Hyperbolic Component Boundaries: Nasty or Nice ?

John Milnor

Stony Brook University

April 2, 2014

A Theorem and a Conjecture.

Let $\mathcal{P}_n \cong \mathbb{C}^{n-1}$ be the space of monic centered polynomials of degree $n \ge 2$, and let $H \subset \mathcal{P}_n$ be a hyperbolic component in its connectedness locus.

Theorem. If each $f \in H$ has exactly n - 1 attracting cycles (one for each critical point), then the boundary ∂H and the closure \overline{H} are semi-algebraic sets.

Non Local Connectivity Conjecture. In all other cases, the sets ∂H and \overline{H} are not locally connected.

Semi-algebraic Sets

Definition. A *basic semi-algebraic set* S in \mathbb{R}^n is a subset of the form

$$S = S(r_1, \ldots, r_k; s_1, \ldots, s_\ell)$$

consisting of all $\mathbf{x} \in \mathbb{R}^n$ satisfying the inequalities

 $r_1(\mathbf{x}) \geq 0 \quad \dots, \ r_k(\mathbf{x}) \geq 0 \quad \text{and} \quad s_1(\mathbf{x}) \neq 0, \ \dots, \ s_\ell(\mathbf{x}) \neq 0 \ .$

Here the $r_i : \mathbb{R}^n \to \mathbb{R}$ and the $s_j : \mathbb{R}^n \to \mathbb{R}$ can be arbitrary real polynomials maps.

Any finite union of basic semi-algebraic sets is called a **semi-algebraic set**.

Easy Exercise: If S_1 and S_2 are semi-algebraic, then both $S_1 \cup S_2$ and $S_1 \cap S_2$ are semi-algebraic.

Furthermore $\mathbb{R}^n \setminus S_1$ is semi-algebraic.

Non-Trivial Properties

- A semi-algebraic set has finitely many connected components, and each of them is semi-algebraic.
- The topological closure of a semi-algebraic set is semi-algebraic.
- Tarski-Seidenberg Theorem: The image of a semi-algebraic set under projection from ⁿ to ℝ^{n-k} is semi-algebraic.
- Every semi-algebraic set can be triangulated (and hence is locally connected).

Reference: Bochnak, Coste, and Roy, "Real Algebraic Geometry", Springer 1998.

Recall the Theorem:

If each $f \in H$ has exactly n-1 attracting cycles (one for each critical point), then the boundary ∂H and the closure \overline{H} are semi-algebraic sets.

To prove this we will first mark n-1 periodic points.

Let $p_1, p_2, \ldots, p_{n-1}$ be the periods of these points, and let $\mathcal{P}_n(p_1, p_2, \ldots, p_{n-1})$ be the set of all $(f, z_1, z_2, \ldots, z_{n-1}) \in \mathcal{P}_n \times \mathbb{C}^{n-1}$

satisfying two conditions:

- Each z_i should have period exactly p_i under the map f;
- and the orbits of the z_i must be disjoint.

Lemma. This set $\mathcal{P}_n(p_1, p_2, \dots, p_{n-1}) \subset \mathbb{R}^{4n-4}$ is semi-algebraic.

The proof is an easy exercise. \Box

Proof of the Theorem

Let U be the open set consisting of all

 $(f, z_1, \ldots, z_{n-1}) \in \mathcal{P}_n(p_1, p_2, \ldots, p_{n-1})$ such that the multiplier of the orbit for each z_j satisfies $|\mu_j|^2 < 1$.

This set U is semi-algebraic.

Hence each component $\widetilde{H} \subset U$ is semi-algebraic. Hence the image of \widetilde{H} under the projection $\mathcal{P}_n(p_1, p_2, \ldots, p_{n-1}) \rightarrow \mathcal{P}_n$ is a semi-algebraic set H, which is clearly a hyperbolic component in \mathcal{P}_n .

In fact any hyperbolic component $H \subset \mathcal{P}_n$ having attracting cycles with periods $p_1, p_2, \ldots, p_{n-1}$ can be obtained in this way.

