
Lecture 5

Subtraction and Division
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Subtraction is the opposite of addition

Subtraction is the operation which is opposite to addition:

3

+2

5

−2

This means that (3 + 2)− 2 = 3 and (5− 2) + 2 = 5.

Recall that numbers a and −a are called opposite to each other.
For example,−2 is opposite to 2 , and 2 is opposite to −2 .

Subtraction of a number is addition of its opposite:

5− 2 = 5 + (−2) = 3 and 5− (−2) = 5 + 2 = 7 .

Therefore, we can express any subtraction as addition of the opposite quantity:

a− b = a+ (−b) for any a, b .
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No commutativity for subtraction

We know that addition is commutative: a+ b = b+ a for any a, b .

Subtraction is not commutative: it is not true that a− b = b− a unless a = b .

Indeed, take a = 1 and b = 2 . Then a− b = 1− 2 = −1 ,
but b− a = 2− 1 = 1 .

In general, a− b and b− a are opposite to each other: b− a = −(a− b).

So subtraction is not commutative.
But expressing subtraction a− b in terms of addition a+ (−b) ,

we may apply the commutativity of addition to get:
a− b = a+ (−b) = −b+ a for any a, b .
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No associativity for subtraction

We know that addition is associative:

(a+ b) + c = a+ (b+ c) for any a, b, c .

Subtraction is not associative:
(a− b)− c 6= a− (b− c) .

For example, if a = 3 , b = 1 and c = 1 , then

(a− b)− c = (3− 1)− 1 = 2− 1 = 1 ,
but a− (b− 1) = 3− (1− 1) = 3− 0 = 3 .

So subtraction is not associative.
But expressing subtraction (a− b)− c in terms of addition (a+ (−b)) + (−c) ,

we may apply the associativity of addition to get:
(a− b)− c = (a+ (−b)) + (−c) = a+ ((−b) + (−c)) = a+ (−b− c) .

Recall that a− b− c has to be understood as (a− b)− c .
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Division is the opposite of multiplication

Division is the operation which is opposite to multiplication:

3

×2

6

÷2
This means that (3 · 2)÷ 2 = 3 and (6÷ 2) · 2 = 6.

Recall that numbers a and 1/a are called reciprocals.
For example, 2 and 1/2 are reciprocals.

Division by a non-zero number is multiplication by its reciprocal:

6÷ 2 = 6 ·
1

2
= 3 and 6÷

1

2
= 6 · 2 = 12 .

(Keep in mind that the reciprocal of
1

2
is 2 .)

In general: a÷ b = a ·
1

b
for any a and non-zero b .
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Negative one

The reciprocal of −1 is −1 , that is
1

−1
= −1 . Indeed, (−1)(−1) = 1 .

Sometimes negative one is slightly hidden: −a = (−1)a .

It is helpful to keep this in mind.

For example,
−a

−b
=

a

b
, because

−a

−b
=

(−1)a

(−1)b
=

a

b
.

Another example:
a

−b
=

a

(−1)b
=

1

−1

a

b
= (−1)

a

b
= −

a

b
=

−a

b
.
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Why division by zero does not make sense

Let us try to divide some number, say 1 , by 0 .
We do not know what result will be. Let us call it x : 1÷ 0 = x .

1

÷0

x

×0

If 1÷ 0 = x , then x is a number such that x · 0 = 1 .
Which is impossible since x · 0 = 0 for any x.

Never divide by zero! It doesn’t make sense.
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No commutativity for division

We know that multiplication is commutative: ab = ba for any a, b .

Division is not commutative:
in general, it is not true that a÷ b = b÷ a .

For example, if a = 2 and b = 1 , then a÷ b = 2÷ 1 = 2 ,

but b÷ a = 1÷ 2 =
1

2
.

The expressions a÷ b and b÷ a are reciprocal to each other.

Indeed, a÷ b = a ·
1

b
and b÷ a = b ·

1

a
. Therefore

(a÷ b)(b÷ a) =

(

a ·
1

b

)

·

(

b ·
1

a

)

= a

(

1

b
· b

)

1

a
= a · 1 ·

1

a
= a ·

1

a
= 1

In fractional notation, this may be written as
b

a
=

1

a/b
.
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No associativity for division

We know that multiplication is associative:

(ab)c = a(bc) for any a, b, c .

Division is not associative: (a÷ b)÷ c 6= a÷ (b÷ c) .

Or, in fractional notation,
a/b

c
6=

a

b/c
.

For example, if a = 8 , b = 4 and c = 2 , then

(a÷ b)÷ c = (8÷ 4)÷ 2 = 2÷ 2 = 1 ,
but a÷ (b÷ c) = 8÷ (4÷ 2) = 8÷ 2 = 4 .

So division is not associative.

But expressing division (a÷ b)÷ c in terms of multiplication

(

a ·
1

b

)

·
1

c
,

we may apply the associativity of multiplication to get:

(a÷ b)÷ c =

(

a ·
1

b

)

·
1

c
= a ·

(

1

b
·
1

c

)

= a ·
1

b · c
= a÷ (b · c) .
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Summary

In this lecture, we have learned that

�✓ subtraction is the opposite of addition
�✓ subtraction can be expressed as addition of the opposite: a− b = a+ (−b)
�✓ subtraction is neither commutative nor associative
�✓ division is the opposite of multiplication

�✓ division can be expressed as multiplication by the reciprocal: a÷ b = a ·
1

b
�✓ division by zero does not make sense

�✓ division is neither commutative nor associative
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