A survey of results about G_2 conifolds

Spiro Karigiannis

Department of Pure Mathematics University of Waterloo

BlaineFest 2012

Results include separate joint works with Jason Lotay (University College London) Dominic Joyce (University of Oxford).

Manifolds with G₂ structure

Definition

Let M^7 be a smooth 7-manifold. A G_2 structure on M is a reduction of the structure group of the frame bundle from $GL(7,\mathbb{R})$ to $G_2 \subset SO(7)$.

Manifolds with G₂ structure

Definition

Let M^7 be a smooth 7-manifold. A G_2 structure on M is a reduction of the structure group of the frame bundle from $GL(7,\mathbb{R})$ to $G_2 \subset SO(7)$.

- A G_2 structure exists if and only if M is *orientable* and *spin*, which is equivalent to $w_1(M) = 0$ and $w_2(M) = 0$.
- A G_2 structure is encoded by a "non-degenerate" 3-form φ which nonlinearly determines a Riemannian metric g_{φ} and an orientation. We thus have a Hodge star operator $*_{\varphi}$ and dual 4-form $\psi = *_{\varphi}\varphi$.

Manifolds with G₂ structure

Definition

Let M^7 be a smooth 7-manifold. A G_2 structure on M is a reduction of the structure group of the frame bundle from $GL(7,\mathbb{R})$ to $G_2 \subset SO(7)$.

- A G_2 structure exists if and only if M is *orientable* and *spin*, which is equivalent to $w_1(M) = 0$ and $w_2(M) = 0$.
- A G_2 structure is encoded by a "non-degenerate" 3-form φ which nonlinearly determines a Riemannian metric g_{φ} and an orientation. We thus have a Hodge star operator $*_{\varphi}$ and dual 4-form $\psi = *_{\varphi} \varphi$.
- On a manifold (M, φ) with G_2 structure, each tangent space T_pM can be canonically identified with the *imaginary octonions* $\mathbb{O} \cong \mathbb{R}^7$.

Definition

Let (M,φ) be a manifold with G_2 structure. Let ∇ be the Levi-Civita connection of g_{φ} . We say that (M,φ) is a G_2 manifold if $\nabla \varphi = 0$. This is also called a torsion-free G_2 structure, where $T = \nabla \varphi$ is the torsion.

Definition

Let (M,φ) be a manifold with G_2 structure. Let ∇ be the Levi-Civita connection of g_{φ} . We say that (M,φ) is a G_2 manifold if $\nabla \varphi = 0$. This is also called a torsion-free G_2 structure, where $T = \nabla \varphi$ is the torsion.

Properties of G₂ manifolds:

• The holonomy $\operatorname{Hol}(g_{\varphi})$ is contained in G_2 . If $\operatorname{Hol}(g_{\varphi}) = G_2$, then (M, φ) is called an irreducible G_2 manifold. A compact G_2 manifold is irreducible if and only if $\pi_1(M)$ is finite.

Definition

Let (M,φ) be a manifold with G_2 structure. Let ∇ be the Levi-Civita connection of g_{φ} . We say that (M,φ) is a G_2 manifold if $\nabla \varphi = 0$. This is also called a torsion-free G_2 structure, where $T = \nabla \varphi$ is the torsion.

Properties of G_2 manifolds:

- The holonomy $\operatorname{Hol}(g_{\varphi})$ is contained in G_2 . If $\operatorname{Hol}(g_{\varphi}) = G_2$, then (M, φ) is called an irreducible G_2 manifold. A *compact* G_2 manifold is irreducible if and only if $\pi_1(M)$ is finite.
- The metric g_{φ} is Ricci-flat.
- G₂ manifolds admit a parallel spinor. They play the role in M-theory that Calabi-Yau 3-folds play in string theory.

Definition

Let (M,φ) be a manifold with G_2 structure. Let ∇ be the Levi-Civita connection of g_{φ} . We say that (M,φ) is a G_2 manifold if $\nabla \varphi = 0$. This is also called a torsion-free G_2 structure, where $T = \nabla \varphi$ is the torsion.

Properties of G_2 manifolds:

- The holonomy $\operatorname{Hol}(g_{\varphi})$ is contained in G_2 . If $\operatorname{Hol}(g_{\varphi}) = G_2$, then (M, φ) is called an irreducible G_2 manifold. A *compact* G_2 manifold is irreducible if and only if $\pi_1(M)$ is finite.
- The metric g_{φ} is Ricci-flat.
- \bullet G₂ manifolds admit a parallel spinor. They play the role in M-theory that Calabi-Yau 3-folds play in string theory.
- A G_2 structure is torsion-free if and only if $d\varphi=0$ and $d*_{\varphi}\varphi=0$. (Fernàndez–Gray, 1982.) Both φ and $*_{\varphi}\varphi$ are calibrations.

Comparison with Kähler and Calabi-Yau geometry

- G₂ manifolds are very similar to Kähler manifolds.
- Both admit calibrated submanifolds and connections.
- Both admit a Dolbeault-type decomposition of their cohomology, which implies restrictions on the topology.

Comparison with Kähler and Calabi-Yau geometry

- G₂ manifolds are very similar to Kähler manifolds.
- Both admit calibrated submanifolds and connections.
- Both admit a Dolbeault-type decomposition of their cohomology, which implies restrictions on the topology.
- However, unlike G₂ manifolds, not all Kähler manifolds are Ricci-flat. Those are the *Calabi-Yau* manifolds.
- By the Calabi-Yau theorem, we have a topological characterization of the Ricci-flat Kähler manifolds.
- We are still very far from knowing sufficient topological conditions for existence of a torsion-free G_2 structure.

G₂ geometry is more nonlinear

- ullet In Kähler geometry, the $\partial ar{\partial}$ lemma often reduces first order systems of PDEs to a single scalar equation.
- The natural PDEs which arise in G_2 geometry are usually first order fully nonlinear systems.

G₂ geometry is more nonlinear

- In Kähler geometry, the $\partial\bar{\partial}$ lemma often reduces first order systems of PDEs to a single scalar equation.
- The natural PDEs which arise in G_2 geometry are usually first order fully nonlinear systems.
- In Kähler geometry, the Kähler form ω and the complex structure J are essentially independent. Together they determine the metric g.
- Therefore, Kähler geometry can be thought of as 'decoupling' into complex geometry and symplectic geometry.

G₂ geometry is more nonlinear

- In Kähler geometry, the $\partial\bar\partial$ lemma often reduces first order systems of PDEs to a single scalar equation.
- ullet The natural PDEs which arise in G_2 geometry are usually first order fully nonlinear systems.
- In Kähler geometry, the Kähler form ω and the complex structure J are essentially independent. Together they determine the metric g.
- Therefore, Kähler geometry can be thought of as 'decoupling' into complex geometry and symplectic geometry.
- However, if M admits a G_2 structure, the 3-form φ determines the metric g in a nonlinear way:

$$(u \lrcorner \varphi) \land (v \lrcorner \varphi) \land \varphi = C g_{\varphi}(u, v) \operatorname{vol}_{\varphi}$$

 \bullet Thus, we cannot 'decouple' G_2 geometry in any way.

Examples of G₂ manifolds

Complete noncompact examples

- Bryant–Salamon (1989): these examples are total spaces of vector bundles $\Lambda^2_-(S^4)$, $\Lambda^2_-(\mathbb{CP}^2)$, $S(S^3)$; they are all asymptotically conical: far away from the base of the bundle, they "look like" *metric cones*.
- There exist many other complete examples with "nice" asymptotic behaviour at infinity, found by physicists.

