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Part 1: Introduction

Given a smooth compact surface M, the choice of a Riemannian
metric gives a Laplace operator which has a discrete set of
eigenvalues λ0 = 0 < λ1 ≤ λ2 ≤ . . .

Basic Question:

Assuming we fix the area to be 1, what is the metric which
maximizes the first eigenvalue?

Does such a metric exist?

If so what can we say about its geometry?
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The Euler-Lagrange equation

If we assume that we have a smooth metric g which realizes the
maximum, then it turns out that the multiplicity of the eigenvalue
is always at least 3, and the maximizing condition implies that
there are independent eigenfunctions u1, . . . , un+1 with the
property that ∑

|ui |2 = 1 on M

and the map

u = (u1, . . . , un+1) defines a conformal map to Sn (n ≥ 2).

This implies that the image surface

Σ = u(M) is a minimal surface in Sn

that is, the mean curvature of Σ is zero. Furthermore, the optimal
metric g is a positive constant times the induced metric on Σ from
Sn.



The Euler-Lagrange equation

If we assume that we have a smooth metric g which realizes the
maximum, then it turns out that the multiplicity of the eigenvalue
is always at least 3, and the maximizing condition implies that
there are independent eigenfunctions u1, . . . , un+1 with the
property that ∑

|ui |2 = 1 on M

and the map

u = (u1, . . . , un+1) defines a conformal map to Sn (n ≥ 2).

This implies that the image surface

Σ = u(M) is a minimal surface in Sn

that is, the mean curvature of Σ is zero. Furthermore, the optimal
metric g is a positive constant times the induced metric on Σ from
Sn.



Known results I

In principle the cases with χ(M) ≥ 0 are understood:

• For S2 the constant curvature metric is the unique maximum by
a result of J. Hersch from 1970.

• For RP2 the constant curvature metric is the unique maximum
by a result of P. Li and S. T. Yau from the 1980s. The Veronese
minimal embedding of RP2 into S4 is key.

• For T 2 the flat metric on the 600 rhombic torus is the unique
maximum by a result of N. Nadirashvili from 1996. It can be
minimally embedded into S5 by first eigenfunctions.
(The Clifford torus in S3 is a critical point, but not a maximum.)
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Known results II

• For the Klein bottle the extremal metric is smooth and unique
but not flat. This follows from work of Nadirashvili (1996 existence
of maximizer), D. Jacobson, Nadirashvili, and I. Polterovich (2006
constructed the metric), and El Soufi, H. Giacomini, and M. Jazar
(2006 proved it is unique). The metric arises on a minimal
immersion of the Klein bottle into S4.

The case of the torus and the Klein bottle rely on a difficult
existence theorem which was posed along with an outlined proof by
Nadirashvili.
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Asymptotics in the genus
For large genus one might hope to understand the asymptotic
behavior. If we fix a surface M of genus γ, then we can define

λ∗(γ) = sup{λ1(g)A(g) : smooth metrics g}.

• P. Yang and S. T. Yau have shown

λ∗(γ) ≤ 8π[
γ + 3

2
].

• P. Buser has shown that for γ > 1 there is a hyperbolic metric
metric with λ1 ≥ 3

16 . This implies the lower bound

λ∗(γ) ≥ 3

4
π(γ − 1).
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Part 2: Surfaces with boundary

A minimal submanifold Σk in Sn is naturally the boundary of a
minimal submanifold of the ball, the cone C (Σ) over Σ.

The coordinate functions of Rn+1 restricted to C (Σ) are harmonic
functions which are homogeneous of degree 1, so on the boundary
they satisfy ∇ηxi = xi where η is the outward unit normal vector
to ∂C (Σ).

More generally a proper minimal submanifold Σ of the unit ball Bn

which is orthogonal to the sphere at the boundary is called a free
boundary submanifold. These are characterized by the condition
that the coordinate functions are Steklov eigenfunctions with
eigenvalue 1 (explanation to follow); that is, ∆xi = 0 in ∇ηxi = xi .

It turns out that surfaces of this type arise as eigenvalue extremals.
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Free boundary submanifolds

(Mk , ∂Mk) −→ (Bn, ∂Bn)

M minimal, meeting ∂Bn orthogonally along ∂M
↑ ↑

H = 0 η = ~x

M ⊂ Rn minimal ⇐⇒ ∆Mxi = 0 i = 1, . . . , n
(x1, . . . xn are harmonic)

M meets ∂Bn orthogonally ⇐⇒ ∂xi
∂η = xi , i = 1, . . . , n.



Examples I

1) Mk = Dk ⊂ Bn equatorial k-plane

J.C.C. Nitsche: M2 simply connected in B3 =⇒ M flat disk

.
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Examples II
3) We expect that there are arbitrarily high genus free boundary
solutions with three boundary components in B3 which converge
to the union of the critical catenoid and a disk through the origin
orthogonal to the axis.

