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A Vague Problem from Algebraic Topology

For a given homology class α ∈ Hm(M) or cohomology class β ∈ Hm(M),
find a “special” representative cycle or cocycle.

One can first try to have a simple (small) theory adapted to the spaces
being considered. For example,

* For M triangulated, use simplicial theory.

* For M a smooth manifold and for real coefficients, use
differential forms and De Rham theory.

* For M semi-algebraic, use semi-algebraic chains, etc.
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Minimizers
One can also look for special representatives using a variational property.

* In Hodge theory for a Riemannian manifold, harmonic forms minimize
an L2 norm in a De Rham class.

* Also some geodesics provide length minimizing cycles in a one
dimensional integral homology class.

This example and the obstruction (Thom) to any smooth manifold
representatives of various higher dimensional integral homology classes led
to the question of existence of mass-minimizing representing cycles.

In 1960, H. Federer and W. Fleming studied not only the (absolute)
Plateau problem of finding a mass-minimizers of general dimension with a
given boundary. They also considered the corresponding problem of
minimizing mass in a given homology class. This required the chains of
the homology theory to have a suitable notion of mass and a suitable
topology to give limits of mass-minimizing sequences. The chains should
include oriented finite volume submanifolds and should, in general have
some geometrc structure.
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Rectifiable Chains

Theorem. (H.Federer - W.Fleming, 1959) Integer-multiplicity rectifiable
chains give the ordinary integral homology for pairs of compact Euclidean
Lipschitz neighborhood retracts (ELNR). Homology classes of such pairs
contain mass-minimizing rectifiable chains.

Remark. ELNR’s include compact smooth submanifolds and polygons, but
not pieces of algebraic subvarieties with cusps.

What are rectifiable chains?
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Rectifiable Sets
A subset M of a metric space X is Hm rectifiable if Hm(X \ f (E )) = 0 for
some Lebesgue measurable E ⊂ Rm and Lipschitz f : E → M.
Here Hm is m dimensional Hausdorff measure.

Parameterization Theorem. There exist disjoint compact Ai ⊂ Rm and
an injective map α : A = ∪∞i=1Ai → M such that Hm[M \ α(A)] = 0,
Lipα ≤ 1, and Lip(α � Ai )

−1 ≤ 2
√

m.
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Rectifiable G Chains

Let (G , ‖ ‖) be a complete normed abelian group. We get a rectifiable G
chain simply by adding a density function g ∈ L1(A,G ) to our
parameterization.

We make the identification [[α,A, g ]] = [[β,B, h]] if∫
α(A)\β(B)

|g ◦ α−1| dHm = 0 =

∫
β(B)\α(A)

|h ◦ β−1| dHm

and, Hm a.e. on α−1[α(A) ∩ β(B)],

g = [sgn det D(β−1) ◦ α]
(
h ◦ β−1 ◦ α

)
.

Rm(X ; G ) = {m dimensional rectifiable G chains T in X}.
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Embedding Remark

Kuratowski made the beautiful observation that

Any metric space X admits distance-preserving map into a Banach space.

In fact, for any dense subset D of X and point x0 in X , let

ι : X → `∞(D) = {bounded functions on D} ,

x ∈ X 7→ dist (·, x)− dist (·, x0) .

Thus, identifying X with ι(X ), we may now think of X itself as being a
subset of Y = `∞(D).

In particular, the standard space `∞ of bounded sequences essentially
contains any separable metric metric space.
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Mass, Polyhedral, and Lipschitz Chains

Mass M(T ) = M[[α,A, g ]] =
∫
α(A) ‖g ◦ α

−1‖ dHm.

Suppose Y = `∞(D) contains X as before.

A polyhedral G chain in Y is simply a finite sum P =
∑I

i=1 [[γi ,∆i , gi ]]
where γi : Rm → Y is affine, ∆i is an m simplex, and gi is constant on ∆i .

A Lipschitz chain in Y is defined similarly except that now the γi are
arbitrary Lipschitz maps into Y .

Let Pm(Y ; G ) and Lm(Y ; G ) denote the groups of m dimensional
polyhedral and Lipschitz chains. Then:
The rectifiable chains Rm(Y ,G ) is the mass completion of Lm(Y ,G ).

Polyhedral and Lipschitz chains have easily defined boundary operations,
but these are not mass continuous.