Complete noncompact examples

- Bryant–Salamon (1989): these examples are total spaces of vector bundles $\Lambda^2_-(S^4)$, $\Lambda^2_-(\mathbb{CP}^2)$, $S(S^3)$; they are all asymptotically conical: far away from the base of the bundle, they "look like" *metric cones*.
- There exist many other complete examples with "nice" asymptotic behaviour at infinity, found by physicists.
- These examples are all explicit cohomogeneity one G_2 manifolds they have enough "symmetry" so that the nonlinear PDE reduces to a system of fully nonlinear ODEs, which can often be solved exactly.

Complete noncompact examples

- Bryant–Salamon (1989): these examples are total spaces of vector bundles $\Lambda^2_-(S^4)$, $\Lambda^2_-(\mathbb{CP}^2)$, $S(S^3)$; they are all asymptotically conical: far away from the base of the bundle, they "look like" *metric cones*.
- There exist many other complete examples with "nice" asymptotic behaviour at infinity, found by physicists.
- These examples are all explicit cohomogeneity one G₂ manifolds —
 they have enough "symmetry" so that the nonlinear PDE reduces to
 a system of fully nonlinear ODEs, which can often be solved exactly.
- It can be shown (using the Bochner-Weitzenböck formula) that compact examples cannot have any symmetry. So the construction of compact examples is necessarily much more difficult.

Compact examples

Examples of G₂ manifolds

Compact examples

These are all found using glueing techniques — constructing an "almost" example and then proving there exists a genuine example by solving an elliptic nonlinear PDE.

 Joyce (1994) — analogue of the Kummer construction (glueing to resolve orbifold singularities)

Compact examples

- Joyce (1994) analogue of the Kummer construction (glueing to resolve orbifold singularities)
- Kovalev (2000) glueing asymptotically cylindrical manifolds together after "twisting"

Compact examples

- Joyce (1994) analogue of the Kummer construction (glueing to resolve orbifold singularities)
- Kovalev (2000) glueing asymptotically cylindrical manifolds together after "twisting"
- Corti-Haskins-Nördstom-Pacini (2012) vast generalization of Kovalev construction

Compact examples

- Joyce (1994) analogue of the Kummer construction (glueing to resolve orbifold singularities)
- Kovalev (2000) glueing asymptotically cylindrical manifolds together after "twisting"
- Corti-Haskins-Nördstom-Pacini (2012) vast generalization of Kovalev construction
- Joyce–Karigiannis (2013?) glueing a 3-dimensional family of Eguchi-Hanson spaces

Theorem (Joyce, 1994)

Let M be a compact manifold with a closed G_2 structure φ such that the torsion is sufficiently small. (One needs good control of the L^{14} norm of the torsion and some other estimates.) Then there exists a torsion-free G_2 structure $\widetilde{\varphi}$ close to φ in the C^0 norm, with $[\widetilde{\varphi}] = [\varphi]$ in $H^3(M, \mathbb{R})$.

Theorem (Joyce, 1994)

Let M be a compact manifold with a closed G_2 structure φ such that the torsion is sufficiently small. (One needs good control of the L^{14} norm of the torsion and some other estimates.) Then there exists a torsion-free G_2 structure $\widetilde{\varphi}$ close to φ in the C^0 norm, with $[\widetilde{\varphi}] = [\varphi]$ in $H^3(M,\mathbb{R})$.

Idea of the proof: Write $\widetilde{\varphi}=\varphi+d\sigma$. Torsion-freeness of $\widetilde{\varphi}$ is equivalent to $\Delta_d\sigma=Q(\sigma)$. Existence of a solution is established by iteration.

Theorem (Joyce, 1994)

Let M be a compact manifold with a closed G_2 structure φ such that the torsion is sufficiently small. (One needs good control of the L^{14} norm of the torsion and some other estimates.) Then there exists a torsion-free G_2 structure $\widetilde{\varphi}$ close to φ in the C^0 norm, with $[\widetilde{\varphi}] = [\varphi]$ in $H^3(M,\mathbb{R})$.

Idea of the proof: Write $\widetilde{\varphi}=\varphi+d\sigma$. Torsion-freeness of $\widetilde{\varphi}$ is equivalent to $\Delta_d\sigma=Q(\sigma)$. Existence of a solution is established by iteration.

These constructions provide thousands of examples, but they are likely only a very small part of the "landscape."

Moduli space of compact G₂ manifolds

• Let \mathcal{M} be the moduli space of torsion-free G_2 structures on M, modulo the appropriate notion of equivalence.

Moduli space of compact G₂ manifolds

• Let \mathcal{M} be the moduli space of torsion-free G_2 structures on M, modulo the appropriate notion of equivalence.

Theorem (Joyce, 1994)

The space \mathcal{M} is a smooth manifold, and is locally diffeomorphic to an open subset of the vector space $H^3(M,\mathbb{R})$.

Moduli space of compact G₂ manifolds

• Let \mathcal{M} be the moduli space of torsion-free G_2 structures on M, modulo the appropriate notion of equivalence.

Theorem (Joyce, 1994)

The space \mathcal{M} is a smooth manifold, and is locally diffeomorphic to an open subset of the vector space $H^3(M,\mathbb{R})$.

 \bullet Thus, deformations of compact G_2 manifolds are unobstructed, and the infinitesimal deformations have a topological interpretation.

Moduli space of compact G_2 manifolds

• Let \mathcal{M} be the moduli space of torsion-free G_2 structures on M, modulo the appropriate notion of equivalence.

Theorem (Joyce, 1994)

The space \mathcal{M} is a smooth manifold, and is locally diffeomorphic to an open subset of the vector space $H^3(M,\mathbb{R})$.

ullet Thus, deformations of compact G_2 manifolds are unobstructed, and the infinitesimal deformations have a topological interpretation.

The proof has the following ingredients:

- [1] Banach space implicit function theorem
- [2] Fredholm theory of elliptic operators
- [**3**] Hodge theory

Moduli space of compact G_2 manifolds

• Let \mathcal{M} be the moduli space of torsion-free G_2 structures on M, modulo the appropriate notion of equivalence.

Theorem (Joyce, 1994)

The space \mathcal{M} is a smooth manifold, and is locally diffeomorphic to an open subset of the vector space $H^3(M,\mathbb{R})$.

ullet Thus, deformations of compact G_2 manifolds are unobstructed, and the infinitesimal deformations have a topological interpretation.

The proof has the following ingredients:

- [1] Banach space implicit function theorem
- [2] Fredholm theory of elliptic operators
- [3] Hodge theory

Ingredients [2] and [3] require compactness of M, and thus need to be modified in any noncompact setting.

