Basic Notions of Geometric Invariant Theory

With an Eye to Hilbert Points

lan Morrison

www.fordham.edu/morrison/pdfs/MorrisonStonyBrookSlides.pdf

Department of Mathematics Fordham University

morrison@fordham.edu

Mini-course on K-stability

Stony Brook

December 6, 2013

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ��や

Conventions and disclaimers

A talk aimed at those with little or no background in GIT

- Try to indicate ideas underlying proofs but few details.
- Important doors to moment maps, symplectic quotients, balanced metrics, K-stability are pointed out but not opened.
- Treat most results about algebraic groups as black boxes.

Work over $\mathbb C$

- Most results remain have analogues over general algebraically closed fields.
- Proofs require deeper techniques from algebraic groups.

Plan

- Review linear case—representations of reductive groups—in some detail.
- Briefly discuss passage to more general actions.
- Focus on analysis of stability of Hilbert points with hints about Chow points.
- Throughout try to get a feel for the results through key examples.

Quotients of algebraic group actions

- Start from a linear representation $G \cap W$ of an algebraic group G:
 - To fix notation that I will suppress when possible, a map $\alpha : G \times W \to W$ with each $\overline{\alpha}(g) : W \to W$ in GL(W) and the map $\overline{\alpha} : G \to GL(W)$ a homomorphism.
 - View *W* as an affine space with induced *G*-action on $S = \mathbb{C}[W]$.
 - Want to form a quotient affine variety $\pi : W \to W /\!\!/ G$.
 - The inclusion of the invariant subring $i: S^G \subset S$ gives a natural candidate: define $W || G := \operatorname{Spec}(S^G)$ and use the map π induced by *i*.
 - This π tautologically meets the first requirement of being constant on *G*-orbits in *W*.

Problem: Goldilocks and the 3 invariants. We need to worry that there are

- Not too many invariants: is the subring S^G finitely generated?
- Not too few invariants: do invariants separate orbits?
- **•** Not just right: by construction, π is dominant, but must it be surjective?

Finite generation of S^G, or Hilbert's 14th Problem

- Not automatic.
 - **Can fail even for simple** *G* like $(\mathbb{G}_a)^r$ with *r* small.
 - First examples, in positive characteristic, are due to Nagata.
 - **Totaro gives examples with** $r \ge 3$ over any field.

Does hold when G is reductive: our main examples are $T = \mathbb{G}_m^n$ and SL(n).

- Over \mathbb{C} , such *G* are linearly reductive: any representation *V* has a canonical splitting $S = S^G \oplus S'$ where *S'* is the sum of all non-trivial irreducibles.
- By projecting, we get a Reynolds operator $\rho : S \to S^G$ which is an S^G -module homomorphism.
- Given $R \subset S$ with S noetherian and an R-module homomorphism $\rho : S \to R$, then R is finitely generated. (Imitate the proof of the Hilbert basis theorem).

Separation by invariants

- Some cautionary examples: not always "just right" even when S^g is f.g.
 - If $\mathbb{G}_m \cap \mathbb{C}^n$ by homotheties, then any closed invariant set contains the origin **o**, so all invariants are constant.
 - If $\mathbb{G}_a \cap \mathbb{C}^2$ by $t \cdot (a, b) = (a, ta + b)$, then $S^G = \mathbb{C}[a]$. All the points (0, b) are closed orbits with image the same image 0 under π .
 - If $\mathbb{G}_a \cap W = M_2(\mathbb{C})$ by $t \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+tc & b+td \\ c & d \end{pmatrix}$, then $S^G = \mathbb{C}[c, d, ad bc]$ so $W/\!/\mathbb{G}_a = \mathbb{A}^3$ but [0, 0, z] is not in $\pi(W)$ if $z \neq 0$.
- Invariants for reductive group actions separate disjoint closed G-invariant subsets.
 - Given X and Y, use Nullstellensatz to write 1 = f + g with $f \in I(X)$ and $g \in I(Y)$.
 - Apply ρ to get $1 = \rho(f) + \rho(g)$ with $f \in I(X)^G$ and $g \in I(Y)^G$.
 - That is, $\rho(f)$ is an invariant that is 1 on X and 0 on Y.

• More typical: $\mathbb{G}_m \cap W = M_2(\mathbb{C})$ by $t \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} t^{-1} & 0 \\ 0 & t \end{pmatrix} = \begin{pmatrix} a & t^2 b \\ t^{-2} c & d \end{pmatrix}$

- **The closure of the orbit of** $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ contains **o**.
- More generally, the closure of the orbit of $\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$ contains the orbit of $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$.

Stability

These examples show that not all orbits are created equal.

w is unstable	$\mathbf{o}\in\overline{G\cdot w}$	Any homogeneous invari- ant not vanishing at <i>w</i> is	$\pi(w) = \mathbf{o}$
		constant.	
w is semistable	$\mathbf{o} \notin G \cdot w$	Some non-constant ho- mogeneous invariant van- ishes at <i>w</i> .	$\pi(w) \neq 0$
w is polystable	$G \cdot w$ is closed	Invariants separate $G \cdot w$ from other <i>closed</i> orbits.	$\frac{w' \in \pi^{-1}(w)}{G \cdot w' \cap G \cdot w \neq \emptyset}.$
w is stable	$G \cdot w$ is closed and G_w is finite.	Invariants separate $G \cdot w$ from <i>all</i> other orbits.	$\pi^{-1}(w)=G\cdot w.$

- A few terminological warnings are in order:
 - Unstable and semistable are antonyms. Unstable and stable are not.
 - Many references use stable/properly stable for our polystable/stable.
- Example: Smooth hypersurfaces are semistable for $SL(n) \cap Sym^d(\mathbb{C}^n)$: The discriminant Δ is non-zero at equations of smooth hypersurfaces.

