Lecture 2

Numerical Expressions

Numerical expressions 2
Without parentheses 3
Two kinds of parentheses 4
Parentheses around a negative number 5
Parentheses rule 6
Summary 7

Numerical expressions

A numerical expression consists of numbers, symbols of operations and parentheses, and describes an algorithm (a set of instructions) for calculation.

For example, $3-8 \div 4 \cdot(1+2)$.
The result of the calculation is called the value of the numerical expression.
The process of calculation is called evaluation.
In this lecture we will learn how to evaluate a numerical expression.
For example, here is the evaluation of the numerical expression given above:

$$
\begin{aligned}
& 3-8 \div 4 \cdot(1+2)= \\
& 3-8 \div 4 \cdot 3= \\
& 3-2 \cdot 3= \\
& 3-6= \\
& -3 .
\end{aligned}
$$

In particular, we will learn in which order to perform the arithmetic operations.

Without parentheses

Multiplication and division have to be done before addition and subtraction,
if the formula does not contain parentheses.
By this rule, $1+2 \cdot 3=1+6=7$.
If the formula contains several multiplications and divisions(and still no parentheses),
the multiplications and divisions are performed in order from left to right.
For example, $6 \div 3 \cdot 5=6 \div 3 \cdot 5=2 \cdot 5=10$,
$6 \div 3+4 \cdot 5=6 \div 3+4 \cdot 5=2+4 \cdot 5=2+20=22$.
Additions and subtractions are done after all multiplications and divisions, also from left to right:
$5-4 \div 2+3 \cdot 2 \div 6=5-4 \div 2+3 \cdot 2 \div 6=5-2+1=5-2+1=3+1=4$.

Two kinds of parentheses

In expressions, parentheses play two different roles.

- First, they help describe the order of operations:

$$
(1+2) \cdot 3=3 \cdot 3=9
$$

Notice that the expression above without parentheses has a different value:

$$
1+2 \cdot 3=1+6=7
$$

- Second, parentheses have to surround a negative number, when the number comes after the sign of an arithmetic operation, as in

$$
2+(-3), \text { or } 2 \cdot(-3)
$$

Parentheses around a negative number

Parentheses around a negative number do not matter for the order of operations.
If all parentheses in a formula are of that kind,
then calculations should be performed as if there were no parentheses: first, all multiplications and divisions from left to right,
then all additions and subtractions from left to right:

$$
(-4) \div 2+3 \cdot(-5)=(-4) \div 2+3 \cdot(-5)=-2+(-15)=-17
$$

Parentheses rule

If a formula contains parentheses which surround more than one number, then

1. find the innermost parentheses of this kind,
2. evaluate the formula within the parentheses,
3. and continue if needed.

For example,

$$
\begin{gathered}
(3-1) \cdot(1+4 \div(3-5))= \\
2 \cdot(1+4 \div(3-5))= \\
2 \cdot(1+4 \div(-2))= \\
2 \cdot(1+(-2))= \\
2 \cdot(-1)= \\
\quad-2 .
\end{gathered}
$$

Summary

In this lecture, we have learned
\checkmark what a numerical expression is
\square what the value and evaluation of a numerical expression are
how parentheses are used in a numerical expression
in which order arithmetic operations are performed