G_2 cones

Definition

A G_2 cone is a 7-manifold $C=(0,\infty)\times \Sigma$, with Σ compact, and a torsion-free G_2 structure $\varphi_{\mathcal{C}}$ with induced metric

$$g_{\rm C} = dr^2 + r^2 g_{\rm \Sigma}$$
 (a Riemannian cone)

G_2 cones

Definition

A G_2 cone is a 7-manifold $C=(0,\infty)\times \Sigma$, with Σ compact, and a torsion-free G_2 structure $\varphi_{\mathcal{C}}$ with induced metric

$$g_{c} = dr^{2} + r^{2}g_{\Sigma}$$
 (a Riemannian cone)

- The link Σ of a G_2 cone C is necessarily a compact strictly nearly Kähler 6-manifold (also called a *Gray manifold*.)
- These are almost Hermitian manifolds (Σ, J, g, ω) with $c_1(\Sigma) = 0$, such that

$$d\omega = -3\operatorname{Re}(\Omega)$$
 $d\operatorname{Im}(\Omega) = 4 * \omega$

G_2 cones

Definition

A G_2 cone is a 7-manifold $C=(0,\infty)\times \Sigma$, with Σ compact, and a torsion-free G_2 structure $\varphi_{\mathcal{C}}$ with induced metric

$$g_{c} = dr^{2} + r^{2}g_{\Sigma}$$
 (a Riemannian cone)

- The link Σ of a G_2 cone C is necessarily a compact strictly nearly Kähler 6-manifold (also called a *Gray manifold*.)
- These are almost Hermitian manifolds (Σ, J, g, ω) with $c_1(\Sigma) = 0$, such that

$$d\omega = -3\operatorname{Re}(\Omega)$$
 $d\operatorname{Im}(\Omega) = 4 * \omega$

• There are only three known compact examples, all homogeneous, but there are expected to exist *many examples*.

Asymptotically conical (AC) G₂ manifolds

Definition

We say (N, φ_N) is an AC G_2 manifold of rate $\nu < 0$, asymptotic to the G_2 cone (C, φ_C) , if outside of a compact set $K \subseteq N$, we have $N \setminus K \cong (R, \infty) \times \Sigma$, and

$$abla^k(\varphi_N - \varphi_C) = \mathrm{O}(r^{\nu - k}) \text{ as } r \to \infty \quad \forall k \ge 0$$

Asymptotically conical (AC) G_2 manifolds

Definition

We say (N, φ_N) is an AC G_2 manifold of rate $\nu < 0$, asymptotic to the G_2 cone (C, φ_C) , if outside of a compact set $K \subseteq N$, we have $N \setminus K \cong (R, \infty) \times \Sigma$, and

$$abla^k(arphi_{\scriptscriptstyle N}-arphi_{\scriptscriptstyle C})=\mathrm{O}(r^{
u-k}) \ ext{as} \ r o\infty \quad orall k\geq 0$$

- ullet There are three known examples, the Bryant–Salamon manifolds, asymptotic to the three known G_2 cones.
- $\Lambda^2_-(S^4)$ and $\Lambda^2_-(\mathbb{CP}^2)$ have rate $\nu=-4$.
- $\mathcal{S}(S^3)$ has rate $\nu = -3$.

Asymptotically conical (AC) G₂ manifolds

Definition

We say (N, φ_N) is an AC G_2 manifold of rate $\nu < 0$, asymptotic to the G_2 cone (C, φ_C) , if outside of a compact set $K \subseteq N$, we have $N \setminus K \cong (R, \infty) \times \Sigma$, and

$$abla^k(\varphi_N - \varphi_C) = \mathrm{O}(r^{\nu - k}) \text{ as } r \to \infty \quad \forall k \ge 0$$

- ullet There are three known examples, the Bryant–Salamon manifolds, asymptotic to the three known G_2 cones.
- $\Lambda^2_-(S^4)$ and $\Lambda^2_-(\mathbb{CP}^2)$ have rate $\nu=-4$.
- $\mathcal{S}(S^3)$ has rate $\nu = -3$.

Conically singular (CS) G_2 manifolds

Definition

Let \overline{M} be a topological space with $M = \overline{M} \setminus \{x_1, \ldots, x_n\}$ a noncompact smooth 7-manifold. We say (M, φ_M) is an CS G_2 manifold of rate (ν_1, \ldots, ν_n) , where $\nu_i > 0$, asymptotic to the G_2 cones (C_i, φ_{C_i}) , if outside of a compact set $K \subseteq M$, we have $M \setminus K \cong \bigsqcup_{i=1}^n (0, R) \times \Sigma_i$, and

$$abla^k(arphi_{\mathsf{M}}-arphi_{\mathsf{C}_i})=\mathrm{O}(r_i^{
u_i-k}) \ \, \text{as} \ \, r_i o 0 \quad \forall k\geq 0, i=1,\ldots,n$$

where r_i is the distance to the vertex of C_i .

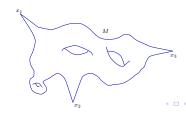
Conically singular (CS) G_2 manifolds

Definition

Let \overline{M} be a topological space with $M=\overline{M}\setminus\{x_1,\ldots,x_n\}$ a noncompact smooth 7-manifold. We say (M,φ_M) is an CS G_2 manifold of rate (ν_1,\ldots,ν_n) , where $\nu_i>0$, asymptotic to the G_2 cones (C_i,φ_{C_i}) , if outside of a compact set $K\subseteq M$, we have $M\setminus K\cong \bigsqcup_{i=1}^n (0,R)\times \Sigma_i$, and

$$abla^k(arphi_M - arphi_{c_i}) = \mathrm{O}(r_i^{
u_i - k}) \text{ as } r_i o 0 \quad \forall k \ge 0, i = 1, \dots, n$$

where r_i is the distance to the vertex of C_i .



• Physics of M-theory/supergravity requires compact CS G₂ manifolds.

ullet Physics of M-theory/supergravity requires compact CS G_2 manifolds.

• Physics of M-theory/supergravity requires compact CS G₂ manifolds.

Examples:

There are no known examples.

Conically singular (CS) G_2 manifolds

 \bullet Physics of M-theory/supergravity requires compact CS G_2 manifolds.

- There are no known examples.
- They are expected to exist in abundance. (see below and next slide)

Conically singular (CS) G_2 manifolds

 \bullet Physics of M-theory/supergravity requires compact CS G_2 manifolds.

- There are no known examples.
- They are expected to exist in abundance. (see below and next slide)
- Possible construction of CS G₂ manifolds by generalizing Joyce–Karigiannis glueing construction. (2014?)

 \bullet Physics of M-theory/supergravity requires compact CS G_2 manifolds.

- There are no known examples.
- They are expected to exist in abundance. (see below and next slide)
- \bullet Possible construction of CS $\rm G_2$ manifolds by generalizing Joyce–Karigiannis glueing construction. (2014?)
- CS G_2 manifolds should arise as boundary points in the moduli space of compact smooth G_2 manifolds, as *singular limits* of families of compact smooth G_2 manifolds.

Conically singular (CS) G_2 manifolds

ullet Physics of M-theory/supergravity requires compact CS G_2 manifolds.

- There are no known examples.
- They are expected to exist in abundance. (see below and next slide)
- \bullet Possible construction of CS G_2 manifolds by generalizing Joyce–Karigiannis glueing construction. (2014?)
- CS G₂ manifolds should arise as boundary points in the moduli space of compact smooth G₂ manifolds, as singular limits of families of compact smooth G₂ manifolds.
- One way to show this, and thus to provide evidence for their likely existence, is to prove that they would often be desingularizable into families of compact smooth G₂ manifolds.

Conically singular (CS) G_2 manifolds

 \bullet Physics of M-theory/supergravity requires compact CS G_2 manifolds.

- There are no known examples.
- They are expected to exist in abundance. (see below and next slide)
- \bullet Possible construction of CS G_2 manifolds by generalizing Joyce–Karigiannis glueing construction. (2014?)
- CS G₂ manifolds should arise as boundary points in the moduli space of compact smooth G₂ manifolds, as singular limits of families of compact smooth G₂ manifolds.
- One way to show this, and thus to provide evidence for their likely existence, is to prove that they would often be desingularizable into families of compact smooth G₂ manifolds.
- A way to desingularize them is to cut out a neighbourhood of the singular points, and glue in $AC \ G_2$ manifolds, such as the Bryant–Salamon examples.