Closures of orbits

- A good model to keep in mind is $SL(n) \cap M_n(\mathbb{C})$ by conjugation.
 - The invariants are generated by the coefficients of the characteristic polynomial which are algebraically independent so $M_n(\mathbb{C})/\!/ SL(n) = \mathbb{A}^n$.
 - A is unstable \iff A is nilpotent.
 - A is polystable \iff A is semisimple (is diagonalizable).
 - A is stable \iff A is regular semisimple (has distinct eigenvalues).
 - $B \in \overline{SL(n) \cdot A} \iff$ The Jordan form of *B* is obtained from that of *A* by removing some off-diagonal 1s.
- This illustrates the main properties of closures of orbits.
 - For any w, $\overline{G \cdot w}$ is a finite union of other orbits $G \cdot w'$.
 - If $G \cdot w' \subset \overline{G \cdot w}$, then $\dim(G \cdot w') < \dim(G \cdot w)$ and $\dim(G_{w'}) > \dim(G_w)$.
 - **G** $\overline{G \cdot w}$ will contain a unique orbit $G \cdot w'$ of *minimal* dimension which is closed.
 - But the closures of several orbits can contain the same closed orbit.

Properties of the quotient map

- A categorical quotient $\phi : W \to X$ is a *G*-equivariant map that has a universal initial property with respect to such maps.
- Such a quotient is good if:
 - It is constant on orbits, surjective and affine.
 - Locally over *X*, it is given by values of invariants.
 - Closed *G*-invariant subsets of *W* have closed images.
 - Disjoint closed *G*-invariant subsets of *W* have disjoint images.
- A quotient is geometric if every fiber of ϕ is a single *G*-orbit (or, more formally, if $W \times_X W$ is isomorphic to the image of the map $(g, w) \xrightarrow{(\alpha, id)} (g \cdot w, w)$).
- The preceding discussion shows that:
 - For *G* reductive, $\pi : W \to W /\!\!/ G$ is a good categorical quotient.
 - This quotient is only geometric over the stable locus *W*^s.
 - Remark: If G is not reductive but S^G is finitely generated, then we get a categorical quotient, but, as the \mathbb{G}_a examples above show, not necessarily a good one.

Analysis of one-parameter subgroups

View an action $\mathbb{G}_m \curvearrowright W$ as a 1-ps, i.e. a homomorphism $\lambda : \mathbb{G}_m \to G$ in $\Lambda(G)$.

- The irreducibles of \mathbb{G}_m are characters indexed by integers.
- Decompose $W = \bigoplus_{i \in \mathbb{Z}} W_i$ where $t \cdot w = t^i w$ for $w \in W_i$.

• Likewise, if
$$w \in W$$
, $w = \sum_{i \in \mathbb{Z}} w_i$.

- The state S(W) [S(w)] is the set of weights: those *i* s.t. $W_i \neq \{\mathbf{o}\}$ [$w_i \neq \mathbf{o}$].
- As $t \to 0 [\infty]$, $t \cdot w \to w_0$ if min $S_w \ge 0 [\max S_w \le 0]$ (and, if not, has no limit).

If $G \cap W$ and $\lambda \in \Lambda(G)$, we set $\mu(w, \lambda) = \min S_{\lambda}(w)$ —the least *w*-weight.

We can translate the discussion above as:

- *w* is unstable \leftarrow For some λ , $\mu(w, \lambda) > 0$.
- *w* is semistable \implies For every λ , $\mu(w, \lambda) \leq 0$.
- *w* is polystable \implies For every λ not fixing *w*, $\mu(w, \lambda) < 0$.
 - *w* is stable \implies For every non-trivial λ , $\mu(w, \lambda) < 0$
- Stable means that every λ has weights of *both* signs (consider λ^{-1}).
- Warning: There is a large Little-Endian school that uses $-\mu$.

Analysis of one-parameter subgroups

View an action $\mathbb{G}_m \curvearrowright W$ as a 1-ps, i.e. a homomorphism $\lambda : \mathbb{G}_m \to G$ in $\Lambda(G)$.

- The irreducibles of \mathbb{G}_m are characters indexed by integers.
- Decompose $W = \bigoplus_{i \in \mathbb{Z}} W_i$ where $t \cdot w = t^i w$ for $w \in W_i$.

• Likewise, if
$$w \in W$$
, $w = \sum_{i \in \mathbb{Z}} w_i$.

- The state S(W) [S(w)] is the set of weights: those *i* s.t. $W_i \neq \{\mathbf{o}\}$ [$w_i \neq \mathbf{o}$].
- As $t \to 0 [\infty]$, $t \cdot w \to w_0$ if min $S_w \ge 0 [\max S_w \le 0]$ (and, if not, has no limit).

If $G \cap W$ and $\lambda \in \Lambda(G)$, we set $\mu(w, \lambda) = \min S_{\lambda}(w)$ —the least *w*-weight.

Hilbert-Mumford Numerical Criterion

w is unstable \iff For some λ , $\mu(w, \lambda) > 0$.

- *w* is semistable \iff For every λ , $\mu(w, \lambda) \leq 0$.
- *w* is polystable \iff For every λ not fixing *w*, $\mu(w, \lambda) < 0$.
 - *w* is stable \iff For every non-trivial λ , $\mu(w, \lambda) < 0$

Proof is based on the Cartan-Iwahori-Matsumoto decomposition.