This proves that H, its closure \overline{H} , and its boundary $\partial H = \overline{H} \cap (\overline{\mathcal{P}_n \setminus H})$ are all semi-algebraic sets. \Box

Postcritical Parabolic Orbits

Definition. A parabolic orbit with a primitive q-th root of unity as multiplier will be called **simple** if each orbit point has just q attracting petals.

My strategy for trying to prove the Non Local Connectivity Conjecture is to split it into two parts (preliminary version):

Conjecture A. If maps in the hyperbolic component *H* have an attracting cycle which attracts two or more critical points, then some map $f \in \partial H$ has a postcritical simple parabolic orbit.

Conjecture B. If some $f \in \partial H$ has a postcritical simple parabolic orbit, then \overline{H} and ∂H are not locally connected.

Example: $f(z) = z^3 + 2z^2 + z$

Here f(-1) = 0, where -1 is critical, and 0 is a parabolic fixed point of multiplier f'(0) = 1. Furthermore $f \in \partial H_0$.

Example: $f(z) = z^3 + 2.5319 i z^2 + .8249 i$

Here *f* is on the boundary of a capture component, with $c_0 = 0 \mapsto c_1 = .8249 i \mapsto c_2 = -1.4596 i$, where $f(c_2) = c_2$, $\mu = f'(c_2) = 1$.

Example: $f(z) = z^3 + (-2.2443 + .2184 i)z^2 + (1.4485 - .2665 i)$

Here: $c_0 \mapsto c_1 \mapsto c_2 \leftrightarrow c_3$ with $\mu = f'(c_2) f'(c_3) = 1$.

The corresponding ray angles are

$$\left\{\frac{19}{72},\,\frac{43}{72}\right\}\mapsto\frac{19}{24}\mapsto\frac{3}{8}\leftrightarrow\frac{1}{8}$$

Simplified Example: A dynamical system on $\mathbb{C} \sqcup \mathbb{C}$

$$g_{\mu} \overset{f_{\widehat{z}}}{\frown} \overset{\mathbb{C}}{\underset{Z-\text{plane}}{\overset{f_{\widehat{z}}}{\longleftarrow}}} \mathbb{C}$$

Here g_μ maps the z-plane to itself by $z \mapsto z^2 + \mu z$,

and $f_{\widehat{z}}$ maps the *w*-plane to the *z*-plane by $w \mapsto z = w^2 + \widehat{z}$.

Thus the parameter space consists of all $(\mu, \hat{z}) \in \mathbb{C}^2$.

Let $\mathcal{H} \subset \mathbb{C}^2$ be the "hyperbolic component" consisting of all pairs (μ, \hat{z}) such that $|\mu| < 1$ (so that z = 0 is an attracting fixed point), and such that \hat{z} belongs to its basin of attraction.

Thus a map belongs to \mathcal{H}

 \iff **both** critical orbits converge to z = 0.

Julia set in $\mathbb{C} \sqcup \mathbb{C}$ for parameters $(\mu, \hat{z}) = (1, 0)$

z-plane: $g_1(z) = z^2 + z$

w-plane: $f_0(w) = w^2$

Here f_0 maps the critical point w = 0 to the fixed point z = 0, which is parabolic with multiplier $g'_1(0) = 1$.

Thus for $(\mu, \hat{z}) = (1, 0)$ we have a map in $\partial \mathcal{H}$ with a postcritical parabolic point.

Empirical "Proof" that $\overline{\mathcal{H}}$ is not locally connected.

Non Local Connectivity Assertion. There exists a convergent sequence in $\overline{\mathcal{H}}$,

$$\lim_{j\to\infty}(\mu_j, z_j) = (1, z_*),$$

and an $\epsilon > 0$, such that no (μ_j, z_j) can be joined to $(1, z_*)$ by a path of diameter $< \epsilon$.

This will imply that the set $\overline{\mathcal{H}} \subset \mathbb{C}^2$ is not locally connected.

