Lecture 5

Subtraction and Division

Subtraction is the opposite of addition	2
No commutativity for subtraction	3
No associativity for subtraction \ldots \ldots \ldots \ldots \ldots	ł
Division is the opposite of multiplication	5
Negative one	5
Why division by zero does not make sense	7
No commutativity for division	3
No associativity for division)
Summary)

Subtraction is the opposite of addition Subtraction is the operation which is opposite to addition: $\begin{array}{r} +2\\ 3\\ -2 \end{array}$ This means that (3+2)-2=3 and (5-2)+2=5. Recall that numbers a and -a are called **opposite** to each other. For example, -2 is opposite to 2, and 2 is opposite to -2. Subtraction of a number is addition of its opposite: 5-2=5+(-2)=3 and 5-(-2)=5+2=7. Therefore, we can express any subtraction as addition of the opposite quantity: a-b=a+(-b) for any a, b. 2/10

No associativity for subtraction

We know that addition is **associative**:

$$(a+b) + c = a + (b+c)$$
 for any a, b, c .

Subtraction is **not** associative:

$$(a-b) - c \neq a - (b-c)$$

For example, if a = 3, b = 1 and c = 1, then

(a-b)-c = (3-1)-1 = 2-1 = 1, but a - (b-1) = 3 - (1-1) = 3 - 0 = 3.

So subtraction is **not** associative.

 $\begin{array}{l} \text{But expressing subtraction } (a-b)-c \ \text{ in terms of addition } (a+(-b))+(-c) \,,\\ \text{we may apply the associativity of addition to get:}\\ (a-b)-c=(a+(-b))+(-c)=a+((-b)+(-c))=a+(-b-c) \,.\\ \text{Recall that } a-b-c \ \text{has to be understood as } (a-b)-c \,. \end{array}$

Division is the opposite of multiplication Division is the operation which is **opposite** to multiplication: $3 \xrightarrow{\begin{array}{c} & & \\ & &$

Negative one

The reciprocal of -1 is -1, that is $\frac{1}{-1} = -1$. Indeed, (-1)(-1) = 1. Sometimes negative one is slightly hidden: -a = (-1)a. It is helpful to keep this in mind. For example, $\frac{-a}{-b} = \frac{a}{b}$, because $\frac{-a}{-b} = \frac{(-1)a}{(-1)b} = \frac{a}{b}$. Another example: $\frac{a}{-b} = \frac{a}{(-1)b} = \frac{1}{-1}\frac{a}{b} = (-1)\frac{a}{b} = -\frac{a}{b} = \frac{-a}{b}$.

6 / 10

No commutativity for division

We know that multiplication is **commutative**: ab = ba for any a, b.

Division is **not** commutative:

in general, it is **not** true that $a \div b = b \div a$.

For example, if a=2 and b=1, then $a \div b = 2 \div 1 = 2$,

but
$$b \div a = 1 \div 2 = \frac{1}{2}$$

The expressions $a \div b$ and $b \div a$ are **reciprocal** to each other.

Indeed, $a \div b = a \cdot \frac{1}{b}$ and $b \div a = b \cdot \frac{1}{a}$. Therefore $(a \div b)(b \div a) = \left(a \cdot \frac{1}{b}\right) \cdot \left(b \cdot \frac{1}{a}\right) = a\left(\frac{1}{b} \cdot b\right) \frac{1}{a} = a \cdot 1 \cdot \frac{1}{a} = a \cdot \frac{1}{a} = 1$ In fractional notation, this may be written as $\frac{b}{a} = \frac{1}{a/b}$.

0	1	10	
0	/	10	

Summary

In this lecture, we have learned that

- subtraction is the **opposite** of addition
- subtraction can be **expressed** as addition of the opposite: a b = a + (-b)
- subtraction is **neither** commutative **nor** associative
- division is the **opposite** of multiplication
- division can be **expressed** as multiplication by the reciprocal: $a \div b = a \cdot \frac{1}{b}$
- division by zero does not make sense
- division is **neither** commutative **nor** associative