As the Koch snowflake in the plane shows, the boundary of a rectifiable
chain is not expected to be rectifiable in general. So defining it requires
completion of Lipschitz chains with respect to a weaker norm.
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chain is not expected to be rectifiable in general. So defining it requires
completion of Lipschitz chains with respect to a weaker norm.
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Flat Norm and Flat Chains

Note that in the space R the points 1/i approach the point 0, but the
corresponding 0 dimensional chains [[1/i]] do not approach [[0]] in mass
norm because M([[1/i]]− [[0]]) = 2.

Whitney defined the flat norm, which we adapt. For a Lipschitz chain
T ∈ Lm(Y ; G ), let

F(T ) = inf{M(S) + M(T − ∂S) : S ∈ Lm+1(Y ,G )} .

Then the flat norm F([[1/i]]− [[0]]) ≤ 1/i → 0 because
[[1/i]]− [[0]] = ∂[[0, 1/i]].

Since F is a norm on Lm(Y ; G ), we can define the group of flat chains
Fm(Y ; G ) is the F completion of Lm(Y ; G ). (or alternately of Pm(Y ; G ) )

The flat continuity of ∂ on Lipschitz chains gives a well-defined boundary
operator on the flat chains Fm(Y ; G ).
Since F ≤M, a rectifiable chain T ∈ Rm(Y ; G ) is flat and so now has a
well-defined boundary ∂T ∈ Fm−1(Y ; G ).
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Flat, Rectifiable, and Normal Chains Homology

We now have the closed subgroups of cycles

ZFm (X ; G ) = {T ∈ Fm(Y ; G ) : sptT ⊂ X , ∂T = 0} for m ≥ 1 ,

ZF0 (X ; G ) = {T ∈ F0(Y ; G ) : sptT ⊂ X , χ(T ) = 0} ,
where χ(

∑∞
i=1 gi [[xi ]]) =

∑∞
i=1 gi , and the flat chains homology groups

HFm(X ; G ) = ZFm (X ; G )/{∂S : S ∈ Fm+1(Y ; G ), sptT ⊂ X}.
Let

Nm(X ; G ) = {T ∈ Fm(Y ; G ) : sptT ⊂ X , M(T ) + M(∂T ) <∞}
denote the subgroup of normal chains. Then working with either rectifiable
chains having rectifiable boundaries or with normal chains, one can
similarly define rectifiable chains homology

HRm(X ; G )

and normal chains homology

Hm(X ; G ) .
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An Example

For X being the standard fractal boundary of the Koch snowflake in R2,

H1(X ;Z) = 0 ,HR1 (X ;Z) = 0 , and HF1 (X ;Z) = Z

because X supports no nonzero rectifiable or finite mass one dimensional
flat chains though X itself is the support of a nonzero infinite mass flat
cycle (that bounds in Y ).

Let’s look at a few examples relevant to mass-minimizing G chains.

Robert Hardt (Rice University) (BLAINEFEST)Some Homology and Cohomology Theories for a Metric SpaceOctober 27, 2012 12 / 27



An Example

For X being the standard fractal boundary of the Koch snowflake in R2,

H1(X ;Z) = 0 ,HR1 (X ;Z) = 0 , and HF1 (X ;Z) = Z

because X supports no nonzero rectifiable or finite mass one dimensional
flat chains though X itself is the support of a nonzero infinite mass flat
cycle (that bounds in Y ).

Let’s look at a few examples relevant to mass-minimizing G chains.

Robert Hardt (Rice University) (BLAINEFEST)Some Homology and Cohomology Theories for a Metric SpaceOctober 27, 2012 12 / 27



Very Short History

1960 H. Federer-W. Fleming used chains with R or Z coefficients in Rn.
Here the chains are currents, i.e. linear functionals on differential forms.

1966 W. Fleming used chains with coefficients in a finite abelian group.
Example 1. For a minimal Mobius band, A in R3 viewed as a Z/2Z chain,
∂A is a circle.

Example 2. B is three (similarly-oriented) semi-circles bounding A which is
three half-disks. Here ∂B = 0 and ∂A = B as Z/3Z chains.
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Short History Cont’d
1999 B. White treated general normed abelian coefficient groups with new
proofs. White’s and Fleming’s chains are obtained by completing groups of
elementary chains with respect to suitable metrics.

