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Overview

Conventions and disclaimers

A talk aimed at those with little or no background in GIT

Try to indicate ideas underlying proofs but few details.

Important doors to moment maps, symplectic quotients, balanced metrics,

K-stability are pointed out but not opened.

Treat most results about algebraic groups as black boxes.

Work over C

Most results remain have analogues over general algebraically closed fields.

Proofs require deeper techniques from algebraic groups.

Plan

Review linear case—representations of reductive groups—in some detail.

Briefly discuss passage to more general actions.

Focus on analysis of stability of Hilbert points with hints about Chow points.

Throughout try to get a feel for the results through key examples.
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Finite generation and separation

Quotients of algebraic group actions

Start from a linear representation G � W of an algebraic group G:

To fix notation that I will suppress when possible, a map α : G ×W → W with

each α(g) : W → W in GL(W) and the map α : G → GL(W) a homomorphism.

View W as an affine space with induced G-action on S = C[W].
Want to form a quotient affine variety π : W → W//G.

The inclusion of the invariant subring i : SG ⊂ S gives a natural candidate:

define W//G := Spec(SG) and use the map π induced by i.
This π tautologically meets the first requirement of being constant on G-orbits

in W .

Problem: Goldilocks and the 3 invariants. We need to worry that there are

Not too many invariants: is the subring SG finitely generated?

Not too few invariants: do invariants separate orbits?

Not just right: by construction, π is dominant, but must it be surjective?
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Finite generation and separation

Finite generation of SG, or Hilbert’s 14th Problem

Not automatic.

Can fail even for simple G like (Ga)r with r small.

First examples, in positive characteristic, are due to Nagata.

Totaro gives examples with r ≥ 3 over any field.

Does hold when G is reductive: our main examples are T = Gnm and SL(n).
Over C, such G are linearly reductive: any representation V has a canonical

splitting S = SG ⊕ S′ where S′ is the sum of all non-trivial irreducibles.

By projecting, we get a Reynolds operator ρ : S → SG which is an SG-module

homomorphism.

Given R ⊂ S with S noetherian and an R-module homomorphism ρ : S → R, then

R is finitely generated. (Imitate the proof of the Hilbert basis theorem).
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Finite generation and separation

Separation by invariants

Some cautionary examples: not always “just right” even when Sg is f.g.

If Gm � Cn by homotheties, then any closed invariant set contains the origin 0,

so all invariants are constant.

If Ga � C2 by t · (a, b) = (a, ta+ b), then SG = C[a]. All the points (0, b) are

closed orbits with image the same image 0 under π .

If Ga � W = M2(C) by t ·
( a b
c d
)
=
( a+tc b+td

c d
)
, then SG = C[c, d, ad − bc] so

W//Ga = A3 but [0,0, z] is not in π(W) if z 6= 0.

Invariants for reductive group actions separate disjoint closed G-invariant
subsets.

Given X and Y , use Nullstellensatz to write 1 = f + g with f ∈ I(X) and g ∈ I(Y).
Apply ρ to get 1 = ρ(f )+ ρ(g) with f ∈ I(X)G and g ∈ I(Y)G.

That is, ρ(f ) is an invariant that is 1 on X and 0 on Y .

More typical: Gm � W = M2(C) by t ·
( a b
c d
)
=
( t 0
0 t−1

)( a b
c d
)( t−1 0

0 t
)
=
( a t2b
t−2c d

)
The closure of the orbit of

( 0 1
0 0
)

contains 0.

More generally, the closure of the orbit of
( a 1
0 a
)

contains the orbit of
( a 0
0 a
)
.
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Finite generation and separation

Stability

These examples show that not all orbits are created equal.

w is unstable 0 ∈ G ·w Any homogeneous invari-
ant not vanishing at w is
constant.

π(w) = 0

w is semistable 0 6∈ G ·w Some non-constant ho-
mogeneous invariant van-
ishes at w .

π(w) 6= 0

w is polystable G ·w is closed Invariants separate G ·w
from other closed orbits.

w ′ ∈ π−1(w) ⇐⇒
G ·w ′ ∩G ·w 6= �.

w is stable G ·w is closed
and Gw is finite.

Invariants separate G ·w
from all other orbits.

π−1(w) = G ·w .

A few terminological warnings are in order:

Unstable and semistable are antonyms. Unstable and stable are not.

Many references use stable/properly stable for our polystable/stable.