Example: Binary quantics

- Consider SL(2) $\frown W = \text{Sym}^d(C^2)^{\vee}$.
- Up to powers and change of coordinates, we can assume $\lambda(t) = \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$.
- Then λ acts by $t^i t^{-(d-i)} = t^{2i-d}$ on the monomial $x^i y^{d-i}$.
- If $P(x, y) = \sum_{i=0}^{d} a_i x^i y^{d-i}$, $\mu(P, \lambda) > [\geq] 0 \iff a_i = 0$ whenever $2i < [\leq] d$.
- Geometrically, this means (0, 1) is a root of *P* of multiplicity > $[\ge] \frac{d}{2}$.
- *P* is stable [semistable] \iff No root has multiplicity at least [more than] $\frac{d}{2}$.
- The closure of the orbit of a polynomial with a root of multiplicity more than $\frac{d}{2}$ contains the origin.
- The closed orbit in the closure of the orbit of any polynomial with a root of multiplicity exactly $\frac{d}{2}$ is that of $(xy)^{\frac{d}{2}}$.
- Remark: To uniformize notation when taking λ in SL(V), it is convenient (if non-canonical), to pick coordinates that v_i s.t. $\lambda(t) = \text{diag}(\ldots, t^{\lambda_i}v_i, \ldots)$ allowing repeated weights λ_i .

Analysis of torus actions

• Consider an action $T := \mathbb{G}_m^r \frown W$.

- Again, we decompose $W = \bigoplus_{\chi \in \mathbf{X}(T)} W_{\chi}$ where $t \cdot w = \chi(t)w$ for $w \in W_{\chi}$, but now the character group $\mathbf{X}(T)$ is indexed by \mathbb{Z}^{r} .
- If $t = (t_1, ..., t_r)$ and $z = (z_1, ..., z_r)$, then $\chi_z(t) = \prod_{i=1}^r t_i^{z_i}$.
- The state $S_T(W)$ [$S_T(w)$] is now a set of characters: those χ s.t. $W_{\chi} \neq \{\mathbf{o}\} [w_{\chi} \neq \mathbf{o}].$
- Define the state polytope $\mathcal{P}_T(w)$ to be the convex hull of $\mathcal{S}_T(w)$ in $\mathbf{X}(T) \otimes \mathbb{R}$.
- Given a 1-ps $\lambda : \mathbb{G}_m \to T$ and a character $\chi : T \to \mathbb{G}_m$, we get a character $\chi \circ \lambda$ of \mathbb{G}^m which we can write $t \to t^{\langle \lambda, \chi \rangle}$.
- This defines a non-degenerate bilinear pairing $\langle, \rangle : \Lambda(T) \times \mathbf{X}(T) \rightarrow \mathbb{Z}$.
- Using the standard basis of X(T), we can identify $\Lambda(T)$ and X(T) and choose compatible inner products on them.
- Then $\mu(w, \lambda) = \min\{\langle \lambda, \chi \rangle \mid \chi \in S_T(w)\}.$
- By Farkas' Lemma, we can restate the Numerical Criterion as:

w is *T*-semistable [*T*-stable] $\iff \chi_{\mathbf{o}} \in \mathcal{P}_T(w) [\chi_{\mathbf{o}} \in \mathcal{P}_T(w)^{\circ}]$

Lengths and parabolic subgroups for 1-ps's

- If w is T-unstable, then we can single out a "worst" 1-ps λ .
 - Let $\|\lambda\| := \left(\sum_i \lambda_i^2\right)^{1/2}$ and "normalize" by setting $\hat{\mu}(w, \lambda) := \frac{\mu(w, \lambda)}{\|\lambda\|}$.
 - Note that $\mu(w, \lambda^k) = k\mu(w, \lambda)$ but $\hat{\mu}(w, \lambda^k) = \hat{\mu}(w, \lambda)$.
 - There will be a unique shortest (rational) vector χ_w in $\mathcal{P}_T(w)$.
 - The line dual to this χ contains all λ maximizing $\hat{\mu}(w, \lambda)$ and we pick a primitive integral element.
- If we take any $\|\cdot\|$ invariant under the Weyl group of G w.r.t. T:
 - Get a metric on $\Lambda(G)$ for which $||g\lambda g^{-1}|| = ||\lambda||$.
 - For *SL*(*n*) (or other semisimple *G*) there is a canonical choice, $\operatorname{Trace}\left(\operatorname{ad}(\lambda^* \frac{d}{dt})^2\right)$.
- Associate to λ the parabolic subgroup $P(\lambda)$
 - $P(\lambda) = \{p \in G \mid \lim_{t \to 0} \lambda(t)p\lambda(t)^{-1} \text{ exists in } G\}$ —such limits centralize λ .
 - For SL(*n*), choose a filtration $F(\lambda)$: $\mathbb{C}^n = V_0 \supset V_1 \supset \cdots \supset V_{k-1} \supset V_K = \{\mathbf{o}\}$ with λ acting on V_{i-1}/V_i by t^{λ_i} and the λ_i decreasing. Then $P(\lambda)$ consists of those *g* preserving $F(\lambda)$.
 - In general, $\hat{\mu}(g \cdot w, g\lambda g^- 1) = \hat{\mu}(w, \lambda)$ but $\hat{\mu}(p \cdot w, \lambda) = \hat{\mu}(w, \lambda)$

Worst one-parameter subgroups for unstable w

Kempf-Rousseau Theorem

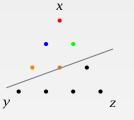
Let $G \cap W$, w be a G-unstable point and $\|\cdot\|$ be an invariant norm on $\Lambda(G)$. We say that λ is w-worst if $\hat{\mu}(w, \lambda) \ge \hat{\mu}(w, \lambda')$ for any $\lambda' \in \Lambda(G)$.

- The set of *w*-worst λ is non-empty.
- There is a parabolic subgroup P_w such that any worst λ has $P(\lambda) = P_w$.
- The indivisible worst λ form a single P_w conjugacy class.
- $\bullet G_w \subset P_w.$
- The last statement is useful for G semisimple when G_w is "big":
 - If G_w does not lie in any proper parabolic—e.g., if G_w acts irreducibly on W—then w must be semistable.
 - This applies to Chow and Hilbert points of homogeneous spaces and of very ample models of abelian varieties.
 - If W is a multiplicity free G_w -representation and T is chosen compatibly, then T-semistability for w implies G-semistability.

