot \frac{1}{3}=5 \cdot \frac{1}{3} \Longleftrightarrow x=\frac{5}{3}$

Similarly, dividing both sides of an equation by the same non-zero number
gives rise to an equivalent equation:

$$
2 x=8 \Longleftrightarrow \frac{2 x}{2}=\frac{8}{2} \Longleftrightarrow x=4
$$

Adding the same expression to both sides of an equation and multiplying both sides by the the same non-zero number are called elementary transformations of the equation.

Example of elementary transformations

See how a sequence of elementary transformations brings an equation
to a simple equivalent equation, which is the solution.
Example. Solve the equation $7 x-5=2 x+1$.
Solution.

$$
7 x-5=2 x+1
$$

Move $2 x$ to the LHS:
$7 x-2 x-5=1$
Simplify: $\quad 5 x-5=1$
Move -5 to the RHS: $\quad 5 x=1+5$

$$
\begin{aligned}
\text { Simplify: } & 5 x=6 \\
\text { Divide by } 5: & x=\frac{6}{5}
\end{aligned}
$$

Linear equations

An equation is called linear, if both its sides are polynomials of degree ≤ 1.
For example, $3(x-2)+4=\frac{2}{3}(5 x+1)+x$ is a linear equation,

$$
x^{2}+2=x \text { is not. }
$$

A polynomial of degree ≤ 1 is called a linear expression.
Both sides of a linear equation are linear expressions.
By a sequence of elementary transformations, any linear equation
can be transformed to an equation of the form $a x=b$
where a and b are some numbers and x is an unknown.
To do this, that is, to bring the equation to the form $a x=b$,

- simplify (if needed) both sides of the equation,
- collect all terms involving the unknown on one side of the equation, and all numbers on the other side,
- simplify the equation again.

Example

Solve the equation $\frac{3}{2}(x-1)=\frac{x}{3}+1$.
Multiply by 6: $\quad 6 \cdot \frac{3}{2}(x-1)=6\left(\frac{x}{3}+1\right)$ to get rid of fractions
Simplify LHS: $\quad 9(x-1)=6\left(\frac{x}{3}+1\right)$
Distribute: $\quad 9 x-9=2 x+6$
Move $2 x$ to LHS: $\quad 7 x-9=6$
Move -9 to RHS: $\quad 7 x=15 \longleftarrow$ equation in the form $a x=b$
Divide by 7: $\quad x=\frac{15}{7} \longleftarrow$ solution

Number of solutions of a linear equation

How many solutions may a linear equation $a x=b$ have? It depends on the numbers a and b.

infinitely many solutions
no solutions
(any real number is a solution)

A linear equation with one unknown may have either one solution, or no solutions, or infinitely many solutions.

Examples of linear equations

Example 1. Solve the equation $2(x-3)=2 x+1$.
Solution. Distribute: $\quad 2 x-6=2 x+1$
Move $2 x$ from RHS to LHS: $\quad 2 x-2 x-6=1$

$$
\text { Simplify: } \quad-6=1 \longleftarrow \text { false numerical equality }
$$

Answer. The equation has no solutions.
Example 2. Solve the equation $2-x=\frac{1}{3}(6-3 x)$.
Solution. Multiply both sides by $3: \quad 3 \cdot(2-x)=3 \cdot \frac{1}{3}(6-3 x)$

$$
\text { Simplify: } \quad 6-3 x=6-3 x
$$

Add $3 x$ to both sides: $6=6 \longleftarrow$ true numerical equality
Answer. The equation is an identity.
Any number is a solution.

How to check if solution is correct

While solving an equation, we can make mistakes.
There is a opportunity to check if the number obtained is a solution. For this, plug in the number into the equation and check if the obtained numerical equality is true.

Example. Solve the equation $2 x-1=3(2 x+1)$ and check your solution by substitution.
Solution. $2 x-1=3(2 x+1) \Longleftrightarrow 2 x-1=6 x+3 \Longleftrightarrow-1=4 x+3 \Longleftrightarrow$

$$
-4=4 x \Longleftrightarrow-1=x \Longleftrightarrow x=-1
$$

Check (substitute $x=-1$ into the original equation):

$$
\begin{aligned}
2 \cdot(-1)-1 & \stackrel{?}{=} 3(2 \cdot(-1)+1) \\
-2-1 & \stackrel{?}{=} 3(-2+1) \\
-3 & \stackrel{?}{=} 3(-1) \\
-3 & =-3
\end{aligned}
$$

Summary

In this lecture, we have learned

- which equations are called equivalent
\checkmark that there are elementary transformations of equations:
- adding the same expression to both sides
- multiplying both sides by the same non-zero number
\downarrow
how to solve equations efficiently
what a linear equation is
- how to solve a linear equation
dow many solutions a linear equation may have:
- one
- infinitely many
- no solutions
\checkmark how to check a solution by substitution into the original equation

