Real and Complex Cubic Curves

John Milnor

Stony Brook University

April 29, 2016
Dynamics Seminar

Work with Araceli Bonifant: arXiv:math/1603.09018

It is possible to write endlessly on elliptic curves.
(This is not a threat.)
Serge Lang

1704: Enumeratio Linearum Terti Ordinis

Newton corrected

A Rich Literature

During the next 140 years cubic curves (and elliptic integrals) were studied by many mathematicians:

Colin Maclaurin,
Jean le Rond d'Alembert, Leonhard Euler,

Adrien-Marie Legendre,
Niels Henrik Abel, Carl Gustav Jacobi

1844: Otto Hesse

$$
\begin{gathered}
x^{3}+y^{3}+z^{3}=3 k x y z \\
(x, y, z) \mapsto k=\frac{x^{3}+y^{3}+z^{3}}{3 x y z} .
\end{gathered}
$$

The Hesse Pencil in $\mathbb{P}^{2}(\mathbb{R})$

(Singular) foliation by curves $\frac{x^{3}+y^{3}+z^{3}}{3 x y z}=$ constant $\in \mathbb{R} \cup\{\infty\}$.

The Hessian determinant of $\Phi(x, y, z)$.

$$
\mathcal{H}_{\Phi}(x, y, z)=\operatorname{det}\left(\begin{array}{lll}
\Phi_{x x} & \Phi_{x y} & \Phi_{x z} \\
\Phi_{y x} & \Phi_{y y} & \Phi_{y z} \\
\Phi_{z x} & \Phi_{z y} & \Phi_{z z}
\end{array}\right)
$$

Theorem. If $\mathcal{C} \subset \mathbb{P}^{2}$ is a smooth curve with defining equation $\Phi(x, y, z)=0$, then $(x: y: z) \in \mathcal{C}$ is a flex point if and only if $\mathcal{H}_{\Phi}(x, y, z)=0$.

It follows (with some work) that:
Every smooth complex cubic curve has exactly nine flex points.

Example:

$$
\Phi(x, y, z)=x^{3}+y^{3}+z^{3}, \quad \mathcal{H}_{\Phi}(x, y, z)=6^{3} x y z
$$

The Fermat Curve in the real affine plane $\{(x: y: 1)\}$:

Projective equivalence

Every nonsingular linear transformation

$$
(x, y, z) \mapsto(X, Y, Z)
$$

of \mathbb{C}^{3} induces a projective automorphism

$$
(x: y: z) \mapsto(X: Y: Z)
$$

of the projective plane $\mathbb{P}^{2}(\mathbb{C})$.
Two algebraic curves \mathcal{C}_{1} and \mathcal{C}_{2} in \mathbb{P}^{2} are called projectively equivalent if there is a projective automorphism of \mathbb{P}^{2} which maps one onto the other.

Theorem. Every smooth cubic curve $\mathcal{C} \subset \mathbb{P}^{2}(\mathbb{C})$ is projectively equivalent to one in the Hesse normal form

$$
x^{3}+y^{3}+z^{3}=3 k x y z
$$

(But k is not unique!)

The chord-tangent map $\mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$.

For a flex point: $\quad p * p=p$.

The additive group structure $\mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$.

Choose a flex point $o \in \mathcal{C}$ as base point, and set $p+q=(p * q) * o$.

Lemma.

$$
p * q=r \quad \Longleftrightarrow \quad p+q+r=0 .
$$

Note also that $p * O=-p$.

Theorem.

The line between two flex points always intersects \mathcal{C} in a third flex point.

Nine flex points and 12 lines between them.

Other Fields.

Let F be any field with

$$
\mathbb{Q} \subset F \subset \mathbb{C} .
$$

If the curve \mathcal{C} has defining equation $\Phi(x, y, z)=0$ with coefficients in F, let $\mathcal{C}(F)=\mathcal{C} \cap \mathbb{P}^{2}(F)$ be the set of all points $(x: y: z) \in \mathcal{C}$ with coordinates $x, y, z \in F$.
Then $\quad p, q \in \mathcal{C}(F) \quad \Longrightarrow \quad p * q \in \mathcal{C}(F)$.
If $o \in \mathcal{C}(F)$, it follows that $\mathcal{C}(F)$ is a subgroup of \mathcal{C}.
In particular, for any $n \in \mathbb{Z}$ we can define multiplication by n as a map $\quad \mathbf{m}_{n}: \mathcal{C}(F) \rightarrow \mathcal{C}(F)$.