Example: Plane cubics — $SL(3) \cap W := Sym^3(\mathbb{C}^3)^{\vee}$

- Fix a torus $T \subset SL(3)$ —that is, coordinates (x, y, z).
- Exponents of degree 3 monomials $x^i y^j z^k$ index the character decomposition $W = \oplus W_{\chi}$ barycentrically (i.e. modulo i + j + k = 3).
- Monomials with non-zero coefficient in w-equation of C-give $S_T(w)$.
- Take $\lambda(t) = \text{diag}(t^a, t^b, t^c)$ with a + b + c = 0: gray line is (-5, 1, 4).

Vanishing of the indicated monomials means:



- P := (1, 0, 0) lies on C.
- z = 0 is tangent at P.
- C has a double point at P,
 - z = 0 is tangent to a branch of C at P.
- ••• Tangent cone to *C* at *P* is $z^2 = 0$.
- Upshot:

•

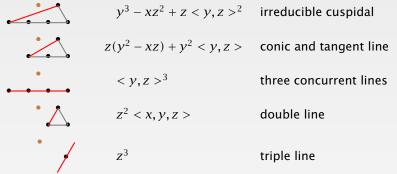
Smooth cubics are stable.

Nodal cubics (even reducible ones) are strictly semistable. Cubics with cusps (or worse, e.g. multiple line) are unstable.

- 3

Example: worst λ 's for unstable plane cubics

- The invariants are generated by the coefficients g_2 and g_3 of the Weierstrass form $y^2 = 4x^3 g_2x g_3$ with $\Delta = g_2^3 27g_3^2$ and $j = \frac{1728g_3^2}{\Delta}$.
- Below the worst 1-ps's of unstable C are shown in red as a supporting line at the shortest point of a generic state polytope S(w).



• Hesselink showed that this picture generalizes, with the maximum of $\hat{\mu}$ producing a stratification of the unstable locus or nullcone.

(D) (A) (A) (A) (A)

Length functions on orbits and moment maps

- Fix $G \cap W$, a maximal compact $K \subset G$ preserving a hermitian norm $\|\cdot\|$
- For $w \in W$, define $p_w : G \to \mathbb{R}$ by $p_w(g) = \|g \cdot w\|^2$.

Kempf-Ness Theorem

- Any critical point of p_w is a point where it attains its minimum value.
- The function p_w attains its minimum value if an only if $G \cdot w$ is closed. If so:
 - **This minimum is taken is a single** $K G_W$ -coset M_W .
 - **p_w** has strictly positive second partials in all directions not tangent to M_w .
- The induced function \hat{p}_w on $K \setminus G$ is a Morse function with a unique minimum if and only if w is stable.
- We pass by, but shall not enter, the door to the symplectic wing here.
 - The moment map $m : \mathbb{P}(W) \to i \mathbb{k}^{\vee}$ is defined by $\frac{1}{\|w\|^2} d_e \|g \cdot w\|^2$ so critical points of p_w are zeros of m.
 - Ness and Kirwan study the gradient flow of *m* on the unstable or nullcone and recover Hesselink's stratification.

Beyond the linear case

- Linearizing actions of reductive groups on affine varieties is straightforward:
 - Any action $G \cap X$ is rational: i.e., if $V_f := \operatorname{span}\{g \cdot f\}$, then $\dim(V_f) < \infty$.
 - Get an equivariant embedding of $X \subset W$ by taking W to be a sum over generators of V_f .
 - Use linear reductivity to check that $(S/I(X))^G = S^G/(I(X) \cap S^G)$.
 - Thus, the quotient $\pi : W \to W /\!\!/ G$ restricts to a quotient $X \to X /\!\!/ G$ inheriting many properties, esp. that $X /\!\!/ G$ is normal if X is.

Can we imitate this for $G \cap X$ with X (quasi-) projective?

■ A *G*-linearization is a choice of a line bundle *L* and a lift of the *G* action to *L* fixing the 0 section: denote the set of such lifts by Pic^{*G*}(*X*).

- The action condition amounts to an isomorphism $pr_2^*(L) \rightarrow \hat{\alpha}^*(L)$.
- This yields an an exact sequence $0 \to K \to \operatorname{Pic}^{G}(X) \xrightarrow{\phi} \operatorname{Pic}(X) \to L \to 0$.
- When X is normal and G is irreducible $L \cong Pic(G)$ and when X is connected and proper $K \cong X(G)$.
- For G = SL(n) both these groups vanish, so any L has a unique linearization.

Quotients coming from linearizations of ample L

- Fix an action $G \cap X$ with X normal and projective.
- Fixing an ample line bundle *L* and a linearization on *L* yields a good categorical quotient.
 - Get an action $G \cap R := \bigoplus_{d \ge 0} (H^0(X, L^{\otimes d})).$
 - Define $X/\!/_L G := \operatorname{Proj}(R^G)$ —this is a f.g. graded ring because R(L) is.
 - Replacing L by a power if necessary, R^G is generated elements s_j of degree 1.
 - So $X/\!\!/_L G \subset \mathbb{P}(\mathbb{C}^n)$ with ideal $I = \ker(\mathbb{C}[t_i, \ldots, t_n] \to \mathbb{R}^G)$ by sending $t_j \mapsto s_j$.
 - This covers the *L*-semistable locus with affine opens U_j (where $s_j \neq 0$) whose good categorical quotients are the corresponding $(X//G)_j$ (where $t_j \neq 0$).
- Passing by another door we will not open, note that $X/\!/_L G$ has a natural ample line bundle, the $\mathcal{O}(1)$ coming from its definition as a Proj.
- Under mild hypotheses, some power of a *G*-invariant line bundle on *X* will descend to a bundle on $X//_L G$.
- The Grothendieck-Riemann-Roch formula often provides an effective way to relate the two Pic's.

