Lecture 12

Operations with Rational Expressions

Fractions 2
Multiplying rational expressions 3
Dividing rational expressions 4
Adding rational expressions 5
Subtracting rational expressions 6
Examples of addition 7
Examples of addition 8
Summary 9

Fractions

A rational expression is a quotient of two polynomials.
It is a fraction in which numerator and denominator are polynomials.
Therefore rational expressions comply with the same rules as fractions:
Cancellation: $\quad \frac{a \cdot c}{b \cdot c}=\frac{a}{b}$ for any $c \neq 0$
Multiplication: $\quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}$
Division:

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a \cdot d}{b \cdot c}
$$

Addition:

$$
\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}
$$

These are all the rules that you need to know for operating with fractions, and with rational expressions.

Multiplying rational expressions

Rational expressions, being fractions, are multiplied as fractions:

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}
$$

Example. Simplify the expression $\frac{x}{9-x^{2}} \cdot \frac{x-3}{x^{2}+x}$.
Solution. The expression is a product of two rational expressions:

$$
\frac{x}{9-x^{2}} \cdot \frac{x-3}{x^{2}+x}=\frac{x(x-3)}{\left(9-x^{2}\right)\left(x^{2}+x\right)} .
$$

To simplify the product, we factor the denominator:

Therefore,

$$
\underbrace{\left(9-x^{2}\right)}_{3^{2}-x^{2}} \underbrace{\left(x^{2}+x\right)}_{x(x+1)}=(3-x)(3+x) x(x+1) .
$$

$\frac{x}{9-x^{2}} \cdot \frac{x-3}{x^{2}+x}=\frac{\not x(x-3)}{(3-x)(3+x) \not \subset(x+1)}=\frac{-(3-x)}{(3-x)(3+x)(x+1)}=-\frac{1}{(x+3)(x+1)}$.

Dividing rational expressions

Rational expressions, being fractions, are divided as fractions. To divide an expression by a fraction, we multiply the expression by the reciprocal of the fraction:

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c}
$$

Thus,

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a d}{b c}
$$

Example. Simplify the expression

$$
\frac{x^{3}}{x^{2}+2 x+1} \div \frac{x^{2}}{x+1}
$$

Solution. $\frac{x^{3}}{x^{2}+2 x+1} \div \frac{x^{2}}{x+1}=\frac{x^{3}}{x^{2}+2 x+1} \cdot \frac{x+1}{x^{2}}=\frac{x(x+1)}{x^{2}+2 x+1}$.
By short multiplication formula, $x^{2}+2 x+1=(x+1)^{2}$.
So $\frac{x(x+1)}{x^{2}+2 x+1}=\frac{x(x+1)}{(x+1)^{2}}=\frac{x(x+1)}{(x+1)(x+1)}=\frac{x}{x+1}$.

Adding rational expressions

Rational expressions, being fractions, are added as fractions: if they have a common denominator, then

$$
\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}
$$

Otherwise the denominators are made coinciding using the relation $\frac{a}{b}=\frac{a c}{b c}$ and then the same rule applies.

The product of denominators can always serve as a common denominator:

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d}{b d}+\frac{b c}{b d}=\frac{a d+b c}{b d} .
$$

This gives a formula which always works:

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

Often fractions have a common denominator simpler than $b d$.

Subtracting rational expressions

Subtraction is similar to addition. There are similar formulas:

$$
\begin{gathered}
\frac{a}{c}-\frac{b}{c}=\frac{a-b}{c} \\
\frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}
\end{gathered}
$$

Moreover, subtraction is reduced to addition:

$$
\frac{a}{b}-\frac{c}{d}=\frac{a}{b}+\left(-\frac{c}{d}\right)
$$

Keep in mind that

$$
-\frac{c}{d}=\frac{-c}{d}=\frac{c}{-d}
$$

Examples of addition

Example 1. Present $\frac{1-x^{2}}{x}+x$ as a single fraction.
Solution. We have to perform addition of fractions. For this, we need to find a common denominator of $\frac{1-x^{2}}{x}$ and $x=\frac{x}{1}$. The common denominator is $x \cdot 1=x$. Therefore,
$\frac{1-x^{2}}{x}+x=\frac{1-x^{2}}{x}+\frac{x}{1}=\frac{\left(1-x^{2}\right) \cdot 1+x \cdot x}{x \cdot 1}=\frac{1-x^{2}+x^{2}}{x}=\frac{1}{x}$.
Example 2. Present $2+\frac{3}{x+1}$ as a single fraction.

Solution.

$$
2+\frac{3}{x+1}=\frac{2}{1}+\frac{3}{x+1}=\frac{2 \cdot(x+1)+1 \cdot 3}{1 \cdot(x+1)}=\frac{2 x+2+3}{x+1}=\frac{2 x+5}{x+1}
$$

Examples of addition

Example 3. Perform the operations and simplify the resulting expression:

$$
\frac{1}{x+1}+\frac{1}{x^{2}-1} .
$$

Solution. By the universal formula $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$,

$$
\frac{1}{x+1}+\frac{1}{x^{2}-1}=\frac{\left(x^{2}-1\right)+(x+1)}{(x+1)\left(x^{2}-1\right)}=\frac{x^{2}+x}{(x+1)\left(x^{2}-1\right)}=\frac{x(x+1)}{(x+1)\left(x^{2}-1\right)}=\frac{x}{x^{2}-1} .
$$

Another solution. Since $x^{2}-1=(x-1)(x+1)$, a common denominator is $(x-1)(x+1)$:

$$
\frac{1}{x+1}+\frac{1}{x^{2}-1}=\frac{1}{x+1}+\frac{1}{(x-1)(x+1)}=\frac{(x-1)+1}{(x-1)(x+1)}=\frac{x}{(x-1)(x+1)} .
$$

Summary

In this lecture, we have learned

- how to multiply rational expressions
\checkmark how to divide rational expressions
d how to add and subtract rational expressions