Example: Smooth hypersurfaces are semistable for SL(n)� Symd(Cn):
The discriminant ∆ is non-zero at equations of smooth hypersurfaces.
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Finite generation and separation Closures of orbits and quotients

Closures of orbits

A good model to keep in mind is SL(n)� Mn(C) by conjugation.

The invariants are generated by the coefficients of the characteristic polynomial

which are algebraically independent so Mn(C)//SL(n) = An.
A is unstable ⇐⇒ A is nilpotent.

A is polystable ⇐⇒ A is semisimple (is diagonalizable).

A is stable ⇐⇒ A is regular semisimple (has distinct eigenvalues).

B ∈ SL(n) ·A ⇐⇒ The Jordan form of B is obtained from that of A by removing

some off-diagonal 1s.

This illustrates the main properties of closures of orbits.

For any w , G ·w is a finite union of other orbits G ·w ′.
If G ·w ′ ⊂ G ·w , then dim(G ·w ′) < dim(G ·w) and dim(Gw ′) > dim(Gw ).
G ·w will contain a unique orbit G ·w ′ of minimal dimension which is closed.

But the closures of several orbits can contain the same closed orbit.

Ian Morrison (Fordham University) Basic notions of geometric invariant theory Stony Brook — December 6, 2013 7 / 34



Finite generation and separation Closures of orbits and quotients

Properties of the quotient map

A categorical quotient φ : W → X is a G-equivariant map that has a universal

initial property with respect to such maps.

Such a quotient is good if:

It is constant on orbits, surjective and affine.

Locally over X, it is given by values of invariants.

Closed G-invariant subsets of W have closed images.

Disjoint closed G-invariant subsets of W have disjoint images.

A quotient is geometric if every fiber of φ is a single G-orbit (or, more

formally, if W ×X W is isomorphic to the image of the map

(g,w)
(α,id)

(g ·w,w)).
The preceding discussion shows that:

For G reductive, π : W → W//G is a good categorical quotient.

This quotient is only geometric over the stable locus W s .

Remark: If G is not reductive but SG is finitely generated, then we get a

categorical quotient, but, as the Ga examples above show, not necessarily a

good one.
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Criteria for stability The Numerical Criterion

Analysis of one-parameter subgroups

View an action Gm � W as a 1-ps, i.e. a homomorphism λ : Gm → G in Λ(G).
The irreducibles of Gm are characters indexed by integers.

Decompose W = ⊕i∈ZWi where t ·w = t iw for w ∈ Wi .
Likewise, if w ∈ W , w =

∑
i∈Zwi .

The state S(W) [S(w)] is the set of weights: those i s.t. Wi 6= {0} [wi 6= 0].
As t → 0 [∞], t ·w → w0 if minSw ≥ 0 [maxSw ≤ 0] (and, if not, has no limit).

If G � W and λ ∈ Λ(G), we set µ(w,λ) =minSλ(w)—the least w -weight.

We can translate the discussion above as:

w is unstable ⇐= For some λ, µ(w,λ) > 0.

w is semistable =⇒ For every λ, µ(w,λ) ≤ 0.

w is polystable =⇒ For every λ not fixing w , µ(w,λ) < 0.

w is stable =⇒ For every non-trivial λ, µ(w,λ) < 0

Stable means that every λ has weights of both signs (consider λ−1).

Warning: There is a large Little–Endian school that uses −µ.
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Criteria for stability The Numerical Criterion

Analysis of one-parameter subgroups

View an action Gm � W as a 1-ps, i.e. a homomorphism λ : Gm → G in Λ(G).
The irreducibles of Gm are characters indexed by integers.

Decompose W = ⊕i∈ZWi where t ·w = t iw for w ∈ Wi .
Likewise, if w ∈ W , w =

∑
i∈Zwi .

The state S(W) [S(w)] is the set of weights: those i s.t. Wi 6= {0} [wi 6= 0].
As t → 0 [∞], t ·w → w0 if minSw ≥ 0 [maxSw ≤ 0] (and, if not, has no limit).

If G � W and λ ∈ Λ(G), we set µ(w,λ) =minSλ(w)—the least w -weight.

Hilbert-Mumford Numerical Criterion

w is unstable ⇐⇒ For some λ, µ(w,λ) > 0.

w is semistable ⇐⇒ For every λ, µ(w,λ) ≤ 0.

w is polystable ⇐⇒ For every λ not fixing w , µ(w,λ) < 0.

w is stable ⇐⇒ For every non-trivial λ, µ(w,λ) < 0

Proof is based on the Cartan-Iwahori-Matsumoto decomposition.
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Criteria for stability The Numerical Criterion

Example: Binary quantics

Consider SL(2)� W = Symd(C2)∨.