Hilbert points

- A subvariety $Y^r \subset \mathbb{P}(V)$ is a map $H^0(\mathbb{P}(V), \mathcal{O}_{\mathbb{P}(V)}(1)) \cong V^{\vee} \to H^0(Y, \mathcal{O}_Y(1)).$
- If we fix the degree *r* Hilbert polynomial $P(m) := h^0(Y, \mathcal{O}_Y(m))$ for $m \gg 0$, we can choose anb *M* such that for m > M,

 $0 \to I_m(Y) \to \operatorname{Sym}^m(V^{\vee}) = H^0(\mathbb{P}(V), \mathcal{O}_{\mathbb{P}(V)}(m)) \xrightarrow{\operatorname{res}_Y} H^0(Y, \mathcal{O}_Y(m)) \to 0$ is exact, and $I_m(Y)$ cuts out Y.

- Thus setting $W := \bigwedge^{P(m)} \operatorname{Sym}^m(V^{\vee}) \xrightarrow{\bigwedge^{P(m)} (\operatorname{res}_{\chi})} \bigwedge^{P(m)} H^0(Y, \mathcal{O}_Y(m)) \cong \mathbb{C}$, we get the *m*th-Hilbert point $[Y]_m \in \mathbb{H}_P(V) \subset \operatorname{Grass}(P(M), \operatorname{Sym}^m(V^{\vee})) \subset \mathbb{P}(W)$
- This is the value "at $Y \subset \mathbb{P}(V)$ " of a closed embedding of the Hilbert scheme $\mathbb{H}_P(V)$ which represents the functor of "flat families of subschemes of $\mathbb{P}(V)$ with Hilbert polynomial P".
- The representation of SL(V) on W naturally linearizes the bundle \mathbb{L}_m on \mathbb{H}_p obtained by pulling back $\mathcal{O}_{\mathbb{P}(W)}(1)$.
- The SL(V) stability of $[Y]_m$ depends on the embedding in $\mathbb{P}(V)$ —that is, on L not just Y. It also depends on m though not, in practice, if we take $m \gg 0$.

The Numerical Criterion for Hilbert points

- Given a non-trivial 1-ps λ of SL(V), choose coordinates v_i on V w.r.t. which $\lambda(t) = \text{diag}(t^{\lambda_1}, \dots, t^{\lambda_n})$. NB: my dimensions here are affine.
- We think of λ as a choice of a weighted basis $B = (v_i, \lambda_i)$. Likewise:
 - Basis of degree *m* monomials $M = \prod_i v_i^{m_i}$ with weights $\lambda_M = \sum_i m_i \lambda_i$ on $\operatorname{Sym}^m(V^{\vee}).$
 - **Basis of Plücker coordinates** Z_I obtained by wedging any set I of P(m) distinct monomials with weights $\lambda_{Z_I} := \sum_{M \in I} \lambda_M$ on W.
 - $Z_I([Y]_m) \neq 0 \iff$ The set {res_Y(M) | $M \in I$ } is linearly independent in $H^0(Y, \mathcal{O}_Y(m))$. These weights of are the λ -weights of $[Y]_m$.
 - We'll think of Z_I as a monomial basis B_m of $H^0(Y, \mathcal{O}_Y(m))$.

Numerical Criterion for Hilbert Points: First Version

 $[Y]_m$ is Hilbert stable [semi-stable] \iff For every weighted basis $B := (v_i, \lambda_i)$ of V with $\sum_i \lambda_i = 0$, there is a monomial basis B_m of $H^0(Y, \mathcal{O}_Y(m))$ of negative [non-positive] weight. I.e., the least such weight is $\mu([Y]_m, \lambda)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The Hilbert scheme

Example: The Steiner surface

- The Steiner surface $S \subset \mathbb{P}^4$ can be described as
 - the projection of the Veronese surface from a point on it.
 - the image of ruled surface obtained by projectivizing the bundle $E := \mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(1)$ with respect to a linear series $\mathcal{O}(1) + f$ where f is a fiber.
 - the blowup of \mathbb{P}^2 at p = (0, 0, 1) embedded by quadrics passing through p.
- The last viewpoint is perfect for an analysis of stability because it gives us a basis $B_1 = \{x^2, xy, y^2, xz, yz\}$ of $H^0(S, \mathcal{O}_S(1))$.
- If we assign z weight -4 and x and y weight 1, then the basis B_1 has weights (2, 2, 2, -3, -3) so corresponds to a 1-ps λ .
- Any degree *m* monomial in the elements of B_1 can be viewed as a monomial of total degree 2m in x, y and z having degree at most m in z.
- The weight of a monomial in B_m of degree j in z is (2m j) 4j = 2m 5jregardless of how it arises from B_1 and there are 2m - j + 1 such monomials.
- Thus, any (or the only) B_m has weight $\sum_{i=0}^m (2m j + 1)(2m 5j)$ which a little algebra gives as $\frac{1}{2}(m-1)m(m+1)$, so $[S_m]$ is λ -unstable for all $m \ge 2$.

