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A Theorem and a Conjecture.

Let Pn ∼= Cn−1 be the space of monic centered polynomials of
degree n ≥ 2 , and let H ⊂ Pn be a hyperbolic component in
its connectedness locus.

Theorem. If each f ∈ H has exactly n − 1 attracting
cycles (one for each critical point), then the boundary
∂H and the closure H are semi-algebraic sets.

Non Local Connectivity Conjecture. In all other cases,
the sets ∂H and H are not locally connected.
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Semi-algebraic Sets
Definition. A basic semi-algebraic set S in Rn is a subset
of the form

S = S(r1, . . . , rk ; s1, . . . , s`)

consisting of all x ∈ Rn satisfying the inequalities

r1(x) ≥ 0 . . . , rk (x) ≥ 0 and s1(x) 6= 0, . . . , s`(x) 6= 0 .

Here the ri : Rn → R and the sj : Rn → R can be arbitrary
real polynomials maps.

Any finite union of basic semi-algebraic sets is called a
semi-algebraic set.

Easy Exercise: If S1 and S2 are semi-algebraic, then both
S1 ∪ S2 and S1 ∩ S2 are semi-algebraic.

Furthermore RnrS1 is semi-algebraic.
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Non-Trivial Properties

• A semi-algebraic set has finitely many connected
components, and each of them is semi-algebraic.

• The topological closure of a semi-algebraic set is
semi-algebraic.

• Tarski-Seidenberg Theorem: The image of
a semi-algebraic set under projection from
Rn to Rn−k is semi-algebraic.

• Every semi-algebraic set can be triangulated
(and hence is locally connected).

Reference: Bochnak, Coste, and Roy,
“Real Algebraic Geometry”, Springer 1998.

——



Recall the Theorem:
If each f ∈ H has exactly n− 1 attracting cycles (one for each
critical point), then the boundary ∂H and the closure H are
semi-algebraic sets.

To prove this we will first mark n − 1 periodic points.

Let p1 , p2 , . . . , pn−1 be the periods of these points,
and let Pn(p1 , p2 , . . . , pn−1) be the set of all

(f , z1, z2, . . . , zn−1) ∈ Pn × Cn−1

satisfying two conditions:

• Each zj should have period exactly pj under the map f ;
• and the orbits of the zj must be disjoint.

Lemma. This set Pn(p1 , p2 , . . . , pn−1) ⊂ R4n−4 is
semi-algebraic.

The proof is an easy exercise. �
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Proof of the Theorem
Let U be the open set consisting of all

(f , z1, . . . , zn−1) ∈ Pn(p1 , p2 , . . . , pn−1)
such that the multiplier of the orbit for each zj satisfies

|µj |2 < 1 .

This set U is semi-algebraic.
Hence each component H̃ ⊂ U is semi-algebraic.

Hence the image of H̃ under the projection
Pn(p1 , p2 , . . . , pn−1)→ Pn is a semi-algebraic set H ,
which is clearly a hyperbolic component in Pn .

In fact any hyperbolic component H ⊂ Pn having
attracting cycles with periods p1 , p2 , . . . , pn−1
can be obtained in this way.

This proves that H , its closure H , and its boundary
∂H = H ∩ (PnrH) are all semi-algebraic sets. �
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Postcritical Parabolic Orbits

Definition. A parabolic orbit with a primitive q-th root of unity
as multiplier will be called simple if each orbit point has just
q attracting petals.

My strategy for trying to prove the Non Local Connectivity
Conjecture is to split it into two parts (preliminary version):

Conjecture A. If maps in the hyperbolic component H have an
attracting cycle which attracts two or more critical points, then
some map f ∈ ∂H has a postcritical simple parabolic orbit.

Conjecture B. If some f ∈ ∂H has a postcritical simple
parabolic orbit, then H and ∂H are not locally connected.
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Example: f (z) = z3 + 2z2 + z

Here f (−1) = 0 , where −1 is critical, and 0 is a parabolic
fixed point of multiplier f ′(0) = 1 . Furthermore f ∈ ∂H0 .
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Example: f (z) = z3 + 2.5319 i z2 + .8249 i

Here f is on the boundary of a capture component, with
c0 = 0 7→ c1 = .8249 i 7→ c2 = −1.4596 i ,

where f (c2) = c2 , µ = f ′(c2) = 1 .
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Example: f (z) = z3 + (−2.2443 + .2184 i)z2 + (1.4485− .2665 i)

Here: c0 7→ c1 7→ c2 ↔ c3

with µ = f ′(c2) f ′(c3) = 1 .

