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Calibrations in Contact and Symplectic Geometry

In a celebrated paper published in 1982, F. Reese Har-
vey and H. Blaine Lawson introduced four types of cali-
brated geometries. Special Lagrangian submanifolds of
Calabi-Yau manifolds, associative and coassociative sub-
manifolds of G2 manifolds and Cayley submanifolds of
Spin(7) manifolds. Calibrated geometries have been of
growing interest over the past few years and represent
one of the most mysterious classes of minimal subman-
ifolds.

In this talk, I will first give brief introductions to G2

manifolds, and then discuss relations between G2 and
contact structures.

If time permits, I will also show that techniques from
symplectic geometry can be adapted to the G2 setting.
These are joint projects with Hyunjoo Cho, Firat Arikan
and Albert Todd.



Let Xn be a Riemannian manifold. Given α ∈ Hk(X,Z)
we define the set

H = {M : compact,oriented submanifolds of X|[M ] = α}
and the volume functional V : H → R(≥0) such that

V (M) =

∫
M

dvolM

Goal: Study the geometry of V (M)

a) Local minima: Minimal submanifolds

b) Global minima: Calibrated Geometries



In 1982, Harvey and Lawson introduced the calibrated
geometries and gave four examples.

• Special Lagrangian (in R2n and Calabi-Yau manifolds)
(String Theory)

• Associative (in R7 and G2 manifolds) (M-Theory)

• Coassociative (in R7 and G2 manifolds) (M-Theory)

• Cayley (in R8 and spin(7) manifolds)



Calibrated Geometries

Definition: A calibration is a closed p-form φ

on a Riemannian manifold Xn such that φ re-

stricts to each oriented tangent p-plane of Xn

to be less than or equal to the volume form of

that p-plane.

Definition: The submanifolds of Xn for which

the p-form φ restricts to be equal to the Rie-

mannian volume form are called to be cali-

brated by the form φ.

The term calibrated geometry represents the

ambient manifold X, the calibration φ, and the

collection of submanifolds calibrated by φ.

Calibrated submanifolds are volume minimizing

submanifolds in their homology classes.



Examples of Calibrated Geometries:

1. Complex submanifolds of a Kähler mani-

fold are volume minimizing in their homology

classes, so if ω is the Kähler form and if φ =
ωm

m!
then φ is the calibration and the collection

of complex submanifolds are the submanifolds

calibrated by φ.



2. Let (X2n, ω, J, g,Ω) be a Calabi-Yau mani-

fold where

ω = Kähler 2-form,

J = complex structure,

g = compatible Riemannian metric,

Ω = nowhere vanishing holomorphic (n,0)-form.

Then special Lagrangian submanifolds of X are

calibrated by Re(Ω).



Definition: An n-dimensional submanifold L of

a Calabi-Yau manifold X is special Lagrangian

if ω|L ≡ 0 and Im(Ω)|L ≡ 0.

Equivalently, Re(Ω) restricts to be the volume

form on L with respect to the induced met-

ric. Hence Re(Ω) is the calibration for special

Lagrangian geometries.

Examples:

• Complex Lagrangian submanifolds of hyperkähler

manifolds.

• Fixed point set of anti-holomorphic involu-

tions of Calabi-Yau manifolds (R. Bryant).



• Calibrated Geometries • String Theory
(Harvey-Lawson ’82) Mirror Symmetry (80’s)

⇓

• Deformations of SLags (R.C.McLean ’91)

⇓

• Hom. Mirror Sym. Conj. (Kontsevich ’94)

AND

• Strominger-Yau-Zaslow Conj. (’96)

⇓

???



3. Let (M,φ, g) be a 7-manifold with the holon-

omy group of its Levi-Civita connection is in-

side G2, where

φ = closed and co-closed 3-form,

g = compatible Riemannian metric.

Then M is called a G2 manifold and associative

3-folds and coassociative 4-folds are calibrated

by φ and ∗φ, respectively.



An equivalent way of describing the G2 mani-

fold is as follows:

• Let O denote the octonions, (i.e Cayley num-

bers).

• Let O ∼= R〈1〉⊕Im(O), where Im(O) ∼= R7 are

the imaginary octonions.

• For u, v ∈ Im(O), we can define the cross

product structure u × v = Im(uv). This cross

product structure is defined on R7 ∼= Im(O),

similar to the cross product structure defined

on R3 ∼= Im(H), the imaginary quaternions.



• The cross product × satisfies

u× v = −v × u and < u× v, u >= 0

• Now, we can define a 3-form φ by

φ(u, v, w) =< u× v, w >

Definition: A 7-dimensional manifold (M, g,×, φ)

is called a manifold with G2 structure if each

tangent space of M can be identified with Im(O).