A Better Numerical Criterion for Hilbert points

- Bad news: we can (almost) never describe monomials this explicitly.
- Good news: we don't need to; we only used the weight filtration on them.
 - Order *B* so the weights λ_i decrease, set $V_i = \text{span}\{v_j \mid j > i\}$ to get

$$V = V_0 \supset V_1 \supset \dots \supset V_{n-1} \supset V_n = \{\mathbf{o}\}$$
$$\lambda_1 \geq \lambda_2 \dots \lambda_{n-1} \geq \lambda_n$$

- Now simply write *B* for the data of this weight filtration, but note that the flag underlying this filtration is really just that of $P(\lambda)$.
- We'll get an induced weight filtration on $H^0(Y, \mathcal{O}_Y(m))$ —a polynomial's weight is the largest weight of a monomial appearing in it. Now *any* basis B_m has a weight $\lambda(B_m)$.
- Define $w_B(m) := \min{\{\lambda(B_m)\}}$ —always realized by some monomial basis.
- One advantage: we can shift and scale weights. For this, let $\alpha := \frac{1}{n} \sum_{i} \lambda_{i}$. Then $\mu([Y]_{m}, B) = w_{B}(m) - mP(m)\alpha$, so

Numerical Criterion for Hilbert Points: Second Version $[Y]_m$ is Hilbert stable [semi-stable] \iff For all B, $w_B(m) - mP(m)\alpha < [\le]0$.

Interlude: asymptotic-in-*d* stability

- For $a \ge 2$, set n = (2a 1)(g 1), $V = \mathbb{C}^n$ and P(m) = (2am 1)(g 1).
- Then $\mathbb{H}_P(V)$ contains *a*-canonical models of smooth curves of genus *g*.
- Check that the locus $\mathcal{K} \subset \mathbb{H}_P(V)$ of nodal, connected $C \in \mathbb{P}(V)$ such that $\mathcal{O}_C(1) \cong \omega_C^{\otimes a}$ is smooth of (the expected) dimension $(3g 3) + (n^2 1)$.
- As we'll see in a moment, Hilbert points of smooth curves in \mathbb{H}_P are stable.
- \blacksquare Deformation theory of nodes says such points are dense in $\mathcal{K}.$
- Hence, $\overline{\mathcal{K}}/\!\!/ \operatorname{SL}(V)$ contains M_g as a dense open.

Question: What happens at the boundary of $\overline{\mathcal{K}} /\!\!/ \operatorname{SL}(V)$?

- Fact: as $d \to \infty$, stable plane curves of degree d carry singularities with the multiplicities also tending to infinity
- For many years, this led people—even Mumford—to think that the answer above was "all hell breaks loose". In fact, for $a \ge 5$, $\overline{\mathcal{K}}/\!/ \mathrm{SL}(V)$ is \overline{M}_g
- Any smoothable Hilbert stable curve of genus g embedded by a complete linear series of degree $d \gg g$ is nodal.

Example: Triple Points

- Consider a reduced, irreducible curve *C* of arithmetic genus $g \ge 2$ with an ordinary triple point *p*.
- Embed C in $\mathbb{P}(V)$ by a complete linear series L of degree $d \ge 3(g-1)$.
- Let π : $\widetilde{C} \to C$ be the normalization, $Q = q_1 + q_2 + q_3$ be the sum of the preimages of p on \widetilde{C} and $\widetilde{L} = \pi^*(L)$.
- Choose *B* s.t. $v_i(p) = 0$ for $i \ge 2$ and set $\lambda_1 = 1$ and $\lambda_i = 0$ for $i \ge 0$.
- Claim: For $1 \le j < m$, we can identify the "weight at most w j" subspace U_j of $H^0(C, L^{\otimes m})$ with $H^0(\widetilde{C}, \widetilde{L}^{\otimes m}(-jQ))$ so $\operatorname{codim}(U_j) = 3j$.
- Any monomial of this weight contains *j* factors vanishing at *p*.
- Here we can no longer easily write down a basis of monomials, but we can describe the weight filtration geometrically.
- A bit of calculation gives $w_B(m) mP(m)\alpha = \left(\frac{3}{2} \frac{d}{n}\right)m^2 + \left(\frac{3}{2} + \frac{g-1}{n}\right)m$.

• Since n = d - (g - 1) and $d \ge 3(g - 1)$, $\frac{d}{n} \le \frac{3}{2}$ so *B* is destabilizing.

Example: Elliptic tails

Let $C = C' \cup E \subset P^{n-1}$ where g(C') = g - 1 and g(E) = 1, $C' \cap E = p$ a node.

- $\mathcal{O}_{C}(1)$: very ample, non-special, degree d so n = d g + 1, $\mathcal{O}_{C}(1)|_{E} = \mathcal{O}_{E}(ap)$.
- Riemann-Roch then says there is a weighted basis B of the form

 $v_1 \quad v_2 \quad \dots \quad v_{\ell-1} \quad v_\ell \quad v_{\ell+1} \quad \dots \quad v_{n-1} \quad v_n$ $a \quad a \quad \dots \quad a \quad a \quad a \quad a - 1 \quad \dots \quad 2 \quad 0$

with $v_i = 0$ on E for $i < \ell$, $v_{\ell+j} = 0$ on C' and $\lambda_j + \operatorname{ord}_p(v_{l+j}) = a$ for j > 0.

- Claim: the "weight at most w" subspace of $H^0(C, \mathcal{O}_C(m))$ is exactly $H^0((\mathcal{O}_C(m)|_E(-(ma-w)p))$ for w = 0 and for $2 \le w \le ma 1$.
- After some calculation, this yields $w_B(m) - mP(m)\alpha = \frac{1}{2n}(m-1)(m((g-1)a^2 - d(a-2)) + 1).$
- **Taking** a = 4, we get instability when $\frac{d}{g-1} \le \frac{8}{7}$.
- Elliptic tails destabilize *a*-canonical curves for $a \le 4$ (but not for $a \ge 5$).

If
$$\mathcal{O}_{\mathcal{C}}(1)|_{E} = \mathcal{O}_{E}(4q)$$
 for $q \neq p$, unstable range is $\frac{d}{g-1} \leq \frac{7}{6}$.

• As $\frac{d}{g}$ gets smaller, stability depends just on extrinsic geometry but in increasingly subtle ways on the embedding.