The corresponding ray angles are{19
72
,

43
72

}
7→ 19

24
7→ 3

8
↔ 1

8
.
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Simplified Example: A dynamical system on C t C

Cgµ

&&
C

fẑoo

z−plane w−plane

Here gµ maps the z-plane to itself by
z 7→ z2 + µ z ,

and fẑ maps the w-plane to the z-plane by
w 7→ z = w2 + ẑ .

Thus the parameter space consists of all (µ , ẑ) ∈ C2 .

Let H ⊂ C2 be the “hyperbolic component” consisting of all
pairs (µ , ẑ) such that |µ| < 1 (so that z = 0 is an attracting
fixed point), and such that ẑ belongs to its basin of attraction.

Thus a map belongs to H
⇐⇒ both critical orbits converge to z = 0 .
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Julia set in C t C for parameters (µ, ẑ) = (1, 0)

z-plane: g1(z) = z2 + z

f0←−

w-plane: f0(w) = w2

Here f0 maps the critical point w = 0 to the fixed point z = 0 ,
which is parabolic with multiplier g′1(0) = 1 .

Thus for (µ , ẑ) = (1, 0) we have a map in ∂H with
a postcritical parabolic point.
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Empirical “Proof” that H is not locally connected.
Non Local Connectivity Assertion. There exists a
convergent sequence in H ,

lim
j→∞

(µj , zj) = (1, z∗) ,

and an ε > 0 , such that no (µj , zj) can be joined to
(1, z∗ ) by a path of diameter < ε .

This will imply that the set H ⊂ C2 is not locally connected.
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Julia set of gµ for µ = exp(−.0001 + .01 i ) .

Showing a neighborhood of zero in the z-plane.

All orbits in the “Hawaiian earring” spiral away
from the repelling fixed point rµ = 1− µ .
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The argument function aµ : K (gµ)r{rµ} → R
For any µ ∈ D , let rµ be the fixed point 1− µ .

Thus rµ is repelling whenever µ 6= 1.
For any z 6= rµ , let aµ(z) = arg(z − rµ) ∈ R/Z be the angle of
the vector from rµ to z .

aµ(z)

z

0
rµ
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Now lift aµ to a real valued function

Since each set K (gµ)r{rµ} is simply connected, this function
aµ lifts to a real valued function Aµ .

K (gµ)r{rµ}
Aµ //

aµ

&&LLLLLLLLLL R

��
R/Z

This lifting is only well defined up to an additive integer, but we
can normalize (for µ 6= 1 ) by requiring that

1/4 < Aµ(0) < 3/4 .

In fact Aµ(z) is continuous as a function of both z and µ ,
subject only to the conditions that z ∈ K (gµ) and z 6= rµ .
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Julia set of gµ for µ = exp(−.0001 + .01 i ) .
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A numerical calculation
Program: Given µ , start with the critical point z = −µ/2 for
gµ and follow the backwards orbit of z within the half-plane
R(z) > R(−µ/2) , until it reaches a point with
Aµ(z) > 1.75 . Then report the distance |z − rµ| .

0 0.10.05

| z-rµ|

t0

0.05

0.1

0.15

Graph of |z − rµ| as a function of t ∈ [0, .1] for the family
µ(t) = exp(−t2 + i t) .

Note that |z − rµ| > .05 for these t .
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Construction of the points (µj , zj)

Choose points µj of the form exp(−t2 + i t), with
t ↘ 0 , and choose corresponding points zj with

Aµj (zj) > 1.75 and with |zj − rµj | > .05 .

Passing to a subsequence, we may assume that {zj}
converges to some limit z∗ .

Now as we vary both µj and zj along paths of
diameter < .02 within H , the Aµ(z) must still be > 1.5 .

However, the limit point (1, z∗) , must satisfy
0 < A1(z∗) < 1 . Hence by following such small paths we can
never reach this limit point.

This "proves" the non local connectivity of H. �
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Example: Julia set for f (z) = z3 + 2z2 + µ z , µ ≈ 1

µ = 1 :

µ = exp(−.0001 + .01 i ) Detail near z = 0 .
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Example: Perturbing a non-simple parabolic point.

f (z) = z3 + z
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Example: Julia set for f (z) = z2 + µ z , µ ≈ −1

µ = −1 :

µ = −exp(−.0001 + .01 i ) ≈ −1 .

Thus we have moved from the “fat basilica” z 7→ z2 − z to a
map inside the main cardioid of the Mandelbrot set.
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Example: z 7→ z2 + µ z , µ ≈ −1 , again

Outside the Mandelbrot set. Into the period two component
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Conjectures A and B: Corrected Version

Consider the postcritical parabolic orbit O for f ∈ ∂H .

Suppose that the immediate basin for O corresponds to a
cycle of Fatou components of period p for maps in H .

Then we must require that O be a simple parabolic orbit for
the iterate f ◦p .

THE END
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