Addition and Multiplication

Properties of operations 2
Commutativity of addition 3
Commutativity of multiplication 4
Associativity of addition 5
Associativity of multiplication 6
When can we leave out parentheses? 7
Special numbers: 0 and 1 8
Reciprocals 9
Summary 10

Properties of operations

Addition and multiplication are basic arithmetic operations.
They share two useful properties.
These properties are

- commutativity
- associativity

In this lecture, we will study these properties
and learn how to make use of them.

Commutativity of addition

When adding two numbers, the order of the numbers doesn't matter.
For example, $2+3=3+2$.
This property of addition can be written using variables:

$$
a+b=b+a \quad \text { for any } a \text { and } b
$$

Since a and b can represent any numbers, this formula represents infinitely many equalities.
For example, if $a=8$ and $b=5$, then $a+b=b+a$ becomes
$8+5=5+8$.
If $a=x$ and $b=5$, then $a+b=b+a$ becomes
$x+5=5+x$.
This property of addition is called commutativity.

Commutativity of multiplication

Multiplication is also commutative.
When multiplying two numbers, the order of the numbers doesn't matter.
For example, $2 \cdot 3=3 \cdot 2$.
This property is expressed using variables as follows:

$$
a \cdot b=b \cdot a \quad \text { for any } a \text { and } b
$$

Since a and b represent any numbers, this formula represents infinitely many equalities.
For example, if $a=4$ and $b=7$, then $a \cdot b=b \cdot a$ becomes

$$
4 \cdot 7=7 \cdot 4,
$$

if $a=2$ and $b=x$, then $a \cdot b=b \cdot a$ becomes
$2 \cdot x=x \cdot 2$.

Associativity of addition

When we add three numbers, the result does not depend on the order of operations:

$$
\begin{aligned}
& (1+2)+3=3+3=6 \\
& 1+(2+3)=1+5=6 .
\end{aligned}
$$

That is, $\quad(1+2)+3=1+(2+3)$.
In general,

$$
(a+b)+c=a+(b+c) \text { for any } a, b \text { and } c
$$

This property of addition is called associativity.
Associativity helps to make calculations easier. Compare:

$$
\begin{aligned}
& 428+13999+1=(428+13999)+1=14427+1=14428 \text { and } \\
& 428+13999+1=428+(13999+1)=428+14000=14428 .
\end{aligned}
$$

Associativity of multiplication

Multiplication is also associative:

$$
(a b) c=a(b c) \text { for any } a, b \text { and } c
$$

Associativity of multiplication is useful:
$53 \cdot 25 \cdot 4=53 \cdot(25 \cdot 4)=53 \cdot 100=5300$.
In the next examples, both associativity and commutativity are used:
$5 \cdot 97 \cdot 20=(5 \cdot 97) \cdot 20=(97 \cdot 5) \cdot 20=97 \cdot(5 \cdot 20)=97 \cdot 100=9700$,
$2 x \cdot 3 y=2(x \cdot 3) y=2(3 x) y=(2 \cdot 3) x y=6 x y$.

When can we leave out parentheses?

Due to associativity,
when we perform either additions only, or multiplications only,
the result does not depend on the order of operations:

$$
\begin{gathered}
((1+2)+3)+4=(1+(2+3))+4=1+((2+3)+4) \\
((2 \cdot 3) \cdot 4) \cdot 5=(2 \cdot(3 \cdot 4)) \cdot 5=2 \cdot((3 \cdot 4) \cdot 5) .
\end{gathered}
$$

Therefore, we do not use parentheses in a formula
which involves additions only or multiplications only, like this

$$
1+2+3+4, \quad 2 \cdot 3 \cdot 4 \cdot 5
$$

Moreover, due to commutativity, the order of numbers doesn't matter:

$$
\begin{gathered}
1+2+3+4=2+3+4+1=4+2+1+3=\ldots \\
2 \cdot 3 \cdot 4 \cdot 5=2 \cdot 3 \cdot 5 \cdot 4=4 \cdot 2 \cdot 5 \cdot 3=\ldots
\end{gathered}
$$

Recall that if both addition and multiplication are present,

Special numbers: 0 and 1

$$
a+0=a \quad \text { for any } a
$$

Numbers a and $-a$ are called opposite to each other.
For example, -2 is opposite to 2 , and 2 is opposite to -2 .

$$
a+(-a)=0 \text { for any } a
$$

The product of any number by 0 equals 0 :

$$
a \cdot 0=0 \text { for any } a
$$

The product of any number by 1 equals this number:

$$
a \cdot 1=a \quad \text { for any } a
$$

Reciprocals

Numbers a and b are called reciprocals if $a \cdot b=1$.
For example, 2 and $\frac{1}{2}$ are reciprocals, since $2 \cdot \frac{1}{2}=1$.
Numbers a and $\frac{1}{a}$ are reciprocals for any non-zero a.

$$
a \cdot \frac{1}{a}=1 \text { for any non-zero } a
$$

0 has no reciprocal, because there is no number b such that $0 \cdot b=1$.

$$
\text { Indeed, } 0 \cdot b=0 \text { for any } b \text {. }
$$

Summary

In this lecture, we have learned
\square commutativity of addition: $a+b=b+a$
commutativity of multiplication: $a b=b a$
associativity of addition: $\quad(a+b)+c=a+(b+c)$
associativity of multiplication: $\quad(a b) c=a(b c)$

- when parentheses are not needed
\checkmark identities involving 0 and $1: \quad a+0=a, a \cdot 1=a, a \cdot 0=0$
\checkmark opposite numbers
\square
reciprocal numbers
$10 / 10$