Up to powers and change of coordinates, we can assume λ(t) =
( t 0
0 t−1

)
.

Then λ acts by t it−(d−i) = t2i−d on the monomial xiyd−i.

If P(x, y) =
∑d
i=0 aixiyd−i, µ(P, λ) > [≥] 0 ⇐⇒ ai = 0 whenever 2i < [≤] d.

Geometrically, this means (0,1) is a root of P of multiplicity > [≥] d2 .

P is stable [semistable] ⇐⇒ No root has multiplicity at least [more than] d2 .

The closure of the orbit of a polynomial with a root of multiplicity more than
d
2 contains the origin.

The closed orbit in the closure of the orbit of any polynomial with a root of

multiplicity exactly d
2 is that of (xy)

d
2 .

Remark: To uniformize notation when taking λ in SL(V), it is convenient (if

non-canonical), to pick coordinates that vi s.t. λ(t) = diag(. . . , tλivi , . . . )
allowing repeated weights λi.
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Criteria for stability The Numerical Criterion

Analysis of torus actions

Consider an action T := Grm � W .

Again, we decompose W =
⊕
χ∈X(T)Wχ where t ·w = χ(t)w for w ∈ Wχ, but now

the character group X(T) is indexed by Zr .

If t = (t1, . . . , tr ) and z = (z1, . . . , zr ), then χz(t) =
∏r
i=1 t

zi
i .

The state ST (W) [ST (w)] is now a set of characters: those χ s.t.

Wχ 6= {0} [wχ 6= 0].
Define the state polytope PT (w) to be the convex hull of ST (w) in X(T)⊗R.

Given a 1-ps λ : Gm → T and a character χ : T → Gm, we get a character χ ◦ λ of

Gm which we can write t → t〈λ,χ〉.
This defines a non-degenerate bilinear pairing 〈, 〉 : Λ(T)× X(T)→ Z.

Using the standard basis of X(T), we can identify Λ(T) and X(T) and choose

compatible inner products on them.

Then µ(w,λ) =min{〈λ,χ〉 | χ ∈ ST (w)}.

By Farkas’ Lemma, we can restate the Numerical Criterion as:

w is T -semistable [T -stable] ⇐⇒ χ0 ∈ PT (w) [ χ0 ∈ PT (w)◦]

Ian Morrison (Fordham University) Basic notions of geometric invariant theory Stony Brook — December 6, 2013 11 / 34



Criteria for stability The Numerical Criterion

Lengths and parabolic subgroups for 1-ps’s

If w is T -unstable, then we can single out a “worst” 1-ps λ.

Let ‖λ‖ :=
(∑

i λ2i
)1/2

and “normalize” by setting µ̂(w, λ) := µ(w,λ)‖λ‖ .

Note that µ(w,λk) = kµ(w,λ) but µ̂(w, λk) = µ̂(w, λ).
There will be a unique shortest (rational) vector χw in PT (w).
The line dual to this χ contains all λ maximizing µ̂(w, λ) and we pick a primitive

integral element.

If we take any ‖ · ‖ invariant under the Weyl group of G w.r.t. T :

Get a metric on Λ(G) for which ‖gλg−1‖ = ‖λ‖.
For SL(n) (or other semisimple G) there is a canonical choice, Trace

(
ad(λ∗ ddt )

2
)
.

Associate to λ the parabolic subgroup P(λ)
P(λ) = {p ∈ G | limt→0 λ(t)pλ(t)−1 exists in G}—such limits centralize λ.

For SL(n), choose a filtration F(λ): Cn = V0 ⊃ V1 ⊃ · · · ⊃ Vk−1 ⊃ VK = {0}
with λ acting on Vi−1/Vi by tλi and the λi decreasing. Then P(λ) consists of

those g preserving F(λ).
In general, µ̂(g ·w,gλg−1) = µ̂(w, λ) but µ̂(p ·w,λ) = µ̂(w, λ)
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Criteria for stability The Numerical Criterion

Worst one-parameter subgroups for unstable w
Kempf-Rousseau Theorem

Let G � W , w be a G-unstable point and ‖ · ‖ be an invariant norm on Λ(G).
We say that λ is w -worst if µ̂(w, λ) ≥ µ̂(w, λ′) for any λ′ ∈ Λ(G).

The set of w -worst λ is non-empty.

There is a parabolic subgroup Pw such that any worst λ has P(λ) = Pw .