Desingularization of CS G_2 manifolds

Theorem (Karigiannis, Geometry & Topology, 2009)

Let M be a CS G_2 manifold with isolated conical singularities x_1, \ldots, x_n , modelled on G_2 cones C_1, \ldots, C_n . Suppose that N_1, \ldots, N_n are AC G_2 manifolds modelled on the same G_2 cones, with all rates $\nu_i \leq -3$.

Desingularization of CS G₂ manifolds

Theorem (Karigiannis, Geometry & Topology, 2009)

Let M be a CS G_2 manifold with isolated conical singularities x_1, \ldots, x_n , modelled on G_2 cones C_1, \ldots, C_n . Suppose that N_1, \ldots, N_n are AC G_2 manifolds modelled on the same G_2 cones, with all rates $\nu_i \leq -3$. If a certain necessary topological condition (relating all the singular points) is satisfied, then the N_i 's can always be glued to $M \setminus \{x_1, \ldots, x_n\}$ to obtain a smooth compact G_2 manifold.

Desingularization of CS G_2 manifolds

Theorem (Karigiannis, Geometry & Topology, 2009)

Let M be a CS G_2 manifold with isolated conical singularities x_1, \ldots, x_n , modelled on G_2 cones C_1, \ldots, C_n . Suppose that N_1, \ldots, N_n are AC G_2 manifolds modelled on the same G_2 cones, with all rates $\nu_i \leq -3$. If a certain necessary topological condition (relating all the singular points) is satisfied, then the N_i 's can always be glued to $M \setminus \{x_1, \ldots, x_n\}$ to obtain a smooth compact G_2 manifold.



 Understanding the moduli space of AC G₂ manifolds tells us something about how many ways we can desingularize a CS G₂ manifold.

- Understanding the *moduli space* of AC G_2 manifolds tells us something about how many ways we can desingularize a CS G_2 manifold.
- Understanding the *moduli space* of CS G_2 manifolds tells us something about how much of the "boundary" of the moduli space of compact *smooth* G_2 manifolds consists of CS manifolds.

- Understanding the *moduli space* of AC $\rm G_2$ manifolds tells us something about how many ways we can desingularize a CS $\rm G_2$ manifold.
- Understanding the *moduli space* of CS G_2 manifolds tells us something about how much of the "boundary" of the moduli space of compact *smooth* G_2 manifolds consists of CS manifolds.

Definition

Let M be a G_2 conifold of rate ν . Define \mathcal{M}_{ν} to be the *moduli space* of all torsion-free G_2 structures on M, asymptotic to the same G_2 cones at the ends, with the same rates ν_i , modulo the action of diffeomorphisms which preserve this condition.

- Understanding the *moduli space* of AC G_2 manifolds tells us something about how many ways we can desingularize a CS G_2 manifold.
- Understanding the moduli space of CS G₂ manifolds tells us something about how much of the "boundary" of the moduli space of compact smooth G₂ manifolds consists of CS manifolds.

Definition

Let M be a G_2 conifold of rate ν . Define \mathcal{M}_{ν} to be the *moduli space* of all torsion-free G_2 structures on M, asymptotic to the same G_2 cones at the ends, with the same rates ν_i , modulo the action of diffeomorphisms which preserve this condition.

There are natural maps $\Upsilon^k: H^k(M) \to \bigoplus_{i=1}^n H^k(\Sigma_i)$. Let $K_i(\lambda)$ be the space of *homogeneous* closed and coclosed 3-forms on C_i of rate λ .

Theorem (Karigiannis-Lotay, 2012)

For generic ν (away from a finite set of "critical rates"):

Theorem (Karigiannis-Lotay, 2012)

For generic ν (away from a finite set of "critical rates"):

• In the AC case with $\nu \in (-4, -\frac{5}{2})$, the moduli space \mathcal{M}_{ν} is a smooth manifold with dim \mathcal{M}_{ν} equal to

$$\begin{split} \dim H^3_{cs}(M); & -4 < \nu < -3 \\ \dim H^3_{cs}(M) + \operatorname{rank}(\Upsilon^3); & -3 < \nu < -3 + \epsilon \\ \dim H^3_{cs}(M) + \operatorname{rank}(\Upsilon^3) + \sum_{\lambda \in (-3,\nu)} \dim K(\lambda); & -3 + \epsilon < \nu < -\frac{5}{2} \end{split}$$

Deformation theory of G_2 conifolds

Theorem (Karigiannis-Lotay, 2012)

For generic ν (away from a finite set of "critical rates"):

• In the AC case with $\nu \in (-4, -\frac{5}{2})$, the moduli space \mathcal{M}_{ν} is a smooth manifold with dim \mathcal{M}_{ν} equal to

$$\begin{split} \dim H^3_{cs}(M); & -4 < \nu < -3 \\ \dim H^3_{cs}(M) + \operatorname{rank}(\Upsilon^3); & -3 < \nu < -3 + \epsilon \\ \dim H^3_{cs}(M) + \operatorname{rank}(\Upsilon^3) + \sum_{\lambda \in (-3,\nu)} \dim K(\lambda); & -3 + \epsilon < \nu < -\frac{5}{2} \end{split}$$

• In the AC case with $\nu < -4$, the moduli space may be obstructed, and its virtual dimension v-dim \mathcal{M}_{ν} is

$$\begin{split} \dim H^3_{cs}(M) - \operatorname{rank}(\Upsilon^4); & -4 - \epsilon < \nu < -4 \\ \dim H^3_{cs}(M) - \operatorname{rank}(\Upsilon^4) - \sum_{\lambda \in (\nu, -4)} \dim K(\lambda); & \nu < -4 - \epsilon \end{split}$$

Theorem (Karigiannis-Lotay, 2012)

For generic
$$\nu = (\nu_1, \ldots, \nu_n)$$
:

Theorem (Karigiannis-Lotay, 2012)

For generic $\nu = (\nu_1, \dots, \nu_n)$:

• In the CS case, the moduli space may be obstructed, and its virtual dimension v- $\dim \mathcal{M}_{\nu}$ is

$$\dim H^3(M) - \operatorname{rank}(\Upsilon^4) - \sum_{i=1}^n \sum_{\lambda \in (-3, \nu_i)} \dim K_i(\lambda)$$

Theorem (Karigiannis-Lotay, 2012)

For generic $\nu = (\nu_1, \dots, \nu_n)$:

• In the CS case, the moduli space may be obstructed, and its virtual dimension v- $\dim \mathcal{M}_{\nu}$ is

$$\dim H^3(M) - \operatorname{rank}(\Upsilon^4) - \sum_{i=1}^n \sum_{\lambda \in (-3, \nu_i)} \dim K_i(\lambda)$$

• In all cases, the obstruction space is a space of forms on the cones, of degree 2+4, which are in the kernel of $d+d^*$ but whose pure degree components are *not* independently closed and coclosed.

