Lecture 14

Equalities, Identities and Equations

qualities	2
rue or false	3
lentities	4
roving identities	5
quation and its solution	6
Il the solutions	7
everal unknowns	8
ummary	9

Equalities

An (algebraic) **equality** consists of two algebraic expressions connected by the equality sign "=". For example, $x^2 - 3x + 1 = x + 2$, 1 + 1 = 2, 0 = 1, a + b = b + a, $(x - y)^2 = x^2 - 2xy + y^2$. An algebraic equality with a variable becomes a numerical one if we **evaluate** the expressions on both sides of the equality at some number. For example, if we substitute x = 1 into both sides of the equality $x^2 = x$, it turns into a numerical equality $1^2 = 1$, which is true. If we substitute x = -1, then we get $(-1)^2 = -1$, which is false.

Identities

Here are some important identities that we have learned:

 $\begin{aligned} a+b &= b+a \quad (\text{commutativity of addition}) \\ a(b+c) &= ab+bc \quad (\text{distributive law}) \\ x^n \cdot x^m &= x^{n+m} \quad (\text{multiplication rule for powers}) \\ x^2 - y^2 &= (x-y)(x+y) \quad (\text{difference of squares}) \\ (x+y)^2 &= x^2 + 2xy + y^2 \quad (\text{short multiplication}) \end{aligned}$

4 / 9

Proving identities

A **typical** problem about an identity is to **prove** it.

That is, to prove that the equality is true for all values of the variables.

Example. Prove that $(x + 1)^3 = x^3 + 3x^2 + 3x + 1$ for all values of x.

Solution. Work on the left hand side:

$$(x+1)^3 = (x+1)(x+1)^2 = (x+1)(x^2+2x+1)$$

= $x^3 + 2x^2 + x + x^2 + 2x + 1$
= $x^3 + 3x^2 + 3x + 1$,

which is the right hand side of the identity.

Therefore,

 $(x+1)^3 = x^3 + 3x^2 + 3x + 1$ for all values of x, and the identity is proven.

Equation and its solution

Often we use the word "**equation**" instead of "equality".

This happens when we are interested to find the values of variables

at which the equality turns to a true numerical equality.

A **solution** of an equation with a single variable

is the value of the variable which turns the equation into a true numerical equality.

Example. Consider the equation x + 2 = 3x. At x = 1, the equation turns into a **true** numerical equality:

 $1 + 2 = 3 \cdot 1$.

If we substitute x = 0, then the equation turns into a **false** numerical equality:

 $0+2=3\cdot 0.$

Therefore, x = 1 is a solution of the equation x + 2 = 3x, while x = 0 is not a solution.

6 / 9

All the solutions

It may happen that an equation has **no** solutions.

For example, the equation $0 \cdot x = 1$ has no solution, since $0 \cdot x \neq 1$ no matter what x is.

Some equations have infinitely many solutions.

For example, the equation $0 \cdot x = 0$ has infinitely many solutions. Any number is a solution.

To solve an equation means to find all its solutions,

that is to find all values of the variable

which turn the equation into a $\ensuremath{\textit{true}}$ numerical equality.

The variable in the equation is called **unknown**.

To solve an equation means to make this unknown known.

Several unknowns

An equation may have several unknowns.

For example, x + 2y = 7 is an equation with two unknowns x and y. The equation turns into a **true** numerical equality if we plug in x = 1 and y = 3: $1 + 2 \cdot 3 = 7$.

Plugging in x = 1 and y = 2 results into a **false** equality: $1 + 2 \cdot 2 = 7$.

A solution of such equation is a **pair** of numbers which turns the equation into a true numerical equality. For example, the pair x = 1 and y = 3 is a solution.

Another solution is x = -1, y = 4. Indeed:

 $(-1) + 2 \cdot 4 = 7.$

As we will learn later, equations like this have infinitely many solutions.

8 / 9

Summary

In this lecture, we have learned

- what an **equality** is
- that there are **numerical** equalities and equalities with variables
- what an **identity** is
- what a **contradiction** is
- what an **equation** is
- what a **solution** of an equation is
- what it means to solve an equation