The indivisible worst λ form a single Pw conjugacy class.

Gw ⊂ Pw .

The last statement is useful for G semisimple when Gw is “big”:

If Gw does not lie in any proper parabolic—e.g., if Gw acts irreducibly on

W—then w must be semistable.

This applies to Chow and Hilbert points of homogeneous spaces and of very

ample models of abelian varieties.

If W is a multiplicity free Gw -representation and T is chosen compatibly, then

T -semistability for w implies G-semistability.
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Criteria for stability The Numerical Criterion

Example: Plane cubics — SL(3)� W := Sym3(C3)∨

Fix a torus T ⊂ SL(3)—that is, coordinates (x, y, z).

Exponents of degree 3 monomials xiyjzk index the character decomposition

W = ⊕Wχ barycentrically (i.e. modulo i + j + k = 3).

Monomials with non-zero coefficient in w—equation of C—give ST (w).
Take λ(t) = diag(ta, tb, tc) with a+ b + c = 0: gray line is (−5,1,4).

x

y z

•

• •

• • •

• • • •

Vanishing of the indicated monomials means:

• P := (1,0,0) lies on C.

•• z = 0 is tangent at P .

••• C has a double point at P ,

•••• z = 0 is tangent to a branch of C at P .

••••• Tangent cone to C at P is z2 = 0.

Upshot:

Smooth cubics are stable.

Nodal cubics (even reducible ones) are strictly semistable.

Cubics with cusps (or worse, e.g. multiple line) are unstable.

Ian Morrison (Fordham University) Basic notions of geometric invariant theory Stony Brook — December 6, 2013 14 / 34



Criteria for stability The Numerical Criterion

Example: worst λ’s for unstable plane cubics

The invariants are generated by the coefficients g2 and g3 of the Weierstrass

form y2 = 4x3 − g2x− g3 with ∆ = g32 − 27g23 and j = 1728g32
∆ .

Below the worst 1-ps’s of unstable C are shown in red as a supporting line at

the shortest point of a generic state polytope S(w).
•

• • • •
• y3 − xz2 + z < y, z >2 irreducible cuspidal

•
• • •

• z(y2 − xz)+ y2 < y, z > conic and tangent line

•
• • • •

< y, z >3 three concurrent lines

•
• •
• z2 < x, y, z > double line

•
• z3 triple line

Hesselink showed that this picture generalizes, with the maximum of µ̂
producing a stratification of the unstable locus or nullcone.
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Criteria for stability Lengths of vectors and moment maps

Length functions on orbits and moment maps

Fix G � W , a maximal compact K ⊂ G preserving a hermitian norm ‖ · ‖
For w ∈ W , define pw : G → R by pw(g) = ‖g ·w‖2.

Kempf-Ness Theorem

Any critical point of pw is a point where it attains its minimum value.

The function pw attains its minimum value if an only if G ·w is closed. If so:

This minimum is taken is a single K −Gw -coset Mw .

pw has strictly positive second partials in all directions not tangent to Mw .

The induced function p̂w on K\G is a Morse function with a unique minimum if and

only if w is stable.

We pass by, but shall not enter, the door to the symplectic wing here.

The moment map m : P(W)→ ik∨ is defined by 1
‖w‖2 de‖g ·w‖2 so critical points

of pw are zeros of m.

Ness and Kirwan study the gradient flow of m on the unstable or nullcone and

recover Hesselink’s stratification.
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Actions on more general varieties Linearizations of actions

Beyond the linear case

Linearizing actions of reductive groups on affine varieties is straightforward:

Any action G � X is rational: i.e., if Vf := span{g · f}, then dim(Vf ) <∞.

Get an equivariant embedding of X ⊂ W by taking W to be a sum over

generators of Vf .
Use linear reductivity to check that

(
S/I(X)

)G = SG/(I(X)∩ SG).
Thus, the quotient π : W → W//G restricts to a quotient X → X//G inheriting

many properties, esp. that X//G is normal if X is.

Can we imitate this for G � X with X (quasi-) projective?

A G-linearization is a choice of a line bundle L and a lift

G × L L

G ×X X

α̂

αof the G action to L fixing the 0 section:

denote the set of such lifts by PicG(X).
The action condition amounts to an isomorphism pr∗2 (L)→ α̂∗(L).
This yields an an exact sequence 0→ K → PicG(X)

φ
Pic(X)→ L→ 0.