The construction is inductive:

$$
\mathbf{m}_{0}(p)=0, \quad \text { and } \quad \mathbf{m}_{n+1}(p)=\mathbf{m}_{n}(p)+p .
$$

These maps form a semigroup, with composition:

$$
\mathbf{m}_{n} \circ \mathbf{m}_{k}=\mathbf{m}_{n k}, \quad \text { and with } \quad \mathbf{m}_{n}(p)+\mathbf{m}_{k}(p)=\mathbf{m}_{n+k}(p) .
$$

Extending \mathbf{m}_{n} to a map from \mathbb{P}^{2} to itself.

Consider the "foliation" of \mathbb{P}^{2} by the curves

$$
\mathcal{C}_{k}=\left\{(x: y: z) ; x^{3}+y^{3}+z^{3}=3 x y z\right\}
$$

in the Hesse pencil.
Theorem. The various maps $\mathbf{m}_{n}: \mathcal{C}_{k} \rightarrow \mathcal{C}_{k}$ fit together to yield a rational map

$$
\mathbf{m}_{n}: \mathbb{P}^{2}--->\mathbb{P}^{2}
$$

Examples (taking (0:-1:1) as base point).

$$
\begin{aligned}
& \mathbf{m}_{-2}(x: y: z)=\left(x\left(y^{3}-z^{3}\right): y\left(z^{3}-x^{3}\right): z\left(y^{3}-x^{3}\right)\right) \\
&(\text { Desboves, 1886) } \\
& \mathbf{m}_{-1}(x: y: z)=(x: z: y) \\
& \mathbf{m}_{0}(x: y: z)=(0:-1: 1) \\
& \mathbf{m}_{1}(x: y: z)=(x: y: z) \\
& \mathbf{m}_{2}(x: y: z)=\left(x\left(y^{3}-z^{3}\right): z\left(y^{3}-x^{3}\right): y\left(z^{3}-x^{3}\right)\right) \\
& \mathbf{m}_{3}(x: y: z)=\left(x y z\left(x^{6}+y^{6}+z^{6}-x^{3} y^{3}-x^{3} z^{3}-y^{3} z^{3}\right):\right. \\
&\left(x^{2} y+y^{2} z+z^{2} x\right)\left(x^{4} y^{2}+y^{4} z^{2}+z^{4} x^{2}-x y^{2} z^{3}-y z^{2} x^{3}-z x^{2} y^{3}\right): \\
&\left.x^{3} y^{6}+y^{3} z^{6}+z^{3} x^{6}-3 x^{3} y^{3} z^{3}\right) .
\end{aligned}
$$

Weierstrass Normal Form and the J-invariant

Theorem (Nagel 1928). Every smooth cubic curve is projectively equivalent to one in the normal form

$$
\begin{aligned}
y^{2} & =\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right) \quad \text { with } \quad r_{1}+r_{2}+r_{3}=0 \\
& =x^{3}+s_{2} x-s_{3}
\end{aligned}
$$

where the s_{j} are elementary symmetric functions.
Furthermore: two such curves are projectively equivalent if and only if they have the same invariant

$$
J=\frac{4 s_{2}^{3}}{4 s_{2}^{3}+27 s_{3}^{2}} \in \mathbb{C}
$$

Triangles and the J-invariant.

The J-invariant characterizes the "shape" of the triangle with vertices r_{1}, r_{2}, r_{3}.

J<0

$\mathrm{J}>1$

The function $k \rightarrow J$

$$
J=\frac{k^{3}\left(k^{3}+8\right)^{3}}{64\left(k^{3}-1\right)^{3}}
$$

Real Cubic Curves

Theorem. Every smooth real cubic curve is real projectively equivalent to a curve \mathcal{C}_{k} in the Hesse normal form for one and only one real value of k, with $k \neq 1$.

