Hyperbolic Component Boundaries: Nasty or Nice?

John MiInor

Stony Brook University
April 2, 2014

A Theorem and a Conjecture.

Let $\mathcal{P}_{n} \cong \mathbb{C}^{n-1}$ be the space of monic centered polynomials of degree $n \geq 2$, and let $H \subset \mathcal{P}_{n}$ be a hyperbolic component in its connectedness locus.

Theorem. If each $f \in H$ has exactly $n-1$ attracting cycles (one for each critical point), then the boundary ∂H and the closure \bar{H} are semi-algebraic sets.

Non Local Connectivity Conjecture. In all other cases, the sets ∂H and \bar{H} are not locally connected.

Semi-algebraic Sets

Definition. A basic semi-algebraic set S in \mathbb{R}^{n} is a subset of the form

$$
S=S\left(r_{1}, \ldots, r_{k} ; s_{1}, \ldots, s_{\ell}\right)
$$

consisting of all $\mathbf{x} \in \mathbb{R}^{n}$ satisfying the inequalities

$$
r_{1}(\mathbf{x}) \geq 0 \ldots, r_{k}(\mathbf{x}) \geq 0 \quad \text { and } \quad s_{1}(\mathbf{x}) \neq 0, \ldots, s_{\ell}(\mathbf{x}) \neq 0
$$

Here the $r_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and the $s_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be arbitrary real polynomials maps.

Any finite union of basic semi-algebraic sets is called a semi-algebraic set.

Easy Exercise: If S_{1} and S_{2} are semi-algebraic, then both $S_{1} \cup S_{2}$ and $S_{1} \cap S_{2}$ are semi-algebraic.

Furthermore $\mathbb{R}^{n} \backslash S_{1}$ is semi-algebraic.

Non-Trivial Properties

- A semi-algebraic set has finitely many connected components, and each of them is semi-algebraic.
- The topological closure of a semi-algebraic set is semi-algebraic.
- Tarski-Seidenberg Theorem: The image of a semi-algebraic set under projection from \mathbb{R}^{n} to \mathbb{R}^{n-k} is semi-algebraic.
- Every semi-algebraic set can be triangulated (and hence is locally connected).

Reference: Bochnak, Coste, and Roy,
"Real Algebraic Geometry", Springer 1998.

Recall the Theorem:

If each $f \in H$ has exactly $n-1$ attracting cycles (one for each critical point), then the boundary ∂H and the closure \bar{H} are semi-algebraic sets.

To prove this we will first mark $n-1$ periodic points.
Let $p_{1}, p_{2}, \ldots, p_{n-1}$ be the periods of these points, and let $\mathcal{P}_{n}\left(p_{1}, p_{2}, \ldots, p_{n-1}\right)$ be the set of all

$$
\left(f, z_{1}, z_{2}, \ldots, z_{n-1}\right) \in \mathcal{P}_{n} \times \mathbb{C}^{n-1}
$$

satisfying two conditions:

- Each z_{j} should have period exactly p_{j} under the map f;
- and the orbits of the z_{j} must be disjoint.

Lemma. This set $\mathcal{P}_{n}\left(p_{1}, p_{2}, \ldots, p_{n-1}\right) \subset \mathbb{R}^{4 n-4}$ is semi-algebraic.

The proof is an easy exercise. \square

Proof of the Theorem

Let U be the open set consisting of all

$$
\left(f, z_{1}, \ldots, z_{n-1}\right) \in \mathcal{P}_{n}\left(p_{1}, p_{2}, \ldots, p_{n-1}\right)
$$

such that the multiplier of the orbit for each z_{j} satisfies

$$
\left|\mu_{j}\right|^{2}<1 .
$$

This set U is semi-algebraic.

Hence each component $\tilde{H} \subset U$ is semi-algebraic.
Hence the image of \widetilde{H} under the projection $\mathcal{P}_{n}\left(p_{1}, p_{2}, \ldots, p_{n-1}\right) \rightarrow \mathcal{P}_{n}$ is a semi-algebraic set H, which is clearly a hyperbolic component in \mathcal{P}_{n}.

In fact any hyperbolic component $H \subset \mathcal{P}_{n}$ having attracting cycles with periods $p_{1}, p_{2}, \ldots, p_{n-1}$ can be obtained in this way.