2000 L. Ambrosio and B. Kirchheim Chains are newly defined currents in
a metric space ( which have R or Z coefficients).

2002 Jerrard, 2003 H.-DePauw, 2005 T. Adams, 2007 S. Wenger, 2007
U. Lang, 2009 Ambrosio-Wenger, 2009 Ambrosio-Katz, 2009 M. Snipes,
2010 C. Reidwig, 2011 Wenger

An important property relevant to the existence of mass-minimizing chains
is a suitable compactness theorem. Our version is the following:
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Compactness Theorem

Theorem. [DHP] Suppose X is a compact metric space and G is a
complete normed group with closed balls being compact. For R > 0,

(I) KR = {T ∈ Fm(X ; G ) : M(T ) + M(∂T ) ≤ R} is F compact.

(II) KR ∩Rm(X ; G ) is F compact in case G contains no nonconstant
Lipschitz curve*.

*, discovered by B. White, is true for G = Z or Z/jZ but not (R, | |).

The rectifiability in (B) give the desired geometric character to the
Plateau problem solutions. While this rectifiabiity is not true for G = R
with the usual absolute value norm | |, it is true for another norm on R:
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Shared Transport Paths (mail, biology, economics, etc.)

We may connect two probability measures µ, ν in Rn by choosing
T ∈ F1(Rn,G ) with ∂T = µ− ν.

For 0 < α < 1, we define the norm ‖r‖α = |r |α for r ∈ R. Then
(R, ‖ · ‖α) does satisfy condition * . Also “merging” paths in T may
reduce the corresponding mass Mα(T ).

Example.

M 1
2
(T ) = 1 · (6 + 6) > 1 · 4

√
2 +
√

2 · 4 = M 1
2
(S).
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Mα Minimizers

Corollary.(Q. Xia) There exists a Mα minimizing T ∈ R1(Rn,R) with
∂T = µ− ν.

Regularity Theorem.(Q. Xia) spt T \ (sptµ∪ spt ν) is locally a polygon.

Higher Dimensions.(H.–De Pauw, In progress) For m ≥ 1,
dim (spt T\spt ∂T ) ≤ m − 1 for any Mα minimizing T ∈ Rm(X ,Z).
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Proof of (I)

KR is F complete by the lower semicontinuity of M̂. So we need only
show that KR is also totally bounded. For this, it suffices to find, for each
ε > 0, a compact subset Cε of Fm(Y ; G ) so that

KR ⊂ {T ∈ Fm(Y ; G ) : distF (T ,Cε) < 2εR} .

Robert Hardt (Rice University) (BLAINEFEST)Some Homology and Cohomology Theories for a Metric SpaceOctober 27, 2012 18 / 27



Continuation of Proof of (I)

By the MAP (Metric Approximation Property) of Y = `∞(D) there is a
Lipschitz 1 linear projection p of Y onto some finite n dimensional
W ⊂ Y so that ‖p(x)− x‖ < ε for all x in the compact set X . W is
equivalent to Rn (with bounds only depending on X and ε). So we assume
W = Rn and use the Deformation Theorem of B. White.

First, note that

Cε =
{ I∑

i=1

giQi : Qi = m cube of a size ε subdivision,

Qi ∩ p(X ) 6= ∅, and
I∑

i=1

‖gi‖εm ≤ cR
}

is F compact. Now, for any T ∈ KR , an affine homotopy shows that
F(p#T − T ) ≤ εR. Next the Deformation Theorem implies that
F(p#T − Q) ≤ εR for some Q ∈ Cε. So distF (T ,Cε) < 2εR.
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F(p#T − Q) ≤ εR for some Q ∈ Cε. So distF (T ,Cε) < 2εR.
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Proof of (II), m = 0

For the case m = 0, we follow the argument of White and note that T is a
G valued Borel measure, which we wish to show is purely atomic. First we
verify the general

Lemma. For any positive Borel measure µ without atoms on X , there
exists a µ measurable function f : X → [0, 1] so that µ[f −1{t}] = 0 for
every t ∈ [0, 1].

Then we apply the lemma with µ = |νT | where νT is the nonatomic part
of T . Fot nonzero µ, we get, in the group G , the nonconstant continuous
curve γ(t) = νT

[
f −1[0, t)

]
of finite length ≤M(T ), contradicting (*).
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Proof of (II), m > 0

For the case m > 0 we generalize Jerrard’s observation showing that, for
any Lipschitz map f : X → Rm, the slice function

〈T , f , ·〉 ∈ BV (Rm,R0(X ; G )) .

By an argument of Ambrosio-Kirchheim, this may be approximated by a
Lipschitz function, leading to the rectifiability of T .
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Real Normal Chains and Dual Cochains
For simplicity, we will, for the rest of the lecture, assume that

X is a compact metric space, G is the coefficeint group R with the
standard norm | | , and drop the R symbol.

