Variables and Algebraic Expressions

Variables 2
Algebraic expressions 3
When can the multiplication dot be omitted? 4
Evaluation of expressions 5
An expression as a program 6
Evaluating an expression is running the program 7
Examples of evaluations 8
Why algebraic expressions are important 9
Summary 10

Variables

A variable is a letter representing a number.
Why do we need letters?

- Some numbers are special,
but don't have any convenient representation, like π.
- Some numbers are given by a formula, which is too bulky to deal with, like the golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$.
- Sometimes we don't know the number, but want to find it.

For example, when we are solving the equation $2 x+1=7$.

- Sometimes we want to express a relationship between quantities, like $d=v \cdot t$, where d is distance, v is speed and t is time.

Variables for numbers are like names (or nicknames) for people.

Algebraic expressions

We already know (from Lecture 2) that a numerical expression consists of numbers, symbols for operations and parentheses, and describes an algorithm for calculation.

For example, $1 \cdot 2-3 \cdot(1+2) \div 4$ is a numerical expression.
An algebraic expression (or simply "an expression") consists of numbers, variables, symbols for operations and parentheses, and becomes a numerical expression when we substitute (plug in) a numerical value for each variable.

Example 1. $3 \cdot x-4 \cdot(x+1)$ is an algebraic expression. It involves the numbers $3,4,1$, the variable x, and the operations multiplication, addition and subtraction. How many operations are there in this expression? Four.
Example 2. $x \cdot y-\frac{5 \cdot(x+y)}{4}$ is an algebraic expression. It involves the numbers 5,4 , the variables x, y, and the operations multiplication, division, addition and subtraction. How many operations are there in this expression? Five.

When can the multiplication dot be omitted?

It is customary not to write the multiplication dot in front of a variable or parenthesis:
$a \cdot b$ is written as $a b$,
$2 \cdot x$ is written as $2 x$,
\quad but the dot has to be present in $x \cdot 2$ and $2 \cdot 2$,
$a \cdot(b+c)$ is written as $a(b+c)$,
$(a+b) \cdot(c+d)$ is written as $(a+b)(c+d)$.

Evaluation of expressions

An algebraic expression becomes a numerical expression
if we substitute (plug in) a numerical value for each variable.
For example, if we plug $x=2$ into the expression $3 x-4(x+1)$, we get

$$
3 x-\left.4(x+1)\right|_{x=2}=3 \cdot 2-4(2+1)
$$

which is a numerical expression. Its value is

$$
3 \cdot 2-4(2+1)=6-4 \cdot 3=6-12=-6
$$

This process is called evaluation at $x=2$.
A numerical expression is a special kind of algebraic expression.
A numerical expression is an algebraic expression which contains no variables.

An expression as a program

An expression may be understood as a program
(or algorithm, or set of instructions) describing a calculation.
For example, the expression $3 x+1$ represents the following procedure:

$$
x \xrightarrow{\text { multiply by } 3} 3 x \xrightarrow{\text { add } 1} 3 x+1 \text {. }
$$

For each value of the variable x (for each input), this program delivers an output, which is called the value of the expression $3 x+1$.

Evaluating an expression is running the program

When we evaluate an expression at a number, we run the corresponding program.
For example, to evaluate the expression $3 x+1$ at the number 2 ,
we need to plug $x=2$ into $3 x+1$:

We denote this evaluation as follows:

$$
3 x+\left.1\right|_{x=2}=3 \cdot 2+1=7
$$

Examples of evaluations

Example 1. Evaluate the expression $\frac{2 x-1}{x+1}$ at $x=-3$.
Solution.

$$
\left.\frac{2 x-1}{x+1}\right|_{x=-3}=\frac{2(-3)-1}{(-3)+1}=\frac{-6-1}{-2}=\frac{-7}{-2}=\frac{7}{2} .
$$

Example 2. Find the value of the expression $3(x-1)+2 y$ at $x=1, \quad y=-2$.
Solution.

$$
3(x-1)+\left.2 y\right|_{x=1, y=-2}=3(1-1)+2(-2)=3 \cdot 0-4=0-4=-4
$$

Why algebraic expressions are important

Algebraic expressions and operations with them are fundamentally involved in all parts of Algebra.
So far, we have met only the simplest of them.
Later in the course we will study more complex expressions and operations.
Fluency in operating with algebraic expressions is crucial for your success in the course.

Summary

In this lecture, we have learned
\checkmark what a variable is
\checkmark what an algebraic expression is
\checkmark how to evaluate an expression at a number
\checkmark how to understand an expression as a program
\checkmark why algebraic expressions are important