This proves that H, its closure \bar{H}, and its boundary $\partial H=\bar{H} \cap\left(\overline{\mathcal{P}_{n} \backslash H}\right) \quad$ are all semi-algebraic sets. \square

Postcritical Parabolic Orbits

Definition. A parabolic orbit with a primitive q-th root of unity as multiplier will be called simple if each orbit point has just q attracting petals.

My strategy for trying to prove the Non Local Connectivity Conjecture is to split it into two parts (preliminary version):

Conjecture A. If maps in the hyperbolic component H have an attracting cycle which attracts two or more critical points, then some map $f \in \partial H$ has a postcritical simple parabolic orbit.

Conjecture B. If some $f \in \partial H$ has a postcritical simple parabolic orbit, then \bar{H} and ∂H are not locally connected.

Example:
 $$
f(z)=z^{3}+2 z^{2}+z
$$

Here $f(-1)=0$, where -1 is critical, and 0 is a parabolic fixed point of multiplier $f^{\prime}(0)=1$. Furthermore $f \in \partial H_{0}$.

Example:

$$
f(z)=z^{3}+2.5319 i z^{2}+.8249 i
$$

Here f is on the boundary of a capture component, with

$$
c_{0}=0 \mapsto c_{1}=.8249 i \mapsto c_{2}=-1.4596 i
$$

where

$$
f\left(c_{2}\right)=c_{2}, \quad \mu=f^{\prime}\left(c_{2}\right)=1
$$

Example: $f(z)=z^{3}+(-2.2443+.2184 i) z^{2}+(1.4485-.2665 i)$

Here:

$$
c_{0} \mapsto c_{1} \mapsto c_{2} \leftrightarrow c_{3}
$$

$$
\text { with } \quad \mu=f^{\prime}\left(c_{2}\right) f^{\prime}\left(c_{3}\right)=1
$$

The corresponding ray angles are

$$
\left\{\frac{19}{72}, \frac{43}{72}\right\} \mapsto \frac{19}{24} \mapsto \frac{3}{8} \leftrightarrow \frac{1}{8} .
$$

Simplified Example: A dynamical system on $\mathbb{C} \sqcup \mathbb{C}$

Here g_{μ} maps the z-plane to itself by

$$
z \mapsto z^{2}+\mu z
$$

and $f_{\bar{z}}$ maps the w-plane to the z-plane by

$$
w \mapsto z=w^{2}+\widehat{z}
$$

Thus the parameter space consists of all $(\mu, \widehat{z}) \in \mathbb{C}^{2}$.
Let $\mathcal{H} \subset \mathbb{C}^{2}$ be the "hyperbolic component" consisting of all pairs (μ, \widehat{z}) such that $|\mu|<1$ (so that $z=0$ is an attracting fixed point), and such that \widehat{z} belongs to its basin of attraction.

Thus a map belongs to \mathcal{H}
$\Longleftrightarrow \quad$ both critical orbits converge to $z=0$.

Julia set in $\mathbb{C} \sqcup \mathbb{C}$ for parameters $(\mu, \widehat{z})=(1,0)$

z-plane: $g_{1}(z)=z^{2}+z$
w-plane: $f_{0}(w)=w^{2}$
Here f_{0} maps the critical point $w=0$ to the fixed point $z=0$, which is parabolic with multiplier $g_{1}^{\prime}(0)=1$.

Thus for $(\mu, \widehat{z})=(1,0)$ we have a map in $\partial \mathcal{H}$ with a postcritical parabolic point.

Empirical "Proof" that $\overline{\mathcal{H}}$ is not locally connected.

Non Local Connectivity Assertion. There exists a convergent sequence in $\overline{\mathcal{H}}$,

$$
\lim _{j \rightarrow \infty}\left(\mu_{j}, z_{j}\right)=\left(1, z_{*}\right),
$$

and an $\epsilon>0$, such that no $\left(\mu_{j}, z_{j}\right)$ can be joined to $\left(1, z_{*}\right)$ by a path of diameter $<\epsilon$.

This will imply that the set $\overline{\mathcal{H}} \subset \mathbb{C}^{2}$ is not locally connected.

Julia set of g_{μ} for $\mu=\exp (-.0001+.01 i)$.

Showing a neighborhood of zero in the z-plane.
All orbits in the "Hawaiian earring" spiral away from the repelling fixed point $\quad \mathbf{r}_{\mu}=1-\mu$.