When X is normal and G is irreducible L � Pic(G) and when X is connected and

proper K � X(G).
For G = SL(n) both these groups vanish, so any L has a unique linearization.
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Actions on more general varieties Projective quotients

Quotients coming from linearizations of ample L
Fix an action G � X with X normal and projective.

Fixing an ample line bundle L and a linearization on L yields a good
categorical quotient.

Get an action G � R := ⊕d≥0
(
H0
(
X,L⊗d

))
.

Define X//L G := Proj(RG)—this is a f.g. graded ring because R(L) is.

Replacing L by a power if necessary, RG is generated elements sj of degree 1.

So X//L G ⊂ P(Cn) with ideal I = ker
(
C[ti , . . . , tn]→ RG

)
by sending tj , sj .

This covers the L-semistable locus with affine opens Uj (where sj 6= 0) whose

good categorical quotients are the corresponding (X//G)j (where tj 6= 0).

Passing by another door we will not open, note that X//L G has a natural

ample line bundle, the O(1) coming from its definition as a Proj.

Under mild hypotheses, some power of a G-invariant line bundle on X will

descend to a bundle on X//L G.

The Grothendieck-Riemann-Roch formula often provides an effective way to

relate the two Pic’s.
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Stability of Hilbert (and Chow) points The Hilbert scheme

Hilbert points

A subvariety Y r ⊂ P(V) is a map H0
(
P(V),OP(V)(1)

)
� V∨ → H0

(
Y,OY (1)

)
.

If we fix the degree r Hilbert polynomial P(m) := h0
(
Y,OY (m)

)
for m� 0,

we can choose anb M such that for m > M,

0→ Im(Y)→ Symm(V∨) = H0
(
P(V),OP(V)(m)

) resY H0
(
Y,OY (m)

)
→ 0

is exact, and Im(Y) cuts out Y .

Thus setting W :=
∧P(m) Symm(V∨)

∧P(m)(resY ) ∧P(m)H0(Y,OY (m)) � C, we

get the mth-Hilbert point [Y]m ∈ HP(V) ⊂ Grass
(
P(M), Symm(V∨)

)
⊂ P(W)

This is the value “at Y ⊂ P(V)” of a closed embedding of the Hilbert scheme

HP(V) which represents the functor of “flat families of subschemes of P(V)
with Hilbert polynomial P ”.

The representation of SL(V) on W naturally linearizes the bundle Lm on Hp
obtained by pulling back OP(W)(1).
The SL(V) stability of [Y]m depends on the embedding in P(V)—that is, on

L not just Y . It also depends on m though not, in practice, if we take m� 0.
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Stability of Hilbert (and Chow) points The Hilbert scheme

The Numerical Criterion for Hilbert points

Given a non-trivial 1-ps λ of SL(V), choose coordinates vi on V w.r.t. which

λ(t) = diag(tλ1 , . . . tλn). NB: my dimensions here are affine.

We think of λ as a choice of a weighted basis B = (vi , λi). Likewise:

Basis of degree m monomials M =
∏
i v
mi
i with weights λM =

∑
imiλi on

Symm(V∨).
Basis of Plücker coordinates ZI obtained by wedging any set I of P(m) distinct

monomials with weights λZI :=
∑
M∈I λM on W .

ZI([Y]m) 6= 0 ⇐⇒ The set {resY (M) | M ∈ I} is linearly independent in

H0
(
Y,OY (m)

)
. These weights of are the λ-weights of [Y]m.

We’ll think of ZI as a monomial basis Bm of H0
(
Y,OY (m)

)
.

Numerical Criterion for Hilbert Points: First Version

[Y]m is Hilbert stable [semi-stable] ⇐⇒ For every weighted basis B := (vi , λi) of

V with
∑
i λi = 0, there is a monomial basis Bm of H0

(
Y,OY (m)

)
of negative

[non-positive] weight. I.e., the least such weight is µ([Y]m, λ).
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Stability of Hilbert (and Chow) points The Hilbert scheme

Example: The Steiner surface

The Steiner surface S ⊂ P4 can be described as

the projection of the Veronese surface from a point on it.

the image of ruled surface obtained by projectivizing the bundle

E := OP1 ⊕OP1(1) with respect to a linear series O(1)+ f where f is a fiber.

the blowup of P2 at p = (0,0,1) embedded by quadrics passing through p.

The last viewpoint is perfect for an analysis of stability because it gives us a

basis B1 = {x2, xy, y2, xz, yz} of H0
(
S,OS(1)

)
.

If we assign z weight −4 and x and y weight 1, then the basis B1 has weights

(2,2,2,−3,−3) so corresponds to a 1-ps λ.

