Lecture 9

Polynomials

What is a polynomial?)
What is a monomial?	3
More examples of polynomials	ŀ
Polynomials in several variables	5
Polynomial or not? \ldots)
Simplifying polynomial expressions \ldots	7
The standard form of a polynomial in one variable	3
Taming the monster \ldots \ldots \ldots \ldots \ldots \ldots \ldots)
Polynomials in standard form)
Summary	•

What is a polynomial?

A **polynomial expression** is an expression that involves only numbers, variables

and the operations of addition, subtraction and multiplication. Division by a number is allowed (because it is a multiplication by the reciprocal number), but division by an expression which contains a variable is not allowed.

Example 1. $x^2 + x$ is a polynomial expression. It involves a variable x and operations of multiplication and addition: $x^2 + x = x \cdot x + x$.

Example 2. x(x+1) is a polynomial expression. It involves a variable x and operations of addition and multiplication.

The polynomial expressions in Examples 1 and 2 are equal: $x^2 + x = x(x+1)$.

We say that they represent the same polynomial.

Example 3. 1 is a polynomial expression because it involves a single number 1, and neither variables nor operations.

In general, any **constant** (number) is a polynomial.

Example 4. x is a polynomial in **one** variable x.

What is a monomial?

Example. $2x^3$ is a polynomial in **one** variable x, because it is represented by an expression involving the constant 2, the variable x, and three operations (multiplications):

$$2x^3 = 2 \cdot x \cdot x \cdot x \,.$$

An expression like ax^n , where a is a constant and x^n is a variable x raised to a **non-negative** power n is called a **monomial**.

A monomial is a polynomial with **neither** addition **nor** subtraction involved.

Examples of monomials: 4x, $-5x^2$, $\frac{2}{5}x^3$.

Any constant is a monomial. For example, 3 is a monomial, since $3 = 3 \cdot x^0$

More examples of polynomials

Example 4. $-2x^3 + x^2 + 4x - 1$ is a polynomial in **one** variable x. It is the sum of four monomials.

• A sum of several monomials is a polynomial.

Example 5. x(x(-2x+1)+4) - 1 is a polynomial in **one** variable x.

Let us clear parentheses in this polynomial:

 $x(x(-2x+1)+4) - 1 = x(x(-2x) + x \cdot 1 + 4) - 1$ = $x(-2x^2 + x + 4) - 1 = -2x^3 + x^2 + 4x - 1$.

We see that the polynomial x(x(-2x+1)+4) - 1 is actually the polynomial from Example 4: $x(x(-2x+1)+4) - 1 = -2x^3 + x^2 + 4x - 1$.

A polynomial may be presented by different polynomial expressions.

4 / 11

Polynomials in several variables

Example 1. $3xy^2$ is a polynomial in two variables x, y. It is a monomial (the product of a constant and powers of variables).

Example 2. 3xy(3x+1)(4y-2) + x - 1 is a polynomial in two variables x, y.

Example 3. $x + 2y^2 + z^3 - xy - 3xz^7$ is a polynomial in three variables x, y, z. It is the sum of five monomials.

Polynomial or not?

Example 1. $x + \frac{1}{x}$ is **not** a polynomial. This expression involves **division** by a variable. Division by variables is **not** allowed in polynomials.

Example 2. $\frac{x+1}{2}$ is a polynomial. Division by 2 is actually multiplication by $\frac{1}{2}$: $\frac{x+1}{2} = \frac{1}{2}(x+1) = \frac{1}{2}x + \frac{1}{2}.$

Division by any non-zero number is a multiplication by its reciprocal.

Example 3. $x^{-2} + 3x - 1$ is **not** a polynomial.

 x^{-2} can't show up in a polynomial, because

a polynomial can't contain a variable with negative exponent.

6 / 11

Simplifying polynomial expressions Expressions representing polynomials may be simplified. Example 1. Clear parentheses in the expression $x^3(2x - 1)$. Solution. We distribute x^3 to clear parentheses: $x^3(2x - 1) = x^3 \cdot (2x) + x^3(-1) = 2x^3 \cdot x - x^3 = 2x^4 - x^3$. Example 2. Clear parentheses and combine similar terms in the expression (x + 2)(3x - 1). Solution. We use distributivity to clear parentheses: $(x + 2)(3x - 1) = x(3x) + x(-1) + 2(3x) + 2(-1) = 3x^2 - x + 6x - 2 = 3x^2 + 5x - 2$. Example 3. Clear parentheses: $(-2x^3 + x - 4)(5x + 1)$. Solution. We distribute, and then combine similar terms: $(-2x^3 + x - 4)(5x + 1) = -2x^3 \cdot 5x + (-2x^3) \cdot 1 + x \cdot 5x + x \cdot 1 + (-4)(5x) + (-4) \cdot 1$ $= -10x^4 - 2x^3 + 5x^2 + x - 20x - 4 = -10x^4 - 2x^3 + 5x^2 - 19x - 4$.

The standard form of a polynomial in one variable
No matter how a polynomial in one variable is written, one can use commutativity, associativity and distributivity to put it in standard form :
$oldsymbol{a_nx^n}+oldsymbol{a_{n-1}x^{n-1}}+\dots+oldsymbol{a_2x^2}+oldsymbol{a_1x}+oldsymbol{a_0}$,
where x is the variable, n is a non-negative number, and $a_0, a_1, a_2, \ldots, a_{n-1}, a_n$ are constants.
Scared by this "letter monster"? Let us take it apart, to see what it is made of.
As we know, x is a variable . The letter n stands for the non-negative (positive or zero) number, which is the highest power of x in the expression. It is called the degree of the polynomial.
The letters $a_0, a_1, a_2, \dots, a_{n-1}, a_n$ stand for constants (numbers). They are called the coefficients of the polynomial.

The word "polynomial" means "many parts".

8 / 11

Polynomials in standard form

Example 1. Write the polynomial $2x + 3x^4 - x^3 + 1$ in standard form, identify the coefficients, and determine the degree of the polynomial.

Solution. Rearrange the monomials in **descending** order of exponents:

 $2x+3x^4-x^3+1=3x^4-x^3+2x^1+1x^0.$ The standard form is $3x^4-x^3+0\cdot x^2+2x+1$. The degree is n=4 .

The coefficients are $a_4 = 3$, $a_3 = -1$, $a_2 = 0$, $a_1 = 2$, $a_0 = 1$.

Observe that the term containing x^2 is included with thith the coefficient 0.

Example 2. What is the degree of the polynomial 1?

Solution. As we know, any constant is a polynomial. Actually, it is a monomial. In our case, $1 = 1x^0$. The degree is the **highest** power of x, which is 0.

Answer: the degree of the polynomial 1 is **zero**.

Remark. Any constant is a polynomial of degree zero.

Summary
In this lecture, we have learned
what polynomial expressions are
what polynomials are
what monomials are
that polynomials may be in one or several variables
Mow to simplify polynomial expressions
that the standard form of a polynomial is
$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$
how to identify the degree of a polynomial
how to identify the coefficients of a polynomial
Image: which we have a standard form the standard form