Deformation theory of G_2 conifolds

Theorem (Karigiannis-Lotay, 2012)

For generic $\nu = (\nu_1, \dots, \nu_n)$:

• In the CS case, the moduli space may be obstructed, and its virtual dimension v- $\dim \mathcal{M}_{\nu}$ is

$$\dim H^3(M) - \operatorname{rank}(\Upsilon^4) - \sum_{i=1}^n \sum_{\lambda \in (-3, \nu_i)} \dim K_i(\lambda)$$

- In all cases, the obstruction space is a space of forms on the cones, of degree 2+4, which are in the kernel of $d+d^*$ but whose pure degree components are *not* independently closed and coclosed.
- The proof uses the Lockhart–McOwen machinery of weighted Sobolev spaces and its associated Fredholm theory, plus new Hodge-theoretic results in this context, and other G_2 specific ingredients (surjectivity of Dirac operator, L^2 harmonic 1-forms are parallel, more ...)

[1] The Bryant–Salamon examples are rigid as AC G_2 manifolds. That is, they have no deformations, apart from trivial scalings.

- [1] The Bryant–Salamon examples are *rigid* as AC G_2 manifolds. That is, they have *no deformations*, apart from trivial scalings.
- [2] If a CS G_2 manifold has singularities whose links are all from 2 of the 3 known examples (either $S^3 \times S^3$ or \mathbb{CP}^3) then the obstructions vanish, and the CS moduli space is smooth.

- [1] The Bryant–Salamon examples are rigid as AC G_2 manifolds. That is, they have no deformations, apart from trivial scalings.
- [2] If a CS G_2 manifold has singularities whose links are all from 2 of the 3 known examples (either $S^3 \times S^3$ or \mathbb{CP}^3) then the obstructions vanish, and the CS moduli space is smooth. This will remain true if we also allow singularities with links from the other known example, $\mathrm{SU}(3)/T^2$, provided it has no strictly nearly Kähler deformations.

- [1] The Bryant–Salamon examples are rigid as AC G_2 manifolds. That is, they have no deformations, apart from trivial scalings.
- [2] If a CS G_2 manifold has singularities whose links are all from 2 of the 3 known examples (either $S^3 \times S^3$ or \mathbb{CP}^3) then the obstructions vanish, and the CS moduli space is smooth. This will remain true if we also allow singularities with links from the other known example, $\mathrm{SU}(3)/T^2$, provided it has no strictly nearly Kähler deformations.
- [3] In such cases, the dimension of the CS moduli space is *exactly one less* than the dimension of the moduli space of compact smooth desingularizations of the conifold, so the CS singularities are the "highest dimensional stratum" of the boundary.

- [1] The Bryant–Salamon examples are rigid as AC G_2 manifolds. That is, they have no deformations, apart from trivial scalings.
- [2] If a CS G_2 manifold has singularities whose links are all from 2 of the 3 known examples (either $S^3 \times S^3$ or \mathbb{CP}^3) then the obstructions vanish, and the CS moduli space is smooth. This will remain true if we also allow singularities with links from the other known example, $\mathrm{SU}(3)/T^2$, provided it has no strictly nearly Kähler deformations.
- [3] In such cases, the dimension of the CS moduli space is exactly one less than the dimension of the moduli space of compact smooth desingularizations of the conifold, so the CS singularities are the "highest dimensional stratum" of the boundary. That is, "most" of the ways the desingularized G_2 manifold can become singular is to develop such isolated conical singularities.

- [1] The Bryant–Salamon examples are rigid as AC G_2 manifolds. That is, they have no deformations, apart from trivial scalings.
- [2] If a CS G_2 manifold has singularities whose links are all from 2 of the 3 known examples (either $S^3 \times S^3$ or \mathbb{CP}^3) then the obstructions vanish, and the CS moduli space is smooth. This will remain true if we also allow singularities with links from the other known example, $\mathrm{SU}(3)/T^2$, provided it has no strictly nearly Kähler deformations.
- [3] In such cases, the dimension of the CS moduli space is exactly one less than the dimension of the moduli space of compact smooth desingularizations of the conifold, so the CS singularities are the "highest dimensional stratum" of the boundary. That is, "most" of the ways the desingularized G_2 manifold can become singular is to develop such isolated conical singularities.
- [4] Statements [2] and [3] will be true *in general* if certain conjectures about the spectrum of the Laplacian on forms are true for *all* compact strictly nearly Kähler 6-manifolds.

A new construction of compact G_2 manifolds

(which may possibly generalize to construct compact CS G_2 manifolds)

[Step 1] Construct an orbifold M

• Let $(N^6, g, \omega, \Omega, J)$ be a compact Calabi-Yau manifold admitting an antiholomorpic isometric involution τ :

$$au^*(g) = g, \qquad au^*(\omega) = -\omega, \qquad au^*(\Omega) = \overline{\Omega}, \qquad au^*(J) = -J.$$

There exist many such manifolds. For example, on a quintic in \mathbb{CP}^4 with real coefficients, complex conjugation yields such an involution.

[Step 1] Construct an orbifold M

• Let $(N^6, g, \omega, \Omega, J)$ be a compact Calabi-Yau manifold admitting an antiholomorpic isometric involution τ :

$$au^*(g) = g, \qquad au^*(\omega) = -\omega, \qquad au^*(\Omega) = \overline{\Omega}, \qquad au^*(J) = -J.$$

There exist many such manifolds. For example, on a quintic in \mathbb{CP}^4 with real coefficients, complex conjugation yields such an involution.

• Define $M^7 = N^6 \times S^1$. Then

$$\varphi = \operatorname{Re}(\Omega) + d\theta \wedge \omega$$

is a torsion-free G_2 structure on M (with holonomy $SU(3) \subseteq G_2$.)

[Step 1] Construct an orbifold M

• Let $(N^6, g, \omega, \Omega, J)$ be a compact Calabi-Yau manifold admitting an antiholomorpic isometric involution τ :

$$au^*(g) = g, \qquad au^*(\omega) = -\omega, \qquad au^*(\Omega) = \overline{\Omega}, \qquad au^*(J) = -J.$$

There exist many such manifolds. For example, on a quintic in \mathbb{CP}^4 with real coefficients, complex conjugation yields such an involution.

• Define $M^7 = N^6 \times S^1$. Then

$$\varphi = \operatorname{Re}(\Omega) + d\theta \wedge \omega$$

is a torsion-free G_2 structure on M (with holonomy $SU(3) \subseteq G_2$.)

• Define $\sigma: M \to M$ by $\sigma(p, \theta) = (\tau(p), -\theta)$. Then σ is an involution of M such that $\sigma^*(\varphi) = \varphi$. The quotient space $\widehat{M} = M/\langle \sigma \rangle$ is a G_2 orbifold, with singularities locally of the form $\mathbb{R}^3 \times (\mathbb{C}^2/\{\pm 1\})$.

[Step 1] Construct an orbifold M

• Let $(N^6, g, \omega, \Omega, J)$ be a compact Calabi-Yau manifold admitting an antiholomorpic isometric involution τ :

$$\tau^*(g) = g, \qquad \tau^*(\omega) = -\omega, \qquad \tau^*(\Omega) = \overline{\Omega}, \qquad \tau^*(J) = -J.$$

There exist many such manifolds. For example, on a quintic in \mathbb{CP}^4 with real coefficients, complex conjugation yields such an involution.

• Define $M^7 = N^6 \times S^1$. Then

$$\varphi = \operatorname{Re}(\Omega) + d\theta \wedge \omega$$

is a torsion-free G_2 structure on M (with holonomy $SU(3) \subseteq G_2$.)