Asymptotic-in-m stability

Instability is geometry, stability is combinatorics.

- In our examples, geometry suggests the choice of 1-ps λ or weighted basis B.
- We described the weight filtration on $H^0(Y, \mathcal{O}_Y(m))$ geometrically in terms of base loci with multiplicity and computed dimensions exactly.
- A general λ or B has no such "exact" geometry: all we can hope to do is to "estimate" the geometry and use this to estimate $w_B(m)$.
 - If dim(X) = r, then by equivariant Riemann-Roch, for any B and $m \gg 0$, $w_{B}(m)$ is a numerical polynomial of degree r + 1—a sort of graded Hilbert polynomial:

$$w_B(m) := \sum_{j=0}^{r+1} e_i(B)m^i = \frac{\epsilon(B)m^{r+1}}{(r+1)!} + \mathcal{O}(m^r) \text{ with } \epsilon(B) \text{ integral.}$$

Likewise $P(m) = \frac{dm^r}{r!} + O(m^{r-1})$. Hence:

Asymptotic-in-m Numerical Criterion for Hilbert Points

 $[Y]_m$ is Hilbert stable for $m \gg 0$ if, for all B, $\epsilon(B) < d(r+1)\alpha$.

For the Chow point $\langle Y \rangle$, $\mu(\langle Y \rangle, \lambda_B) = \epsilon(B)$, hence

Chow stable \Rightarrow Hilbert stable \Rightarrow Hilbert semi-stable \Rightarrow Chow semi-stable and the elliptic tail example with r = 4 shows that the converses are false.

K-stability and other asymptotic-in-L notions

- Let's set M = ms with $m \gg s \gg 0$, suppose that $\mathcal{O}_X(1) = L^{\otimes s}$ and write $w_{s,M} = w_B(M)sP(s) w_B(s)MP(M)$.
- We view this as a numerical function associated to a 1-ps λ of $SL(H^0(X, L^{\otimes s}))$, usually called a *test configuration* of (X, L) in this context.

• We can expand $w_{s,M}$ twice to get $w_{s,M} = \sum_{j=0}^{N+1} e_j(s)M^j = \sum_{j=0}^{N+1} \left(\sum_{\ell=0}^{N+1} e_{j,\ell}s^\ell\right)M^j$.

- Our normalization ensures that $e_{r+1,r+1} = 0$ and we define the Donaldson-Futaki invariant to be $DF(\lambda) = -e_{r,r+1}$.
- The pair (X, L) is *K*-stable [semistabile] if $DF(\lambda) \ge [>]0$ for all test configurations of $(X, L^{\otimes s})$ for all $s \gg 0$.
- Likewise, we say (X, L) is asymptotically Hilbert or Chow (semi)stable if $(X, L^{\otimes s})$ is Hilbert or Chow (semi)-stable for all $s \gg 0$.
- The various notions so defined for a pair (X, L) are related by

Asymptotically Chow stable \Rightarrow Asymptotically Hilbert stable \Rightarrow

Asymptotically Hilbert semi-stable \Rightarrow Asymptotically Chow semi-stable \Rightarrow

K-semistable.

Estimating the weight filtration

- Given subspaces $U_j \subset H^0(Y, \mathcal{O}_Y(m))$ with $U_j \subset U_k$ if $j \le k$, $\dim(U_j) \ge d_j$ and all sections in U_j of weight at most w_j , we get an estimate $w_B(m) < \sum_i w_i (d_i - d_{i-1}) = \sum_i d_i (w_i - w_{i-1})$
- Gieseker applies this with m = m'(p+1), taking and the *U*'s of the form $\operatorname{Sym}^{m'}\left(V \cdot \operatorname{Sym}^{(p-\ell)}(V_{j_k}) \cdot \operatorname{Sym}^{\ell}(V_{j_{(k+1)}})\right)$

where $0 = j_0 < j_1 < \cdots < j_h = n$ —in effect, we coarsen the filtration on V. Let:

- Let L_j be the line bundle on Y generated by $|V_j|$, $d_j := \deg(L_j)$ and $e_j = d d_j$.
- Projection of Y onto $\mathbb{P}(V_j)$ has image of degree d_j , base locus of degree e_j .

$$\blacksquare M_{k,\ell} = \mathcal{O}_Y(1) \otimes (L_{j_k})^{(p-\ell)} \otimes (L_{j_{k+1}})^{\ell}.$$

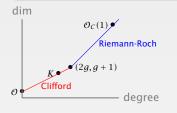
- The blue product is a very ample, base point free sub-linear series of $M_{k,\ell}$ so for m' >> 0, each U will be all of $H^0(Y, M_{k,\ell}^{\otimes m'})$.
- Using Riemann-Roch to estimate dimensions gives an estimate for $\epsilon(B)$ that I give only for curves (in general, all the mixed intersection numbers of the L_j appear).

Stability of smooth curves

Gieseker's Criterion for Hilbert Points of Curves

 $[C]_m$ is Hilbert stable for $m \gg 0$ if, for any B

$$\epsilon(B) = \max_{\lambda_1 \ge \dots \ge \lambda_k = 0 \atop \sum_{j=1}^{N} \lambda_j = 1} \left(\min_{1 = j_0 < \dots < j_h = N} \left(\sum_{k=0}^{h-1} (e_{j_k} + e_{j_{k+1}}) (\lambda_{j_k} - \lambda_{j_{k+1}}) \right) \right) < 2 \frac{d}{n}$$



- All the points (*d_j*, *j*) associated to the *V_j* lie below the Riemann-Roch and Clifford lines.
- This gives universal bounds on the e_j and, in terms of these, we are computing the area of the lower convex envelope of the (e_j, λ_j).

