Real and Complex Cubic Curves

John Milnor

Stony Brook University APRIL 29, 2016 Dynamics Seminar Work with Araceli Bonifant: arXiv:math/1603.09018

It is possible to write endlessly on elliptic curves. (This is not a threat.)

Serge Lang

1704: Enumeratio Linearum Terti Ordinis

Newton corrected

A Rich Literature

During the next 140 years cubic curves (and elliptic integrals) were studied by many mathematicians:

Colin Maclaurin, Jean le Rond d'Alembert, Leonhard Euler, Adrien-Marie Legendre, Niels Henrik Abel, Carl Gustav Jacobi

1844: Otto Hesse

$$x^{3} + y^{3} + z^{3} = 3k xyz$$
.
 $(x, y, z) \mapsto k = \frac{x^{3} + y^{3} + z^{3}}{3 xyz}$

The Hesse Pencil in $\mathbb{P}^2(\mathbb{R})$

(Singular) foliation by curves $\frac{x^3+y^3+z^3}{3xyz} = \text{constant} \in \mathbb{R} \cup \{\infty\}$.

The Hessian determinant of $\Phi(x, y, z)$.

$$\mathcal{H}_{\Phi}(x, y, z) = \det \begin{pmatrix} \Phi_{xx} & \Phi_{xy} & \Phi_{xz} \\ \Phi_{yx} & \Phi_{yy} & \Phi_{yz} \\ \Phi_{zx} & \Phi_{zy} & \Phi_{zz} \end{pmatrix}$$

Theorem. If $C \subset \mathbb{P}^2$ is a smooth curve with defining equation $\Phi(x, y, z) = 0$, then $(x : y : z) \in C$ is a *flex point* if and only if $\mathcal{H}_{\Phi}(x, y, z) = 0$.

It follows (with some work) that:

Every smooth complex cubic curve has exactly nine flex points.

Example:

$$\Phi(x, y, z) = x^3 + y^3 + z^3 , \qquad \mathcal{H}_{\Phi}(x, y, z) = 6^3 x y z .$$

The Fermat Curve in the real affine plane $\{(x : y : 1)\}$:

Projective equivalence

Every nonsingular linear transformation

 $(x, y, z) \mapsto (X, Y, Z)$

of \mathbb{C}^3 induces a *projective automorphism* $(x: y: z) \mapsto (X: Y: Z)$

of the projective plane $\mathbb{P}^2(\mathbb{C})$.

Two algebraic curves C_1 and C_2 in \mathbb{P}^2 are called **projectively equivalent** if there is a projective automorphism of \mathbb{P}^2 which maps one onto the other.

Theorem. Every smooth cubic curve $C \subset \mathbb{P}^2(\mathbb{C})$ is projectively equivalent to one in the Hesse normal form

$$x^3 + y^3 + z^3 = 3 k xyz$$
.

(But *k* is not unique!)

For a flex point: p * p = p.

The additive group structure $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$.

Theorem.

The line between two flex points always intersects $\ensuremath{\mathcal{C}}$ in a third flex point.

Nine flex points and 12 lines between them.

Other Fields.

Let F be any field with

$$\mathbb{Q} \subset F \subset \mathbb{C}$$
.

If the curve C has defining equation $\Phi(x, y, z) = 0$ with coefficients in F, let $C(F) = C \cap \mathbb{P}^2(F)$ be the set of all points $(x : y : z) \in C$ with coordinates $x, y, z \in F$. Then $p, q \in C(F) \implies p * q \in C(F)$.

If $o \in \mathcal{C}(F)$, it follows that $\mathcal{C}(F)$ is a subgroup of \mathcal{C} .

In particular, for any $n \in \mathbb{Z}$ we can define multiplication by n as a map $\mathbf{m}_n : \mathcal{C}(F) \to \mathcal{C}(F)$.

The construction is inductive:

 $\mathbf{m}_{0}(p) = o$, and $\mathbf{m}_{n+1}(p) = \mathbf{m}_{n}(p) + p$.

These maps form a semigroup, with composition:

 $\mathbf{m}_n \circ \mathbf{m}_k = \mathbf{m}_{nk}$, and with $\mathbf{m}_n(p) + \mathbf{m}_k(p) = \mathbf{m}_{n+k}(p)$.

Extending \mathbf{m}_n to a map from \mathbb{P}^2 to itself.

Consider the "foliation" of \mathbb{P}^2 by the curves

$$C_k = \{(x : y : z) ; x^3 + y^3 + z^3 = 3 x y z\}$$

in the Hesse pencil.

Theorem. The various maps $\mathbf{m}_n : \mathcal{C}_k \to \mathcal{C}_k$ fit together to yield a rational map

$$\mathsf{m}_n: \mathbb{P}^2 - - - > \mathbb{P}^2$$
 .

Examples (taking (0:-1:1) as base point).

 $\mathbf{m}_{-2}(x:y:z) = \left(x(y^3-z^3):y(z^3-x^3):z(y^3-x^3)\right)$ (*Desboves*, 1886) $\mathbf{m}_{-1}(x:y:z) = (x:z:y)$ $\mathbf{m}_0(x:y:z) = (0:-1:1)$ $\mathbf{m}_1(x:y:z) = (x:y:z)$ $\mathbf{m}_{2}(x:y:z) = \left(x(y^{3}-z^{3}):z(y^{3}-x^{3}):y(z^{3}-x^{3})\right)$ $\mathbf{m}_{3}(x:y:z) = \left(xyz(x^{6}+y^{6}+z^{6}-x^{3}y^{3}-x^{3}z^{3}-y^{3}z^{3}):\right.$ $(x^{2}v + v^{2}z + z^{2}x)(x^{4}v^{2} + v^{4}z^{2} + z^{4}x^{2} - xv^{2}z^{3} - vz^{2}x^{3} - zx^{2}v^{3})$: $x^{3}y^{6} + y^{3}z^{6} + z^{3}x^{6} - 3x^{3}y^{3}z^{3}$.

Weierstrass Normal Form and the *J*-invariant

Theorem (Nagel 1928). Every smooth cubic curve is projectively equivalent to one in the normal form

$$y^2 = (x - r_1)(x - r_2)(x - r_3)$$
 with $r_1 + r_2 + r_3 = 0$
= $x^3 + s_2 x - s_3$,

where the s_i are elementary symmetric functions.

Furthermore: two such curves are projectively equivalent if and only if they have the same invariant

$$J \;=\; rac{4s_2^3}{4s_2^3+27s_3^2} \;\;\in\; \mathbb{C}\;.$$

Triangles and the J-invariant.

The *J*-invariant characterizes the "shape" of the triangle with vertices r_1 , r_2 , r_3 .

The function $k \rightarrow J$

$$J = rac{k^3(k^3+8)^3}{64(k^3-1)^3}$$
.

Real Cubic Curves

Theorem. Every smooth real cubic curve is real projectively equivalent to a curve C_k in the Hesse normal form

for one and only one real value of k, with $k \neq 1$.