Any degree m monomial in the elements of B1 can be viewed as a monomial

of total degree 2m in x, y and z having degree at most m in z.

The weight of a monomial in Bm of degree j in z is (2m− j)− 4j = 2m− 5j
regardless of how it arises from B1 and there are 2m− j + 1 such monomials.

Thus, any (or the only) Bm has weight
∑m
j=0(2m− j + 1)(2m− 5j) which a

little algebra gives as 1
3(m− 1)m(m+ 1), so [Sm] is λ-unstable for all m ≥ 2.
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Stability of Hilbert (and Chow) points The Hilbert scheme

A Better Numerical Criterion for Hilbert points

Bad news: we can (almost) never describe monomials this explicitly.

Good news: we don’t need to; we only used the weight filtration on them.

Order B so the weights λi decrease, set Vi = span{vj | j > i} to get

V = V0 ⊃ V1 ⊃ . . . ⊃ Vn−1 ⊃ Vn = {0}
λ1 ≥ λ2 . . . λn−1 ≥ λn

Now simply write B for the data of this weight filtration, but note that the flag

underlying this filtration is really just that of P(λ).
We’ll get an induced weight filtration on H0

(
Y,OY (m)

)
—a polynomial’s weight

is the largest weight of a monomial appearing in it. Now any basis Bm has a

weight λ(Bm).
Define wB(m) :=min{λ(Bm)}—always realized by some monomial basis.

One advantage: we can shift and scale weights. For this, let α := 1
n
∑
i λi.

Then µ([Y]m, B) = wB(m)−mP(m)α, so

Numerical Criterion for Hilbert Points: Second Version

[Y]m is Hilbert stable [semi-stable] ⇐⇒ For all B, wB(m)−mP(m)α < [≤ ]0.
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Stability of Hilbert (and Chow) points The Hilbert scheme

Interlude: asymptotic-in-d stability

For a ≥ 2, set n = (2a− 1)(g − 1), V = Cn and P(m) = (2am− 1)(g − 1).
Then HP(V) contains a-canonical models of smooth curves of genus g.

Check that the locus K ⊂ HP(V) of nodal, connected C ∈ P(V) such that

OC(1) �ω⊗aC is smooth of (the expected) dimension (3g − 3)+ (n2 − 1).
As we’ll see in a moment, Hilbert points of smooth curves in HP are stable.

Deformation theory of nodes says such points are dense in K.

Hence, K//SL(V) contains Mg as a dense open.

Question: What happens at the boundary of K//SL(V)?

Fact: as d →∞, stable plane curves of degree d carry singularities with the

multiplicities also tending to infinity

For many years, this led people—even Mumford—to think that the answer

above was “all hell breaks loose”. In fact, for a ≥ 5, K//SL(V) is Mg

Any smoothable Hilbert stable curve of genus g embedded by a complete

linear series of degree d� g is nodal.
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Stability of Hilbert (and Chow) points The Hilbert scheme

Example: Triple Points

Consider a reduced, irreducible curve C of arithmetic genus g ≥ 2 with an

ordinary triple point p.

Embed C in P(V) by a complete linear series L of degree d ≥ 3(g − 1).
Let π : C̃ → C be the normalization, Q = q1 + q2 + q3 be the sum of the

preimages of p on C̃ and L̃ = π∗(L).
Choose B s.t. vi(p) = 0 for i ≥ 2 and set λ1 = 1 and λi = 0 for i ≥ 0.

Claim: For 1 ≤ j < m, we can identify the “weight at most w − j” subspace

Uj of H0
(
C,L⊗m

)
with H0

(
C̃, L̃⊗m(−jQ)

)
so codim(Uj) = 3j.

Any monomial of this weight contains j factors vanishing at p.

Here we can no longer easily write down a basis of monomials, but we can

describe the weight filtration geometrically.

A bit of calculation gives wB(m)−mP(m)α =
(
3
2 −

d
n

)
m2 +

(
3
2 +

g−1
n

)
m.

Since n = d − (g − 1) and d ≥ 3(g − 1), d
n
≤ 3
2

so B is destabilizing.
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Stability of Hilbert (and Chow) points The Hilbert scheme

Example: Elliptic tails

Let C = C′ ∪ E ⊂ Pn−1 where g(C′) = g − 1 and g(E) = 1, C′ ∩ E = p a node.