- Define $\sigma: M \to M$ by $\sigma(p, \theta) = (\tau(p), -\theta)$. Then σ is an involution of M such that $\sigma^*(\varphi) = \varphi$. The quotient space $\widehat{M} = M/\langle \sigma \rangle$ is a G_2 orbifold, with singularities locally of the form $\mathbb{R}^3 \times (\mathbb{C}^2/\{\pm 1\})$.
- The singular set $L^3 = A^3 \times \{\pm 1\}$, where $A^3 = \text{Fix}(\tau)$ is a compact special Lagrangian submanifold of N^6 , and L is totally geodesic in M.

[Step 2] Glue in a family of Eguchi-Hanson spaces

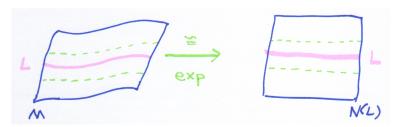
• We want to cut out a neighbourhood of the singular locus L in \hat{M} and glue in a noncompact smooth manifold to get a smooth compact 7-manifold M, which hopefully will admit a closed G₂ structure with small enough torsion, to to apply Joyce's existence theorem.

[Step 2] Glue in a family of Eguchi-Hanson spaces

- We want to cut out a neighbourhood of the singular locus L in \hat{M} and glue in a noncompact smooth manifold to get a smooth compact 7-manifold M, which hopefully will admit a closed G₂ structure with small enough torsion, to to apply Joyce's existence theorem.
- As L is compact in M, there exists an open neighbourhood $U \supset L$ of L in M which is diffeomorphic to a neighbourhood of the zero section in the normal bundle N(L) of L in M, via the exponential map.

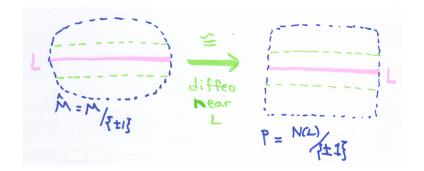
[Step 2] Glue in a family of Eguchi-Hanson spaces

- We want to cut out a neighbourhood of the singular locus L in \widehat{M} and glue in a noncompact smooth manifold to get a smooth compact 7-manifold \widetilde{M} , which hopefully will admit a closed G_2 structure with small enough torsion, to to apply Joyce's existence theorem.
- As L is compact in M, there exists an open neighbourhood $U \supset L$ of L in M which is diffeomorphic to a neighbourhood of the zero section in the normal bundle N(L) of L in M, via the exponential map.

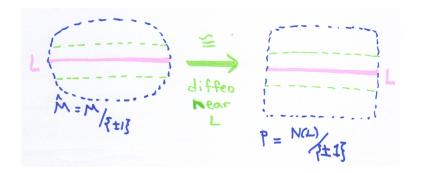


• The submanifold L is an associative submanifold. This implies that, given a nonvanishing 1-form α on L, the normal bundle N(L) is actually a \mathbb{C}^2 bundle over L, and the above diffeomorphism descends to identify \widehat{M} with $P = N(L)/\{\pm 1\}$ near L.

• The submanifold L is an associative submanifold. This implies that, given a nonvanishing 1-form α on L, the normal bundle N(L) is actually a \mathbb{C}^2 bundle over L, and the above diffeomorphism descends to identify \widehat{M} with $P = N(L)/\{\pm 1\}$ near L.



• The submanifold L is an associative submanifold. This implies that, given a nonvanishing 1-form α on L, the normal bundle N(L) is actually a \mathbb{C}^2 bundle over L, and the above diffeomorphism descends to identify \widehat{M} with $P = N(L)/\{\pm 1\}$ near L.



• The fibres of $P=N(L)/\{\pm 1\}$ are $\mathbb{C}^2/\{\pm 1\}$. We resolve P to \widetilde{P} with a 'fibre-wise blow-up', replacing each fibre with $\mathbb{C}^2/\{\pm 1\} \cong T^*S^2$.

• Each fibre T^*S^2 admits an $S^2 \times (0, \infty)$ family of Eguchi-Hanson metrics (holonomy SU(2) metrics) that are parametrized by a choice of complex structure on $\mathbb{R}^4 = \mathbb{H}$ (a unit vector in \mathbb{R}^3) and a scaling.

- Each fibre T^*S^2 admits an $S^2 \times (0,\infty)$ family of *Eguchi-Hanson metrics* (holonomy $\mathrm{SU}(2)$ metrics) that are parametrized by a choice of complex structure on $\mathbb{R}^4 = \mathbb{H}$ (a unit vector in \mathbb{R}^3) and a scaling.
- If N(L) is trivial, then $P = N(L)/\{\pm 1\} \cong L \times (\mathbb{C}^2/\{\pm 1\})$. If in addition $L \cong T^3$, then we could take *any* E-H metric on T^*S^2 and the resolution $\widetilde{P} \cong L \times T^*S^2$ would admit a torsion-free G_2 structure.

- Each fibre T^*S^2 admits an $S^2 \times (0,\infty)$ family of *Eguchi-Hanson metrics* (holonomy $\mathrm{SU}(2)$ metrics) that are parametrized by a choice of complex structure on $\mathbb{R}^4 = \mathbb{H}$ (a unit vector in \mathbb{R}^3) and a scaling.
- If N(L) is trivial, then $P=N(L)/\{\pm 1\}\cong L\times (\mathbb{C}^2/\{\pm 1\})$. If in addition $L\cong T^3$, then we could take any E-H metric on T^*S^2 and the resolution $\widetilde{P}\cong L\times T^*S^2$ would admit a torsion-free G_2 structure.
- In general, $L \ncong T^3$ and N(L) is not trivial, so there does not exist a canonical torsion-free G_2 structure on \widetilde{P} .

- Each fibre T^*S^2 admits an $S^2 \times (0, \infty)$ family of Eguchi-Hanson metrics (holonomy SU(2) metrics) that are parametrized by a choice of complex structure on $\mathbb{R}^4 = \mathbb{H}$ (a unit vector in \mathbb{R}^3) and a scaling.
- If N(L) is trivial, then $P = N(L)/\{\pm 1\} \cong L \times (\mathbb{C}^2/\{\pm 1\})$. If in addition $L \cong T^3$, then we could take any E-H metric on T^*S^2 and the resolution $\widetilde{P} \cong L \times T^*S^2$ would admit a torsion-free G_2 structure.
- In general, $L \ncong T^3$ and N(L) is not trivial, so there does not exist a canonical torsion-free G_2 structure on \widetilde{P} .
- Since $S^2 \times (0, \infty) \cong \mathbb{R}^3 \setminus \{\mathbf{0}\}$, the particular choice of E-H metric in each fibre naturally corresponds to our nonvanishing 1-form α on L.

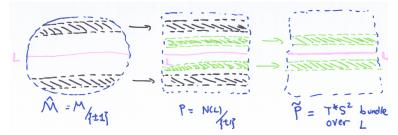
- Each fibre T^*S^2 admits an $S^2 \times (0,\infty)$ family of *Eguchi-Hanson metrics* (holonomy $\mathrm{SU}(2)$ metrics) that are parametrized by a choice of complex structure on $\mathbb{R}^4 = \mathbb{H}$ (a unit vector in \mathbb{R}^3) and a scaling.
- If N(L) is trivial, then $P=N(L)/\{\pm 1\}\cong L\times (\mathbb{C}^2/\{\pm 1\})$. If in addition $L\cong T^3$, then we could take any E-H metric on T^*S^2 and the resolution $\widetilde{P}\cong L\times T^*S^2$ would admit a torsion-free G_2 structure.
- In general, $L \ncong T^3$ and N(L) is not trivial, so there does not exist a canonical torsion-free G_2 structure on \widetilde{P} .
- Since $S^2 \times (0, \infty) \cong \mathbb{R}^3 \setminus \{\mathbf{0}\}$, the particular choice of E-H metric in each fibre naturally corresponds to our nonvanishing 1-form α on L.
- We can use α to construct a closed G_2 structure $\varphi_{\widetilde{P}}$ on \widetilde{P} with small torsion, but for the torsion to have any chance of being small enough, it is necessary that $d\alpha = 0$ and $d^*\alpha = 0$. For now, let us assume that we have such a nowhere vanishing harmonic 1-form α .