Definition: Let (M, g,×, φ) be a manifold with
G2 structure. Then it is called a G2 manifold
if ∇φ = 0. (i.e φ satisfies an integrability con-
dition)

• There are some rigid relations on a manifold
with G2 structure:

(iuφ) ∧ (ivφ) ∧ φ = Cgφ(u, v)volφ

φ(u, v, w) = g(u× v, w) =< u× v, w >φ

• This is very different than Kähler geome-
try, where the Kähler form ω and the complex
structure J are independent and determine the
metric ω(u, v) = g(Ju, v).

•Open problem: Understand the sufficient topo-
logical conditions for existence of an integrable
G2 structure.



Existence of contact structures on G2 manifolds

Problems:

Let (M, g,×, φ) be a manifold with G2 struc-

ture.

• Does it admit a contact structure?

• If so, is every contact structure on M either

A- or B- compatible with G2 ?



Contact and Almost Contact Manifolds

Let M be a (2n+1)-dimensional smooth man-

ifold. A plane field (or hyperplane distribution)

ξ on M can (locally) be given as the kernel of

1-form α : ξx = ker(αx), x ∈M .

Definition: A contact structure on M is a hy-

perplane field ξ that is (locally) given by the

kernel of a 1-form α such that α ∧ (dα)n 6= 0.

The pair (M, ξ) is called a contact manifold.



Definition: (Sasaki) An almost contact struc-

ture on a differentiable manifold M is a triple

(J,R, α), which consists of a field J of endo-

morphism of the tangent spaces, a vector field

R, and a 1-form α satisfying

(i) α(R) = 1, and

(ii) J2 =-id+α⊗R,

where id denotes the identity transformation.

Lemma: Suppose M2n+1 has a (J,R, α) struc-

ture. Then J(R) = 0 and α ◦ J = 0.



Idea of the proof: Note that

J2(R) = −R + α(R)R = −R + 1.R = 0 and

0 = J2(J(R)) = −J(R) + α(J(R)).R,

so we have J(R) = 0 or J(R) is a nonzero

vector field whose image is 0. Suppose J(R)

is a nonzero vector field that maps to 0: Then

0 = J2(R) = J(J(R)) = J(α(J(R))R)

= α(J(R)).J(R) = α(J(R)).α(J(R)).R

= (α(J(R)))2.R 6= 0

for nonzero α(J(R)) and R.

(If α(J(R)) = 0 then J(R) = 0 which contra-

dicts to assumption). Hence, J(R) = 0.



Now for any vector X,

0 = J3(X) = J2(J(X)) = −J(X) + α(J(X))R

and

J3(X) = J(J2(X)) = J(−X) + J(α(X)R) =

−J(X) + J(α(X)R)

obtained by applying J to J2(X) = −X+α(X)R.

So we have

α(J(X))R = J3(X)+J(X) = −J(X)+J(α(X)R)+

J(X) = 0 because the fact J(R) = 0 gives

J(α(X)R) = α(X)J(R) = 0.

Therefore α ◦ J = 0 for any vector X.



Definition: (Sasaki) An almost contact metric

structure on a differentiable manifold M2n+1

is a quadruple (J,R, α, g) where (J,R, α) is an

almost contact structure on M and g is a Rie-

mannian metric on M satisfying

g(Ju, Jv) = g(u, v)− α(u)α(v)

for all vector fields u, v in TM . Such a g is

called a compatible metric.



Theorem: ( A-C-S) Let (M7, φ) be a man-

ifold with G2 structure. Then M admits an

almost contact structure.

Moreover, for any non-vanishing vector field

X0 on M , (J,X0, αX , <,>φ= gφ) is an almost

contact metric structure on M .

Idea of the proof:

• For a non-vanishing vector field X0, define an

associated 1-form α such that α(·) = gφ(X0, ·).

• Define J ∈ End(TM) by J(u) = X0 × u .

Then (J,X0, αX , gφ) is an almost contact met-

ric structure on (M,φ).

Suppose that (M,φ) is a manifold with G2-

structure. As M is 7-dimensional, we know

that there exists a nowhere vanishing vector

field R on M . Denote the Riemannian metric



and the cross product (determined by φ) by

< ·, · >φ and ×φ, respectively. Using the metric,

we define the 1-form α as the metric dual of

R, that is,

α(u) =< R, u >φ .

Moreover, using the cross product and R, we

can define an endomorphism JR : TM → TM

of the tangent spaces by

JR(u) = R×φ u.