The argument function $\quad \mathbf{a}_{\mu}: K\left(g_{\mu}\right) \backslash\left\{\mathbf{r}_{\mu}\right\} \rightarrow \mathbb{R}$

For any $\mu \in \overline{\mathbb{D}}$, let \mathbf{r}_{μ} be the fixed point $1-\mu$.
Thus \mathbf{r}_{μ} is repelling whenever $\mu \neq 1$.
For any $z \neq \mathbf{r}_{\mu}$, let $\mathbf{a}_{\mu}(z)=\arg \left(z-\mathbf{r}_{\mu}\right) \in \mathbb{R} / \mathbb{Z}$ be the angle of the vector from \mathbf{r}_{μ} to z.

Now lift \mathbf{a}_{μ} to a real valued function

Since each set $K\left(g_{\mu}\right) \backslash\left\{\mathbf{r}_{\mu}\right\}$ is simply connected, this function \mathbf{a}_{μ} lifts to a real valued function \mathbf{A}_{μ}.

$$
K\left(g_{\mu}\right) \backslash\left\{\mathbf{r}_{\mu}\right\} \xrightarrow{\mathbf{A}_{\mu}} \mathbb{R}
$$

This lifting is only well defined up to an additive integer, but we can normalize (for $\mu \neq 1$) by requiring that

$$
1 / 4<\mathbf{A}_{\mu}(0)<3 / 4
$$

In fact $\mathbf{A}_{\mu}(z)$ is continuous as a function of both z and μ, subject only to the conditions that $z \in K\left(g_{\mu}\right)$ and $z \neq \mathbf{r}_{\mu}$.

Julia set of g_{μ} for $\mu=\exp (-.0001+.01 i)$.

A numerical calculation

Program: Given μ, start with the critical point $z=-\mu / 2$ for g_{μ} and follow the backwards orbit of z within the half-plane $\mathfrak{R}(z)>\mathfrak{R}(-\mu / 2)$, until it reaches a point with $A_{\mu}(z)>1.75$. Then report the distance $\left|z-\mathbf{r}_{\mu}\right|$.

Graph of $\left|z-\mathbf{r}_{\mu}\right|$ as a function of $t \in[0, .1]$ for the family

$$
\mu(t)=\exp \left(-t^{2}+i t\right) .
$$

Note that $\left|z-\mathbf{r}_{\mu}\right|>.05$ for these t.

Construction of the points $\left(\mu_{j}, z_{j}\right)$

Choose points μ_{j} of the form $\exp \left(-t^{2}+i t\right)$, with $t \searrow 0$, and choose corresponding points z_{j} with

$$
\mathbf{A}_{\mu_{j}}\left(z_{j}\right)>1.75 \text { and with }\left|z_{j}-\mathbf{r}_{\mu_{j}}\right|>.05 .
$$

Passing to a subsequence, we may assume that $\left\{z_{j}\right\}$ converges to some limit z_{*}.
Now as we vary both μ_{j} and z_{j} along paths of diameter $<.02$ within $\overline{\mathcal{H}}$, the $\mathbf{A}_{\mu}(z)$ must still be >1.5.
However, the limit point ($1, z_{*}$), must satisfy $0<\mathbf{A}_{1}\left(z_{*}\right)<1$. Hence by following such small paths we can never reach this limit point.

This "proves" the non local connectivity of $\overline{\mathcal{H}} . \square$

Example: Julia set for $f(z)=z^{3}+2 z^{2}+\mu z, \quad \mu \approx 1$

$$
\mu=1:
$$

$\mu=\exp (-.0001+.01 i)$

Detail near $z=0$.

Example: Perturbing a non-simple parabolic point.

$$
f(z)=z^{3}+z
$$

Example: Julia set for $f(z)=z^{2}+\mu z, \quad \mu \approx-1$

$$
\mu=-1:
$$

$$
\mu=-\exp (-.0001+.01 i) \approx-1
$$

Thus we have moved from the "fat basilica" $z \mapsto z^{2}-z$ to a map inside the main cardioid of the Mandelbrot set.

Example: $\quad z \mapsto z^{2}+\mu z, \quad \mu \approx-1, \quad$ again

Outside the Mandelbrot set.

Into the period two component

Conjectures A and B: Corrected Version

Consider the postcritical parabolic orbit \mathcal{O} for $f \in \partial H$.

Suppose that the immediate basin for \mathcal{O} corresponds to a cycle of Fatou components of period p for maps in H.

Then we must require that \mathcal{O} be a simple parabolic orbit for the iterate $f^{\circ p}$.

THE END