[Step 3] Construct a compact smooth manifold M

• We construct a compact smooth manifold \widetilde{M} as follows. Far from the zero section, identify P with \widehat{M} using the exponential map. Close to the zero section, identify P with \widetilde{P} using the resolution map.

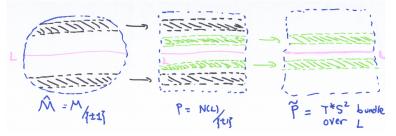
[Step 3] Construct a compact smooth manifold \widetilde{M}

• We construct a compact smooth manifold M as follows. Far from the zero section, identify P with \widehat{M} using the exponential map. Close to the zero section, identify P with \widetilde{P} using the resolution map.



[Step 3] Construct a compact smooth manifold \widetilde{M}

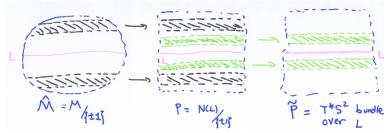
• We construct a compact smooth manifold \widehat{M} as follows. Far from the zero section, identify P with \widehat{M} using the exponential map. Close to the zero section, identify P with \widehat{P} using the resolution map.



• There is a "canonical" G_2 structure $\overline{\varphi}$ on P obtained by taking the constant term in an expansion of $\varphi_{\widehat{M}}$ in powers of t, the distance to L.

[Step 3] Construct a compact smooth manifold \widetilde{M}

• We construct a compact smooth manifold \widehat{M} as follows. Far from the zero section, identify P with \widehat{M} using the exponential map. Close to the zero section, identify P with \widehat{P} using the resolution map.



- There is a "canonical" G_2 structure $\overline{\varphi}$ on P obtained by taking the constant term in an expansion of $\varphi_{\widehat{M}}$ in powers of t, the distance to L.
- We want to construct a closed G_2 structure $\widetilde{\varphi}$ on \widetilde{M} by interpolating between $\varphi_{\widehat{M}}$ and $\varphi_{\widetilde{P}}$ using $\overline{\varphi}$. We use the metric \overline{g} of $\overline{\varphi}$ to measure the torsion of $\widetilde{\varphi}$, since we cannot compare \widehat{M} and \widetilde{P} directly.

• In fact, the G_2 structures $\overline{\varphi}$ on P and $\varphi_{\widetilde{P}}$ on \widetilde{P} are not closed, so these have to be slightly modified, using smooth cut-off functions, to "closed versions" before we can construct $\widetilde{\varphi}$ on \widetilde{M} by interpolation.

- In fact, the G_2 structures $\overline{\varphi}$ on P and $\varphi_{\widetilde{P}}$ on \widetilde{P} are not closed, so these have to be slightly modified, using smooth cut-off functions, to "closed versions" before we can construct $\widetilde{\varphi}$ on \widetilde{M} by interpolation.
- More significantly, however, is that the torsion of $\widetilde{\varphi}$ is always too big to be able to apply Joyce's theorem, even under the assumption of the existence of a nowhere vanishing harmonic 1-form α on L.

- In fact, the G_2 structures $\overline{\varphi}$ on P and $\varphi_{\widetilde{P}}$ on \widetilde{P} are not closed, so these have to be slightly modified, using smooth cut-off functions, to "closed versions" before we can construct $\widetilde{\varphi}$ on \widetilde{M} by interpolation.
- More significantly, however, is that the torsion of $\widetilde{\varphi}$ is always too big to be able to apply Joyce's theorem, even under the assumption of the existence of a nowhere vanishing harmonic 1-form α on L.
- This does not happen in Joyce's or Kovalev's constructions.

- In fact, the G_2 structures $\overline{\varphi}$ on P and $\varphi_{\widetilde{P}}$ on \widetilde{P} are not closed, so these have to be slightly modified, using smooth cut-off functions, to "closed versions" before we can construct $\widetilde{\varphi}$ on \widetilde{M} by interpolation.
- More significantly, however, is that the torsion of $\widetilde{\varphi}$ is always too big to be able to apply Joyce's theorem, even under the assumption of the existence of a nowhere vanishing harmonic 1-form α on L.
- This does not happen in Joyce's or Kovalev's constructions.
- ullet The major problem is that the space P that we are "glueing in" does not have a natural torsion-free G_2 structure.

- In fact, the G_2 structures $\overline{\varphi}$ on P and $\varphi_{\widetilde{P}}$ on \widetilde{P} are not closed, so these have to be slightly modified, using smooth cut-off functions, to "closed versions" before we can construct $\widetilde{\varphi}$ on \widetilde{M} by interpolation.
- More significantly, however, is that the torsion of $\widetilde{\varphi}$ is always too big to be able to apply Joyce's theorem, even under the assumption of the existence of a nowhere vanishing harmonic 1-form α on L.
- This does not happen in Joyce's or Kovalev's constructions.
- ullet The major problem is that the space P that we are "glueing in" does not have a natural torsion-free G_2 structure.
- Also, the fact that we need to introduce an "intermediary" manifold with G_2 structure $(P, \overline{\varphi})$ and use its metric \overline{g} to measure the size of the torsion creates additional complications. The G_2 structure $\overline{\varphi}$ is not a priori close enough to φ_M .

- In fact, the G_2 structures $\overline{\varphi}$ on P and $\varphi_{\widetilde{P}}$ on \widetilde{P} are not closed, so these have to be slightly modified, using smooth cut-off functions, to "closed versions" before we can construct $\widetilde{\varphi}$ on \widetilde{M} by interpolation.
- More significantly, however, is that the torsion of $\widetilde{\varphi}$ is always too big to be able to apply Joyce's theorem, even under the assumption of the existence of a nowhere vanishing harmonic 1-form α on L.
- This does not happen in Joyce's or Kovalev's constructions.
- ullet The major problem is that the space P that we are "glueing in" does not have a natural torsion-free G_2 structure.
- Also, the fact that we need to introduce an "intermediary" manifold with G_2 structure $(P, \overline{\varphi})$ and use its metric \overline{g} to measure the size of the torsion creates additional complications. The G_2 structure $\overline{\varphi}$ is not a priori close enough to φ_M .
- We need to perform two *corrections* to solve these problems.

[Step 4] 1st correction: bend horizontal and vertical

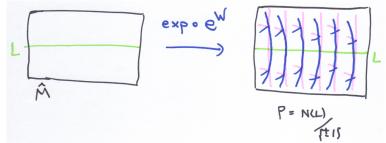
• We begin with the easier correction: modifying the identification between M and N(L) so that the canonical G_2 structure $\overline{\varphi}$ on $P = N(L)/\{\pm 1\}$ is close enough to φ_M on \widehat{M} .