Note that JR(R) = 0, and so JR, indeed, de-

fines a complex structure on the orthogonal

complement R⊥ of R with respect to < ·, · >φ.

By straightforward computations, one easily

check that the conditions (i) and (ii) of defi-

nition (of being almost contact structure) are

satisfied by the triple (JR, R, α), and so (JR, R, α)

is an almost contact structure on M .



In order to see the existence of compatible

metric for our almost contact structure (J,R, α)

with metric < ·, · >φ, we compute

< JRR, JRv >φ=< 0, JRv >φ= 0 and also

< R, v >φ −α(R)α(v) = α(v)− α(v) = 0

Therefore

g(Ju, Jv) = g(u, v)− α(u)α(v)

holds if u = R or v = R.



If u, v are both taken from the orthogonal com-

plement R⊥ (wrt < ·, · >φ), then we compute

< JRu, JRv >φ=< R×φ u,R×φ v >φ

= φ(R, u,R×φv) = −φ(R,R×φv, u)

= − < R×φ (R×φ v), u >φ

= − < −|R|2v+ < R, v >φ R, u >φ

= − < −v, u >φ=< u, v >φ

Again, g(Ju, Jv) = g(u, v) − α(u)α(v) is satis-

fied.



In general,

< JRu, JRv >φ=< R×φ u,R×φ v >φ

= φ(R, u,R×φ v) = −φ(R,R×φ v, u)

= − < R×φ (R×φ v), u >φ

= − < −|R|2v+ < R, v >φ R, u >φ

=< |R|2v, u >φ − << R, v >φ R, u >φ

=< |R|2v, u >φ − < α(v)R, u >φ

=< u, |R|2v >φ −α(v) < R, u >φ

=< u, |R|2v >φ −α(v)α(u)



Definition: A contact structure ξ on (M7, φ)

is said to be A-compatible with G2 structure

φ if dα = iRφ where α is a contact form for ξ

and R is the Reeb vector field of fα for some

nonzero function f : M → R.



Theorem: (A-C-S) Let (M7, φ) be any man-
ifold with integrable G2-structure where M is
closed (i.e., compact and ∂M = ∅). Then
there is no contact structure on M which is
A-compatible with φ.

Idea of the proof:

Suppose ξ is an A-compatible contact struc-
ture on (M,φ). Therefore, dα = ιRφ for some
contact form α for ξ and the associated Reeb
vector field R. We also have

dα ∧ dα ∧ φ = (ιRφ) ∧ (ιRφ) ∧ φ = 6|R|2dV ol.

Since dφ = 0, we have dα∧dα∧φ = d(α∧dα∧φ).

Now by Stoke’s Theorem,

0 �
∫
M

6|R|2dV ol =
∫
M
d(α ∧ dα ∧ φ)

=
∫
∂M

α ∧ dα ∧ φ = 0



(as ∂M = ∅). This gives a contradiction.

Exciting Questions: What if we work with

manifolds with boundary ??? Are these new

invariants of Calabi-Yau manifolds ???

We need to show that

1) These integrals provide nontrivial values.

2) Every Calabi-Yau manifold bounds a G2 man-

ifold.

3) If both (1) and (2) are correct then under-

stand what these invariants measure.

Conjecture: If X and X are mirror pairs then

these invariants will be the same.



Definition: A contact structure ξ on (M7, φ)

is said to be B-compatible with G2 structure

φ if there are (global) vector fields X,Y on M

such that α = iY iXφ where α is a contact form

for ξ.

Theorem: (A-C-S) The standard contact struc-

ture on R7 is both A- and B-compatible with

the standard G2 structure φ0.

Idea of the proof:

Fix the coordinates (x1, x2, x3, x4, x5, x6, x7) on

R7. In these coordinates, one can take

φ0 = e123+e145+e167+e246−e257−e347−e356

where eijk denotes the 3-form dxi ∧ dxj ∧ dxk.

Consider the standard contact structure ξ0 on

R7 as the kernel of the 1-form

α0 = dx1 − x3dx2 − x5dx4 − x7dx6.



For simplicity we will denote ∂/∂xi by ∂xi (so

we have dxi(∂xj) = δij). Consider the vector

fields

R = ∂x1, X = ∂x7 and

Y = −x7∂x1 + x5∂x3 − x3∂x5 − ∂x6 + f∂x7

where f : R7 → R is any smooth function (in

fact, it is enough to take f ≡ 0 for our pur-

pose). By a straightforward computation, we

see that

dα0 = ιR(φ0), α0 = ιY ιX(φ0).

Also observe that R is the Reeb vector field of

α0.


