Lecture 12

Operations with Rational Expressions

Fractions	2
Multiplying rational expressions	3
Dividing rational expressions	4
Adding rational expressions	5
Subtracting rational expressions	6
Examples of addition	7
Examples of addition	8
Summary	9

Fractions

A **rational expression** is a quotient of two polynomials. It is a **fraction** in which numerator and denominator are polynomials. Therefore rational expressions comply with the same **rules** as fractions:

Cancellation:	$\frac{a \cdot c}{b \cdot c} = \frac{a}{b}$ for any $c \neq 0$	
Multiplication:	$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$	
Division:	$\frac{a}{b} \div \frac{c}{d} = \frac{a \cdot d}{b \cdot c}$	
Addition:	$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$	
These are all the rules that you need to know for operating with fractions, and with rational expressions.		

2 / 9

Multiplying rational expressions			
Rational expressions, being fractions, are multiplied as fractions:			
$\left(\begin{array}{c} \frac{a}{b} \cdot \frac{c}{d} = \frac{a c}{b d} \end{array}\right)$			
Example. Simplify the expression $\frac{x}{9-x^2} \cdot \frac{x-3}{x^2+x}$.			
Solution. The expression is a product of two rational expressions:			
$\frac{x}{9-x^2} \cdot \frac{x-3}{x^2+x} = \frac{x(x-3)}{(9-x^2)(x^2+x)}.$			
To simplify the product, we factor the denominator:			
$\underbrace{(9-x^2)}_{(x^2+x)} \underbrace{(x^2+x)}_{(x^2+x)} = (3-x)(3+x)x(x+1).$			
Therefore, $3^2 - x^2 = x(x+1)$			
$\frac{x}{x-3} = \frac{x-3}{x(x-3)} = \frac{-(3-x)}{x-3} = \frac{1}{x-3}$			
$9 - x^2 x^2 + x (3 - x)(3 + x) \mathscr{X}(x + 1) (3 - x)(3 + x)(x + 1) (x + 3)(x + 1)$			
	3 / 9		

Dividing rational expressions

Rational expressions, being fractions, are divided as fractions. To **divide** an expression by a fraction, we multiply the expression by the **reciprocal** of the fraction:

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}.$$
Thus,

$$\frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}.$$
Example. Simplify the expression $\frac{x^3}{x^2 + 2x + 1} \div \frac{x^2}{x + 1}.$
Solution. $\frac{x^3}{x^2 + 2x + 1} \div \frac{x^2}{x + 1} = \frac{x^3}{x^2 + 2x + 1} \cdot \frac{x + 1}{x^2} = \frac{x(x + 1)}{x^2 + 2x + 1}.$
By short multiplication formula, $x^2 + 2x + 1 = (x + 1)^2.$
So $\frac{x(x + 1)}{x^2 + 2x + 1} = \frac{x(x + 1)}{(x + 1)^2} = \frac{x(x + 1)}{(x + 1)(x + 1)} = \frac{x}{x + 1}.$

4 / 9

Adding rational expressions

Rational expressions, being fractions, are **added** as fractions: if they have a common denominator, then

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

Otherwise the denominators are made coinciding using the relation $\frac{a}{b} = \frac{ac}{bc}$ and then the same rule applies.

The product of denominators can always serve as a common denominator:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad + bc}{bd}$$

This gives a formula which always works:

$$\boxed{\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}}$$

Often fractions have a common denominator simpler than bd.

5/9

Subtracting rational expressions

Subtraction is similar to addition. There are similar formulas:

$$\frac{\frac{a}{c} - \frac{b}{c} = \frac{a - b}{c}}{\frac{a}{b} - \frac{c}{d}} = \frac{ad - bc}{bd}}$$

Moreover, subtraction is reduced to addition:

$$\frac{a}{b} - \frac{c}{d} = \frac{a}{b} + \left(-\frac{c}{d}\right)$$

 $-\frac{c}{d} = \frac{-c}{d} = \frac{c}{-d}$

Keep in mind that

Examples of addition Example 1. Present $\frac{1-x^2}{x} + x$ as a single fraction. Solution. We have to perform addition of fractions. For this, we need to find a common denominator of $\frac{1-x^2}{x}$ and $x = \frac{x}{1}$. The common denominator is $x \cdot 1 = x$. Therefore, $\frac{1-x^2}{x} + x = \frac{1-x^2}{x} + \frac{x}{1} = \frac{(1-x^2) \cdot 1 + x \cdot x}{x \cdot 1} = \frac{1-x^2+x^2}{x} = \frac{1}{x}$. Example 2. Present $2 + \frac{3}{x+1}$ as a single fraction. Solution. $2 + \frac{3}{x+1} = \frac{2}{1} + \frac{3}{x+1} = \frac{2 \cdot (x+1) + 1 \cdot 3}{1 \cdot (x+1)} = \frac{2x+2+3}{x+1} = \frac{2x+5}{x+1}$.

Examples of addition

Example 3. Perform the operations and simplify the resulting expression:

$$\frac{1}{x+1} + \frac{1}{x^2 - 1}.$$

Solution. By the universal formula $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$,

$$\frac{1}{x+1} + \frac{1}{x^2 - 1} = \frac{(x^2 - 1) + (x+1)}{(x+1)(x^2 - 1)} = \frac{x^2 + x}{(x+1)(x^2 - 1)} = \frac{x(x+1)}{(x+1)(x^2 - 1)} = \frac{x}{x^2 - 1}.$$

Another solution. Since $x^2 - 1 = (x - 1)(x + 1)$, a common denominator is (x - 1)(x + 1):

$$\frac{1}{x+1} + \frac{1}{x^2 - 1} = \frac{1}{x+1} + \frac{1}{(x-1)(x+1)} = \frac{(x-1)+1}{(x-1)(x+1)} = \frac{x}{(x-1)(x+1)}.$$

8 / 9

Summary

In this lecture, we have learned

- Mow to **multiply** rational expressions
- how to **divide** rational expressions
- Mow to add and subtract rational expressions

9 / 9