OC(1): very ample, non-special, degree d so n = d − g + 1, OC(1) E = OE(ap).
Riemann-Roch then says there is a weighted basis B of the form

v1 v2 . . . v`−1 v` v`+1 . . . vn−1 vn
a a . . . a a a− 1 . . . 2 0

with vi = 0 on E for i < `, v`+j = 0 on C′ and λj + ordp(vl+j) = a for j > 0.

Claim: the “weight at most w ” subspace of H0(C,OC(m)) is exactly

H0(
(
OC(m) E(−(ma−w)p)

)
for w = 0 and for 2 ≤ w ≤ma− 1.

After some calculation, this yields

wB(m)−mP(m)α = 1
2n (m− 1)(m

(
(g − 1)a2 − d(a− 2)

)
+ 1).

Taking a = 4, we get instability when d
g−1 ≤

8
7 .

Elliptic tails destabilize a-canonical curves for a ≤ 4 (but not for a ≥ 5).

If OC(1) E = OE(4q) for q 6= p, unstable range is d
g−1 ≤

7
6 .

As d
g gets smaller, stability depends just on extrinsic geometry but in

increasingly subtle ways on the embedding.
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Stability of Hilbert (and Chow) points Asymptotic-in-m stability

Instability is geometry, stability is combinatorics.

In our examples, geometry suggests the choice of 1-ps λ or weighted basis B.

We described the weight filtration on H0
(
Y,OY (m)

)
geometrically in terms

of base loci with multiplicity and computed dimensions exactly.

A general λ or B has no such “exact” geometry: all we can hope to do is to
“estimate” the geometry and use this to estimate wB(m).

If dim(X) = r , then by equivariant Riemann-Roch, for any B and m� 0, wB(m)
is a numerical polynomial of degree r + 1—a sort of graded Hilbert polynomial:

wB(m) :=
r+1∑
j=0
ei(B)mi = ε(B)m

r+1

(r + 1)! +O
(
mr) with ε(B) integral.

Likewise P(m) = dmr
r ! +O

(
mr−1). Hence:

Asymptotic-in-m Numerical Criterion for Hilbert Points

[Y]m is Hilbert stable for m� 0 if, for all B, ε(B) < d(r + 1)α.

For the Chow point 〈Y〉, µ(〈Y〉, λB) = ε(B), hence

Chow stable =⇒ Hilbert stable =⇒ Hilbert semi-stable =⇒ Chow semi-stable

and the elliptic tail example with r = 4 shows that the converses are false.
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Stability of Hilbert (and Chow) points Asymptotic-in-m stability

K-stability and other asymptotic-in-L notions
Let’s set M =ms with m� s � 0, suppose that OX(1) = L⊗s and write

ws,M = wB(M)sP(s)−wB(s)MP(M).
We view this as a numerical function associated to a 1-ps λ of

SL
(
H0(X, L⊗s)

)
, usually called a test configuration of (X, L) in this context.

We can expand ws,M twice to get ws,M =
r+1∑
j=0
ej(s)Mj =

r+1∑
j=0

(r+1∑
`=0
ej,`s`

)
Mj .

Our normalization ensures that er+1,r+1 = 0 and we define the

Donaldson-Futaki invariant to be DF(λ) = −er ,r+1.
The pair (X, L) is K-stable [semistabile] if DF(λ) ≥ [ > ]0 for all test

configurations of (X, L⊗s) for all s � 0.

Likewise, we say
(
X,L

)
is asymptotically Hilbert or Chow (semi)stable if(

X,L⊗s) is Hilbert or Chow (semi)-stable for all s � 0.

The various notions so defined for a pair (X, L) are related by

Asymptotically Chow stable =⇒ Asymptotically Hilbert stable =⇒
Asymptotically Hilbert semi-stable =⇒ Asymptotically Chow semi-stable =⇒

K-semistable.
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Stability of Hilbert (and Chow) points Asymptotic-in-m stability

Estimating the weight filtration

Given subspaces Uj ⊂ H0
(
Y,OY (m)

)
with Uj ⊂ Uk if j ≤ k, dim(Uj) ≥ dj

and all sections in Uj of weight at most wj , we get an estimate

wB(m) <
∑
j wj(dj − dj−1) =

∑
j dj(wj −wj−1)

Gieseker applies this with m =m′(p + 1), taking and the U ’s of the form
Symm′

(
V · Sym(p−`)(Vjk) · Sym`(Vj(k+1)))

where 0 = j0 < j1 < · · · < jh = n—in effect, we coarsen the filtration on V .
Let:

Let Lj be the line bundle on Y generated by |Vj |, dj := deg(Lj) and ej = d − dj .
Projection of Y onto P(Vj) has image of degree dj , base locus of degree ej .
Mk,` = OY (1)⊗ (Ljk)(p−`) ⊗ (Ljk+1)`.
The blue product is a very ample, base point free sub-linear series of Mk,` so for

m′ >> 0, each U will be all of H0
(
Y,M⊗m

′
k,`

)
.