Showing a neighborhood of zero in the *z*-plane. All orbits in the "Hawaiian earring" spiral away from the repelling fixed point $\mathbf{r}_{\mu} = 1 - \mu$. The argument function $\mathbf{a}_{\mu} : K(g_{\mu}) \setminus \{\mathbf{r}_{\mu}\} \to \mathbb{R}$ For any $\mu \in \overline{\mathbb{D}}$, let \mathbf{r}_{μ} be the fixed point $1 - \mu$. Thus \mathbf{r}_{μ} is repelling whenever $\mu \neq 1$. For any $z \neq \mathbf{r}_{\mu}$, let $\mathbf{a}_{\mu}(z) = arg(z - \mathbf{r}_{\mu}) \in \mathbb{R}/\mathbb{Z}$ be the angle of the vector from \mathbf{r}_{μ} to z.

Now lift \mathbf{a}_{μ} to a real valued function

Since each set $K(g_{\mu}) \setminus \{\mathbf{r}_{\mu}\}$ is simply connected, this function \mathbf{a}_{μ} lifts to a real valued function \mathbf{A}_{μ} .

This lifting is only well defined up to an additive integer, but we can normalize (for $\mu \neq 1$) by requiring that $1/4 < \mathbf{A}_{\mu}(0) < 3/4$.

In fact $\mathbf{A}_{\mu}(z)$ is continuous as a function of both z and μ , subject only to the conditions that $z \in \mathcal{K}(g_{\mu})$ and $z \neq \mathbf{r}_{\mu}$.

A numerical calculation

Program: Given μ , start with the critical point $z = -\mu/2$ for g_{μ} and follow the backwards orbit of z within the half-plane $\Re(z) > \Re(-\mu/2)$, until it reaches a point with $A_{\mu}(z) > 1.75$. Then report the distance $|z - \mathbf{r}_{\mu}|$.

Graph of $|z - \mathbf{r}_{\mu}|$ as a function of $t \in [0, .1]$ for the family $\mu(t) = \exp(-t^2 + i t)$.

Note that $|z - \mathbf{r}_{\mu}| > .05$ for these *t*.

Construction of the points (μ_j, z_j)

Choose points μ_j of the form $\exp(-t^2 + it)$, with $t \searrow 0$, and choose corresponding points z_j with

 $\mathbf{A}_{\mu_i}(z_j) > 1.75$ and with $|z_j - \mathbf{r}_{\mu_i}| > .05$.

Passing to a subsequence, we may assume that $\{z_j\}$ converges to some limit z_* .

Now as we vary both μ_j and z_j along paths of diameter < .02 within $\overline{\mathcal{H}}$, the $\mathbf{A}_{\mu}(z)$ must still be > 1.5.

However, the limit point $(1, z_*)$, must satisfy $0 < \mathbf{A}_1(z_*) < 1$. Hence by following such small paths we can never reach this limit point.

This "proves" the non local connectivity of $\overline{\mathcal{H}}$. \Box

Example: Julia set for $f(z) = z^3 + 2z^2 + \mu z$, $\mu \approx 1$

$$\mu=$$
1 :

 $\mu = \exp(-.0001 + .01 i)$

Detail near z = 0.

Example: Perturbing a non-simple parabolic point.

$$f(z)=z^3+z$$

Example: Julia set for $f(z) = z^2 + \mu z$, $\mu \approx -1$

 $\mu = -\exp(-.0001 + .01 i) \approx -1.$

Thus we have moved from the "fat basilica" $z \mapsto z^2 - z$ to a map inside the main cardioid of the Mandelbrot set.

Example: $z \mapsto z^2 + \mu z$, $\mu \approx -1$, again

Outside the Mandelbrot set.

Into the period two component

Conjectures A and B: Corrected Version

Consider the postcritical parabolic orbit \mathcal{O} for $f \in \partial H$.

Suppose that the immediate basin for \mathcal{O} corresponds to a cycle of Fatou components of period p for maps in H.

Then we must require that \mathcal{O} be a simple parabolic orbit for the iterate $f^{\circ p}$.

THE END