4) Critical Möbius Band

We think of the Möbius band M as R× S1 with the identification
(t, θ) ≈ (−t, θ + π). There is a minimal embedding of M into R4

given by

ϕ(t, θ) = (2 sinh t cos θ, 2 sinh t sin θ, cosh 2t cos 2θ, cosh 2t sin 2θ)

For a unique choice of T0 the restriction of ϕ to [−T0,T0]× S1

defines an embedding into a ball by first Steklov eigenfunctions.

We may rescale the radius of the ball to 1 to get the critical
Möbius band.

Explicitly T0 is the unique positive solution of coth t = 2 tanh 2t.
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Steklov eigenvalues I

(M, ∂M) Riemannian manifold

Given a function u ∈ C∞(∂M), let û be the harmonic extension of
u: {

∆g û = 0 on M,

û = u on ∂M.

The Dirichlet-to-Neumann map is the map

L : C∞(∂M)→ C∞(∂M)

given by

Lu =
∂û

∂ν
.

(non-negative, self-adjoint operator with discrete spectrum)

Eigenvalues σ0, σ1, σ2, , σ3, . . . (Steklov Eigenvalues)



Steklov eigenvalues II

Constant fcns are in the kernel of L
The lowest eigenvalue of L is zero, σ0 = 0

The first nonzero eigenvalue σ1 of L can be characterized
variationally as:

σ1 = inf
u∈C1(∂M),

∫
∂M u=0

∫
M |∇û|2 dvM∫
∂M u2 dv∂M

.

Example: Bm, σk = k , k = 0, 1, 2, . . .
u homogeneous harmonic polynomial of degree k

σ1 = 1 eigenspace x1, . . . , xn



An eigenvalue estimate I

Weinstock 1954 Ω ⊂ R2 simply connected domain

σ1(Ω)L(∂Ω) ≤ 2π = σ1(D)L(∂D)

= only if Ω is a disk

Proof.
RMT =⇒ ∃ proper conformal map of degree 1, ϕ : Ω→ D
∃ conformal F : D → D such that∫

∂Ω
(F ◦ ϕ) ds = 0
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An eigenvalue estimate II

i.e. WLOG,
∫
∂Ω ϕ ds = 0. Then, for i = 1, 2,

σ1

∫
∂Ω
ϕ2
i ds ≤

∫
Ω
|∇ϕ̂i |2 da

≤
∫

Ω
|∇ϕi |2 da

σ1

∫
∂Ω

2∑
i=1

ϕ2
i ds ≤

∫
Ω

2∑
i=1

|∇ϕi |2 da

σ1L(∂Ω) ≤ 2 A(ϕ(Ω)) = 2A(D) = 2π

Payne, Hersch, Bandle, Schiffer, Escobar, Girouard-Polterovich . . .
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Coarse upper bounds

The following result is a combination of bounds obtained with
Fraser together with results of G. Kokarev.

Theorem: (M2, ∂M) oriented Riemannian surface of genus γ
with k boundary components. Then,

σ1 L(∂M) ≤ min{2π(γ + k), 8π[(γ + 3)/2]}

The inequality is strict if γ = 0 and k > 1.

Note: γ = 0, k = 1 simply connected surface: Weinstock.

Question: What is the sharp constant for annuli or other surfaces?
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Part 3: Main theorems

In order to show that the critical catenoid achieves the maximum
of σ1L we must characterize it among the free boundary minimal
annuli.

The next result gives this characterization for the annulus.

Theorem A: Assume that Σ is a free boundary minimal annulus in
Bn such that the coordinate functions are first eigenfunctions.
Then n = 3 and Σ is the critical catenoid.

There is a corresponding result for the Möbius band.

Theorem B: Assume that Σ is a free boundary minimal Möbius
band in Bn such that the coordinate functions are first
eigenfunctions. Then n = 4 and Σ is the critical Möbius band.
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Main theorems on sharp bounds

Let
σ∗(γ, k) = sup

g
σ1 L

where the supremum is over metrics on a surface of genus γ with k
boundary components.

We know σ∗(0, 1) = 2π. The next result identifies σ∗(0, 2).

Theorem 1: For any metric annulus M we have

σ1L ≤ (σ1L)cc

with equality iff M is equivalent to the critical catenoid.
In particular,

σ∗(0, 2) = (σ1L)cc ≈ 4π/1.2.



Main theorems on sharp bounds

Let
σ∗(γ, k) = sup

g
σ1 L

where the supremum is over metrics on a surface of genus γ with k
boundary components.

We know σ∗(0, 1) = 2π. The next result identifies σ∗(0, 2).

Theorem 1: For any metric annulus M we have

σ1L ≤ (σ1L)cc

with equality iff M is equivalent to the critical catenoid.
In particular,

σ∗(0, 2) = (σ1L)cc ≈ 4π/1.2.



Theorem 2: The sequence σ∗(0, k) is strictly increasing in k and
converges to 4π as k tends to infinity. For each k a maximizing
metric is achieved by a free boundary minimal surface Σk in B3 of
area less than 2π. The limit of these minimal surfaces as k tends
to infinity is a double disk, and for large k, Σk is approximately a
pair of nearby parallel plane disks joined by k boundary bridges.

Here is a rough sketch of the surfaces for large k .