Using Riemann-Roch to estimate dimensions gives an estimate for ε(B) that I

give only for curves (in general, all the mixed intersection numbers of the Lj
appear).
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Stability of Hilbert (and Chow) points Asymptotic-in-m stability

Stability of smooth curves

Gieseker’s Criterion for Hilbert Points of Curves

[C]m is Hilbert stable for m� 0 if, for any B

ε(B) = max
λ1≥···≥λN=0∑N

i=1 λi=1

(
min

1=j0<···<jh=N

(h−1∑
k=0

(
ejk + ejk+1

)(
λjk − λjk+1

)))
< 2

d
n

•

••

•

degree

dim

Riemann-Roch

Clifford

K
(2g, g + 1)

O

OC(1) All the points (dj , j) associated to the Vj lie below the

Riemann-Roch and Clifford lines.

This gives universal bounds on the ej and, in terms of

these, we are computing the area of the lower convex

envelope of the (ej , λj).

Asymptotic Stability of Smooth Curves

For g ≥ 2 and d ≥ 2g + 1, there is an Mg,d such that any smooth curve C of

genus g embedded by a complete linear series of degree at least d has stable

mth Hilbert points [C]m for all m ≥ Mg,d.
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Stability of Hilbert (and Chow) points Beyond smooth curves

Truth in advertising

Disclaimer: the story of smooth curves is totally misleading.

Gieseker’s motivation was to prove asymptotic stability of pluricanonical models

of surfaces of general type. His proof is a tar-baby.

His approximate weight filtrations on H0
(
C,OC(m)

)
are not sharp enough to

prove asymptotic stability of nodal curves, or even smooth pointed curves.

The span of all the U ’s of fixed weight can be much larger than any one.

Using these, get criteria involving a sum, indexed by points p of C, of

Gieseker-like sums with ej is replaced by the multiplicity of p in Bs(Vj).
Using this approach, Li and Wang prove stability of nodal curves and Swinarski

of pointed smooth curves, in both cases, only for d� g.

I know of no attempts to do this for varieties of higher dimension.

You’re here today because a very different approach suggested by Mumford

and popularized by Yau does work: Y is Chow stable if and only if:

(Luo) Y is Chow stable ⇐⇒ For some g ∈ SL(V), g · Y is balanced:
1

vol(Y)

∫
g·Y

(
vi·vj

|v1|2+···+|vn|2

)
ωrFS = 1

nδij .
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Stability of Hilbert (and Chow) points Using geometry to avoid combinatorics

Semistable replacement

The a-canonical quotients K//SL(V) for small a play a key role in the log

minimal model program for Mg.

But for such a, we can only check the Numerical Criterion for smooth X.

The substitute uses a procedure called semistable replacement that works

quite generally when we have an action on a projective X.

Fix a DVR R with quotient field K and residue field k and set S = Spec(R)
and S∗ = Spec(K), where o = Spec(k).

Given a map φ : S∗ → Xs//G, then after a finite base change S′ → S ramified

only at o, there exists a lift φ′ : S′ → Xss of f as in the diagram:

S′ Xss

S S∗ Xs//G X//G

φ′

φ

with the orbit of φ′(o) closed.
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Stability of Hilbert (and Chow) points Using geometry to avoid combinatorics

Constructing compact quotients

Given a singular C with [C]m ∈K, we smooth it getting a family whose

general fiber has stable Hilbert point.

Base change gives family with projectively equivalent general fiber and

m-semistable special fiber.

Moreover, the universal property of the Hilbert scheme gives us line bundles

on the two families that are both generically a-canonical.

If we can extend this isomorphism of line bundles over the closed fiber, then

[C]m must be the a-canonical Hilbert point of [C′]m.

Gieseker does by proving that only abstractly stable curves have

m-semistable ath Hilbert points for a ≥ 5 and applying semistable reduction.

For reducible curves, need to rule out possibility of twisting by components

of the special fiber: prove a “balanced degree inequality”.

Extended by Schubert (a = 3,4), Hassett and Hyeon (a = 2) to construct log

canonical models of Mg as moduli spaces for variant moduli problems.

Open problem: next stages require doing this for fixed values of m.
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