Thus we have the vector space

Nm(X ) = {T ∈ Fm(X ,R) : M(T ) + M(∂T ) < ∞}

of normal R chains in X as well as the closed subspaces of cycles

Zm(X ) = {T ∈ Nm(X ) : ∂T = 0} for m ≥ 1 ,

Z0(X ) = {T ∈ N0(X ) : T (1) = 0} .

Here a T ∈ N0(X ) corresponds to a signed Borel measure on X ,
T (1) denotes its total integral over X , and

Hm(X ) = Zm(X )/{∂S : S ∈ Nm+1(X )} .
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Cochains

Whitney also studied the dual space Fm(Rn;R)∗ of flat cochains, and his
student J. Wolfe (1957) showed that any flat cochain comes from
bounded Borel m form ω where dω is a bounded Borel m + 1 forms. This
means α(T ) = T (ω) for T ∈ Fm(Rn;R).

D. Sullivan, J. Heinenon, and S. Keith used such forms to study local
bilipschitz equivalence to Euclidean space.

M. Snipes (2009) gave a generalization of Wolfe’s theorem to Banach
spaces with a new notion of partial form.

Charges, which act on normal chains, were defined by De Pauw to study
solutions of div v = F by using the terms of

∫
∂Ω v · ν =

∫
Ω F as functionals

of the set Ω of finite perimeter.
De Pauw, Moonens, Pfeffer (2009) showed that charges in Rn correspond
to ω + dη for some continuous ω, η.
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Charges

The localized topology TN on Nm(X ) has the property that

Tj → T in TN ⇐⇒ F(Tj − T )→ 0 and sup
j

M̂(Tj) + M̂(∂Tj) <∞ .

(For noncompact X , one should add ∪jspt Tj ⊂ single compact set.)

A charge is a continuous linear α : (Nm(X ), TN)→ R. Let

CHm(X ) = {m dimensional charges in X} .

We have the continuous operators

δ : CHm(X ) → CHm+1(X ) , (δα)(S) = α(∂S)

φ# : CHm(Y )→ CHm(X ), (φ#α)(T ) = α(φ#T )

for Lipschitz φ : X → Y .
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Vanishing of H0(X ), H0(X )
Theorem. Consider the following three conditions.

(A) H0(X ) = 0.
(B) X is Lipschitz path connected.

(C) H0(X ) = 0.
Then (A) implies (B) and (B) implies (C).

Example. X = ∪∞i=1Xi where Xi are embedded curves in R3 joining points
ai to 0, disjoint away from 0, and with length(Xi ) = 2i . Then X is
Lipschitz path connected, but T = [[0]]−

∑∞
i=1 2−i [[ai ]] has χ(T ) = 0

although T bounds no one chain of finite mass in X . So (B) does not
imply (A) in general.

Theorem. (C) implies (A) if X satisfies the linear isoperimetric condition

c0(X ) = inf{M(S)/M(∂S) : S ∈ N1(X ) } < ∞ .

Definition. X is m bounded ⇐⇒ M(S) ≤ cm(X )M(∂S) for all
S ∈ Nm+1(X ). This linearly isoperimetric condition has been studied by
many people (Gromov,. . . ,Wenger).
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Duality

Theorem. X is m bounded ⇐⇒ {∂S : S ∈ Nm+1(X )} is TN closed.
⇒ {δβ : β ∈ CHm(X )} is closed in CHm+1(X ).

Using the corresponding charge cohomology groups
Hm(X ) = ker δm/im δm−1, we have the

Duality Theorem On the category of pairs of compact metric spaces
satisfying all m boundedness conditions (also relative versions ),
Hm and Hm satisfy the Eilenberg-Steenrod axioms, and the two functors
Hm and H∗m are naturally equivalent.

In 1974 Federer proved a duality theory using real flat chains and flat
cochains for the category of Euclidean Lipschitz neighborhood retracts.
Our goal with normal chain homology and charge cohomology is to
understand metric properties of more general spaces such as varieties,
fractals, or Gromov-Hausdorff limits of manifolds.
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Questions

(1) Determine when various specific spaces are m bounded.

(2) Interpret Hm(X ) and Hm(X ) (as Banach spaces) for m ≥ 1.

(3) Is there special “regularity” for mass-minimizers?

HAPPY BIRTHDAY BLAINE !
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