## Subtraction and Division

Subtraction is the opposite of addition ..... 2
No commutativity for subtraction ..... 3
No associativity for subtraction ..... 4
Division is the opposite of multiplication ..... 5
Negative one ..... 6
Why division by zero does not make sense ..... 7
No commutativity for division ..... 8
No associativity for division ..... 9
Summary ..... 10

## Subtraction is the opposite of addition

Subtraction is the operation which is opposite to addition:


This means that $\quad(3+2)-2=3$ and $(5-2)+2=5$.
Recall that numbers $a$ and $-a$ are called opposite to each other.
For example, -2 is opposite to 2 , and 2 is opposite to -2 .
Subtraction of a number is addition of its opposite:

$$
5-2=5+(-2)=3 \quad \text { and } \quad 5-(-2)=5+2=7 .
$$

Therefore, we can express any subtraction as addition of the opposite quantity:

$$
a-b=a+(-b) \quad \text { for any } a, b .
$$

## No commutativity for subtraction

We know that addition is commutative: $a+b=b+a$ for any $a, b$.
Subtraction is not commutative: it is not true that $a-b=b-a \quad$ unless $a=b$.
Indeed, take $a=1$ and $b=2$. Then $a-b=1-2=-1$,
but $\quad b-a=2-1=1$.
In general, $a-b$ and $b-a$ are opposite to each other: $b-a=-(a-b)$.
So subtraction is not commutative.
But expressing subtraction $a-b$ in terms of addition $a+(-b)$, we may apply the commutativity of addition to get:

$$
a-b=a+(-b)=-b+a \quad \text { for any } a, b
$$

## No associativity for subtraction

We know that addition is associative:

$$
(a+b)+c=a+(b+c) \quad \text { for any } a, b, c .
$$

Subtraction is not associative:

$$
(a-b)-c \neq a-(b-c) .
$$

For example, if $a=3, b=1$ and $c=1$, then

$$
\begin{gathered}
\quad(a-b)-c=(3-1)-1=2-1=1, \\
\text { but } a-(b-1)=3-(1-1)=3-0=3 .
\end{gathered}
$$

So subtraction is not associative.
But expressing subtraction $(a-b)-c$ in terms of addition $(a+(-b))+(-c)$, we may apply the associativity of addition to get:

$$
(a-b)-c=(a+(-b))+(-c)=a+((-b)+(-c))=a+(-b-c) .
$$

Recall that $a-b-c$ has to be understood as $(a-b)-c$.

## Division is the opposite of multiplication

Division is the operation which is opposite to multiplication:


This means that $\quad(3 \cdot 2) \div 2=3 \quad$ and $\quad(6 \div 2) \cdot 2=6$.
Recall that numbers $a$ and $1 / a$ are called reciprocals.
For example, 2 and $1 / 2$ are reciprocals.
Division by a non-zero number is multiplication by its reciprocal:

$$
6 \div 2=6 \cdot \frac{1}{2}=3 \quad \text { and } \quad 6 \div \frac{1}{2}=6 \cdot 2=12 .
$$

(Keep in mind that the reciprocal of $\frac{1}{2}$ is 2 .)
In general: $\quad a \div b=a \cdot \frac{1}{b} \quad$ for any $a$ and non-zero $b$.

## Negative one

The reciprocal of -1 is -1 , that is $\frac{1}{-1}=-1$. Indeed, $(-1)(-1)=1$.
Sometimes negative one is slightly hidden: $-a=(-1) a$.
It is helpful to keep this in mind.
For example, $\frac{-a}{-b}=\frac{a}{b}$, because $\frac{-a}{-b}=\frac{(-1) a}{(-1) b}=\frac{a}{b}$.
Another example: $\frac{a}{-b}=\frac{a}{(-1) b}=\frac{1}{-1} \frac{a}{b}=(-1) \frac{a}{b}=-\frac{a}{b}=\frac{-a}{b}$.

## Why division by zero does not make sense

Let us try to divide some number, say 1 , by 0 .
We do not know what result will be. Let us call it $x$ : $1 \div 0=x$.


If $1 \div 0=x$, then $x$ is a number such that $\quad x \cdot 0=1$.
Which is impossible since $x \cdot 0=0$ for any $x$.
Never divide by zero! It doesn't make sense.

## No commutativity for division

We know that multiplication is commutative: $a b=b a \quad$ for any $a, b$.
Division is not commutative:
in general, it is not true that $a \div b=b \div a$.
For example, if $a=2$ and $b=1$, then $a \div b=2 \div 1=2$,

$$
\text { but } \quad b \div a=1 \div 2=\frac{1}{2} .
$$

The expressions $a \div b$ and $b \div a$ are reciprocal to each other.
Indeed, $\quad a \div b=a \cdot \frac{1}{b} \quad$ and $\quad b \div a=b \cdot \frac{1}{a}$. Therefore
$(a \div b)(b \div a)=\left(a \cdot \frac{1}{b}\right) \cdot\left(b \cdot \frac{1}{a}\right)=a\left(\frac{1}{b} \cdot b\right) \frac{1}{a}=a \cdot 1 \cdot \frac{1}{a}=a \cdot \frac{1}{a}=1$
In fractional notation, this may be written as $\frac{b}{a}=\frac{1}{a / b}$.

## No associativity for division

We know that multiplication is associative:

$$
(a b) c=a(b c) \quad \text { for any } a, b, c
$$

Division is not associative: $(a \div b) \div c \neq a \div(b \div c)$.
Or, in fractional notation, $\frac{a / b}{c} \neq \frac{a}{b / c}$.
For example, if $a=8, b=4$ and $c=2$, then

$$
\begin{aligned}
& \quad(a \div b) \div c=(8 \div 4) \div 2=2 \div 2=1 \\
& \text { but } a \div(b \div c)=8 \div(4 \div 2)=8 \div 2=4
\end{aligned}
$$

So division is not associative.
But expressing division $(a \div b) \div c$ in terms of multiplication $\left(a \cdot \frac{1}{b}\right) \cdot \frac{1}{c}$,
we may apply the associativity of multiplication to get:

$$
(a \div b) \div c=\left(a \cdot \frac{1}{b}\right) \cdot \frac{1}{c}=a \cdot\left(\frac{1}{b} \cdot \frac{1}{c}\right)=a \cdot \frac{1}{b \cdot c}=a \div(b \cdot c) .
$$

## Summary

In this lecture, we have learned that
$\checkmark$ subtraction is the opposite of addition
$\checkmark$ subtraction can be expressed as addition of the opposite: $a-b=a+(-b)$
subtraction is neither commutative nor associative
$\square$
division is the opposite of multiplication
$\checkmark$ division can be expressed as multiplication by the reciprocal: $a \div b=a \cdot \frac{1}{b}$
$\square$ division by zero does not make sense
$\square$ division is neither commutative nor associative