[Step 4] 1st correction: bend horizontal and vertical

- We begin with the easier correction: modifying the identification between M and N(L) so that the canonical G_2 structure $\overline{\varphi}$ on $P = N(L)/\{\pm 1\}$ is close enough to φ_M on M.
- We can change the connection on N(L) to "bend" the horizontal spaces and we can precompose the exponential mapping by a diffeomorphism of M generated by an appropriately chosen vector field W to "bend" the vertical directions as well.

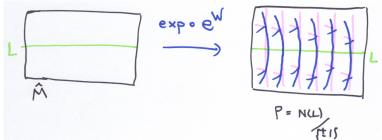
[Step 4] 1st correction: bend horizontal and vertical

- We begin with the easier correction: modifying the identification between M and N(L) so that the canonical G_2 structure $\overline{\varphi}$ on $P = N(L)/\{\pm 1\}$ is close enough to φ_M on M.
- We can change the connection on N(L) to "bend" the horizontal spaces and we can precompose the exponential mapping by a diffeomorphism of M generated by an appropriately chosen vector field W to "bend" the vertical directions as well.



[Step 4] 1st correction: bend horizontal and vertical

- We begin with the easier correction: modifying the identification between M and N(L) so that the canonical G_2 structure $\overline{\varphi}$ on $P = N(L)/\{\pm 1\}$ is close enough to φ_M on M.
- We can change the connection on N(L) to "bend" the horizontal spaces and we can precompose the exponential mapping by a diffeomorphism of M generated by an appropriately chosen vector field W to "bend" the vertical directions as well.



• These can in fact be chosen to make $\overline{\varphi}$ close enough to φ_{M} .

ullet We also need to modify the G_2 structure $arphi_{\widetilde{P}}$ on \widetilde{P} in order to make the torsion of $\widetilde{\varphi}$ on \widetilde{M} small enough to apply Joyce's theorem.

- ullet We also need to modify the G_2 structure $arphi_{\widetilde{P}}$ on \widetilde{P} in order to make the torsion of $\widetilde{\varphi}$ on \widetilde{M} small enough to apply Joyce's theorem.
- To do this, we need to be able to solve an elliptic PDE on the noncompact Eguchi-Hanson space T^*S^2 of the form

$$(d+d^*)\eta=\sigma$$

for some mixed-degree form σ given by the original G_2 structure $\varphi_{\widetilde{\rho}}$.

- ullet We also need to modify the G_2 structure $arphi_{\widetilde{P}}$ on \widetilde{P} in order to make the torsion of $\widetilde{\varphi}$ on \widetilde{M} small enough to apply Joyce's theorem.
- To do this, we need to be able to solve an elliptic PDE on the noncompact Eguchi-Hanson space T^*S^2 of the form

$$(d+d^*)\eta=\sigma$$

for some mixed-degree form σ given by the original G_2 structure $\varphi_{\widetilde{\rho}}$.

• This is done using Lockhart–McOwen theory of Fredholm operators on noncompact manifolds with "well-behaved" geometry at infinity.

- ullet We also need to modify the G_2 structure $arphi_{\widetilde{P}}$ on \widetilde{P} in order to make the torsion of $\widetilde{\varphi}$ on \widetilde{M} small enough to apply Joyce's theorem.
- To do this, we need to be able to solve an elliptic PDE on the noncompact Eguchi-Hanson space T^*S^2 of the form

$$(d+d^*)\eta=\sigma$$

for some mixed-degree form σ given by the original G_2 structure $\varphi_{\widetilde{\rho}}$.

- This is done using Lockhart–McOwen theory of Fredholm operators on noncompact manifolds with "well-behaved" geometry at infinity.
- The theory says that such an equation can be solved if and only if σ has appropriate asymptotic behaviour at infinity, which it does.

• Our construction is more general. We can take any G_2 manifold M admitting an involution σ such that $\sigma^*(\varphi) = \varphi$. Then $L = \operatorname{Fix}(\sigma)$ is an associative submanifold and everything proceeds as before.

- Our construction is more general. We can take any G_2 manifold M admitting an involution σ such that $\sigma^*(\varphi) = \varphi$. Then $L = \operatorname{Fix}(\sigma)$ is an associative submanifold and everything proceeds as before.
- Choosing $M = N^6 \times S^1$ allows us to explicitly compute examples. These examples are very likely still only a small part of the landscape.

- Our construction is more general. We can take any G_2 manifold M admitting an involution σ such that $\sigma^*(\varphi) = \varphi$. Then $L = \operatorname{Fix}(\sigma)$ is an associative submanifold and everything proceeds as before.
- Choosing $M = N^6 \times S^1$ allows us to explicitly compute examples. These examples are very likely still only a small part of the landscape.

In general, we cannot guarantee that the submanifold L will admit a nowhere vanishing harmonic 1-form α . The metric on L is induced from the Calabi-Yau metric on N, which we do not know explicitly.

- Our construction is more general. We can take any G_2 manifold M admitting an involution σ such that $\sigma^*(\varphi) = \varphi$. Then $L = \operatorname{Fix}(\sigma)$ is an associative submanifold and everything proceeds as before.
- Choosing $M = N^6 \times S^1$ allows us to explicitly compute examples. These examples are very likely still only a small part of the landscape.

In general, we cannot guarantee that the submanifold L will admit a nowhere vanishing harmonic 1-form α . The metric on L is induced from the Calabi-Yau metric on N, which we do not know explicitly.

However, if N is near the "large complex structure limit" of the moduli space, from mirror symmetry arguments we expect it to contain a special Lagrangian torus that is *close to being flat*, so it will admit such 1-forms.

Recall that there is a G_2 cone whose link is \mathbb{CP}^3 .

Recall that there is a G_2 cone whose link is \mathbb{CP}^3 .

• We would like to prove that in this case we can do a further perturbation to construct a *compact CS* G_2 *manifold*. This is what physicists actually need to incorporate matter into M-theory.

Recall that there is a G_2 cone whose link is \mathbb{CP}^3 .

- We would like to prove that in this case we can do a further perturbation to construct a *compact CS* G_2 *manifold*. This is what physicists actually need to incorporate matter into M-theory.
- ullet To do this, we need: (i) a version of Joyce's existence theorem for such manifolds; (ii) to understand how the Eguchi-Hanson metric is analytically related to the G_2 cone as the E-H parameter goes to zero.

Recall that there is a G_2 cone whose link is \mathbb{CP}^3 .

- We would like to prove that in this case we can do a further perturbation to construct a *compact CS* G_2 *manifold*. This is what physicists actually need to incorporate matter into M-theory.
- ullet To do this, we need: (i) a version of Joyce's existence theorem for such manifolds; (ii) to understand how the Eguchi-Hanson metric is analytically related to the G_2 cone as the E-H parameter goes to zero.
- These would be the first such examples. If this can be done, then one can use my theorem (2009) to *desingularize further* and obtain a compact smooth G_2 manifold.

Recall that there is a G_2 cone whose link is \mathbb{CP}^3 .

- We would like to prove that in this case we can do a further perturbation to construct a *compact CS* G_2 *manifold*. This is what physicists actually need to incorporate matter into M-theory.
- ullet To do this, we need: (i) a version of Joyce's existence theorem for such manifolds; (ii) to understand how the Eguchi-Hanson metric is analytically related to the G_2 cone as the E-H parameter goes to zero.
- These would be the first such examples. If this can be done, then one can use my theorem (2009) to *desingularize further* and obtain a compact smooth G_2 manifold.

This is work in progress.

Happy birthday, Blaine!