Asymptotic Stability of Smooth Curves

For $g \ge 2$ and $d \ge 2g + 1$, there is an $M_{g,d}$ such that any smooth curve C of genus g embedded by a complete linear series of degree at least d has stable m^{th} Hilbert points $[C]_m$ for all $m \ge M_{g,d}$.

Truth in advertising

- Disclaimer: the story of smooth curves is totally misleading.
 - Gieseker's motivation was to prove asymptotic stability of pluricanonical models of surfaces of general type. His proof is a tar-baby.
 - His approximate weight filtrations on $H^0(C, \mathcal{O}_C(m))$ are not sharp enough to prove asymptotic stability of nodal curves, or even smooth pointed curves.
 - The span of *all* the *U*'s of fixed weight can be much larger than any one.
 - Using these, get criteria involving a sum, indexed by points *p* of *C*, of Gieseker-like sums with *e_j* is replaced by the multiplicity of *p* in Bs(*V_j*).
 - Using this approach, Li and Wang prove stability of nodal curves and Swinarski of pointed smooth curves, in both cases, only for $d \gg g$.
 - I know of no attempts to do this for varieties of higher dimension.
- You're here today because a very different approach suggested by Mumford and popularized by Yau *does* work: *Y* is Chow stable if and only if:

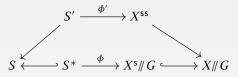
(Luo) *Y* is Chow stable
$$\iff$$
 For some $g \in SL(V)$, $g \cdot Y$ is balanced:

$$\frac{1}{\operatorname{vol}(Y)} \int_{g \cdot Y} \left(\frac{v_i \cdot \overline{v}_j}{|v_1|^2 + \dots + |v_n|^2} \right) \omega_{FS}^r = \frac{1}{n} \delta_{ij}.$$

Ian Morrison (Fordham University)

Semistable replacement

- The *a*-canonical quotients $\overline{\mathcal{K}}/\!\!/ \operatorname{SL}(V)$ for *small a* play a key role in the log minimal model program for \overline{M}_g .
- But for such *a*, we can only check the Numerical Criterion for smooth *X*.
- The substitute uses a procedure called semistable replacement that works quite generally when we have an action on a projective *X*.
- Fix a DVR *R* with quotient field *K* and residue field *k* and set S = Spec(R) and $S^* = \text{Spec}(K)$, where o = Spec(k).
- Given a map $\phi : S^* \to X^s /\!\!/ G$, then after a finite base change $S' \to S$ ramified only at o, there exists a lift $\phi' : S' \to X^{ss}$ of f as in the diagram:



with the orbit of $\phi'(o)$ closed.

Constructing compact quotients

- Given a singular *C* with $[C]_m \in \overline{\mathcal{K}}$, we smooth it getting a family whose general fiber has stable Hilbert point.
- Base change gives family with projectively equivalent general fiber and *m*-semistable special fiber.
- Moreover, the universal property of the Hilbert scheme gives us line bundles on the two families that are both generically *a*-canonical.
- If we can extend this isomorphism of line bundles over the closed fiber, then $[C]_m$ must be the *a*-canonical Hilbert point of $[C']_m$.
- Gieseker does by proving that only abstractly stable curves have m-semistable a^{th} Hilbert points for $a \ge 5$ and applying semistable reduction.
- For reducible curves, need to rule out possibility of twisting by components of the special fiber: prove a "balanced degree inequality".
- Extended by Schubert (a = 3, 4), Hassett and Hyeon (a = 2) to construct log canonical models of \overline{M}_g as moduli spaces for variant moduli problems.
- Open problem: next stages require doing this for fixed values of *m*.

References

General surveys of invariant—especially, geometric—invariant theory.

- [1] Igor Dolgachev, *Lectures on invariant theory*, London Mathematical Society Lecture Note Series, vol. 296, Cambridge University Press, Cambridge, 2003. MR2004511 (2004g:14051) A gentle introduction.
- [2] D. Mumford, J. Fogarty, and F. Kirwan, *Geometric invariant theory*, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR1304906 (95m:14012) Not the place to start, but one you'll have to visit eventually. This edition contains an 8th chapter that is a nice introduction to moment maps in GIT.

Worst one-parameter subgroups

[3] George R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299-316, DOI 10.2307/1971168. MR506989 (80c:20057)
 In addition to the analysis of instability, this gives the definitive treatment of the numerical criterion.

Moment maps and the symplectic viewpoint

[4] Chris Woodward, Moment maps and geometric invariant theory (2011), available at http://arxiv.org/abs/0912.1132.

A very complete survey of the Kempf-Ness theorem, Hesselink-Kirwan-Ness stratifications, moment maps and much more.

References

Stability of Hilbert and Chow points

- [5] D. Gieseker, *Global moduli for surfaces of general type*, Invent. Math. 43 (1977), no. 3, 233-282. MR0498596 (58 #16687)
 "The Feit-Thompson of algebraic geometry", David Mumford
- [6] Huazhang Luo, Geometric criterion for Gieseker-Mumford stability of polarized manifolds, J. Differential Geom. 49 (1998), no. 3, 577-599. MR1669716 (2001b:32035)
 Stability of Hilbert points via a balanced metric.
- [7] Ian Morrison, *GIT constructions of moduli spaces of stable curves and maps*, Surveys in differential geometry. Vol. XIV. Geometry of Riemann surfaces and their moduli spaces, Surv. Differ. Geom., vol. 14, Int. Press, Somerville, MA, 2009, pp. 315–369. MR2655332 (2011m:14077)

Focuses on curves with lots of details.

[8] David Mumford, Stability of projective varieties, Enseignement Math. (2) 23 (1977), no. 1-2, 39–110. MR0450272 (56 #8568)
 Ctill a grant of the basis idea about Channed Uilbort tability. constitution

Still a great reference many of the basic ideas about Chow and Hilbert stability, especially a algebraic geometer's view of test configurations