Corollary: For every k ≥ 1 there is an embedded minimal surface
in B3 of genus 0 with k boundary components satisfying the free
boundary condition. Moreover these surfaces are embedded by first
eigenfunctions.
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Maximizing metrics

The following result shows that a metric which maximizes σ1L
arises from a free boundary minimal surface in a ball.

Theorem: Let M be a compact surface with nonempty boundary
and assume that g is a metric on M for which σ1L is maximized.

Then the multiplicity of σ1 is at least two, and there exists a
proper conformal branched minimal immersion ϕ : M → Bn for
some n ≥ 2 by first eigenfunctions which is a homothety on the
boundary.

The surface Σ = ϕ(M) is a free boundary minimal surface.



Existence of maximizers

Theorem: For any k ≥ 1 there is a smooth metric on the surface
of genus 0 with k boundary components with the property
σ1L = σ∗(0, k).

• The first step is to show that σ∗(0, k) > σ∗(0, k − 1) and that
the conformal structure does not degenerate for a maximizing
sequence.

• Next we take a carefully chosen maximizing sequence and a
weak* limit of the boundary measures. We then prove that first
eigenfunctions give a branched conformal minimal immersion into
the ball which is freely stationary. The regularity at the boundary
then follows.

• Finally we observe that the metric on the boundary can be
recovered from the map and it is smooth. Branch points do not
occur on the boundary.
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Proof of Theorem 1

Theorem 1: For any metric annulus M we have

σ1L ≤ (σ1L)cc

with equality iff M is equivalent to the critical catenoid.
In particular,

σ∗(0, 2) = (σ1L)cc ≈ 4π/1.2.

• there exists a metric on the annulus with σ1L = σ∗(0, 2)

• this maximizing metric arises from a free boundary minimal
immersion of the annulus in the ball by first eigenfunctions

• by the uniqueness result this immersion is congruent to the
critical catenoid



The limit as k goes to infinity

Let Σk ⊂ B3 be a maximizing surface with genus 0 and k
boundary components. We have the following properties.

• Σk does not contain the origin and is embedded and star shaped.
This follows from the fact that the restrictions of the linear
functions have no critical points on their zero set.

• The coarse upper bound implies that A(Σk) ≤ 4π and the star
shaped property implies that each Σk is stable for variations which
fix the boundary. Curvature estimates then imply uniform
curvature bounds in the interior.



The limit as k goes to infinity

Let Σk ⊂ B3 be a maximizing surface with genus 0 and k
boundary components. We have the following properties.

• Σk does not contain the origin and is embedded and star shaped.
This follows from the fact that the restrictions of the linear
functions have no critical points on their zero set.

• The coarse upper bound implies that A(Σk) ≤ 4π and the star
shaped property implies that each Σk is stable for variations which
fix the boundary. Curvature estimates then imply uniform
curvature bounds in the interior.



The limit as k goes to infinity

Let Σk ⊂ B3 be a maximizing surface with genus 0 and k
boundary components. We have the following properties.

• Σk does not contain the origin and is embedded and star shaped.
This follows from the fact that the restrictions of the linear
functions have no critical points on their zero set.

• The coarse upper bound implies that A(Σk) ≤ 4π and the star
shaped property implies that each Σk is stable for variations which
fix the boundary. Curvature estimates then imply uniform
curvature bounds in the interior.



Proof of Theorem 2

• There is a subsequence of the Σk which converges in a smooth
topology to a smooth limiting minimal surface Σ∞ possibly with
multiplicity. This limit must have multiplicity since otherwise the
limit would be a smooth free boundary solution, and the
convergence would be smooth up to the boundary contradicting
the fact that k →∞.

• It follows from the star shaped condition that the origin lies in
the limiting surface, the surface is a cone (hence a flat disk since it
is smooth), and the multiplicity is 2.

• The limit of A(Σk) is equal to 2A(Σ∞) = 2π. It follows that
σ∗(0, k) = σ1(Σk)L(∂Σk) = 2A(Σk) converges to 4π as claimed.
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multiplicity. This limit must have multiplicity since otherwise the
limit would be a smooth free boundary solution, and the
convergence would be smooth up to the boundary contradicting
the fact that k →∞.
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• The limit of A(Σk) is equal to 2A(Σ∞) = 2π. It follows that
σ∗(0, k) = σ1(Σk)L(∂Σk) = 2A(Σk) converges to 4π as claimed.



The Möbius band

Finally we show that the critical Möbius band uniquely maximizes
σ1L. After some calculation one can see that (σ1L)cmb = 6

√
6π.

Theorem: For any metric on the Möbius band M we have

σ1L ≤ (σ1L)cmb

with equality iff M is equivalent to the critical Möbius band.

The proof follows the same steps as for the critical catenoid.

• we show existence of a smooth maximizing metric on the Möbius
band

• this then gives an immersion into Bn by first eigenfunctions

• by the uniqueness result, this immersion is congruent to the
critical Möbius band
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Statement of Theorem A

Theorem A: Assume that Σ is a free boundary minimal annulus in
Bn such that the coordinate functions are first eigenfunctions.
Then n = 3 and Σ is the critical catenoid.



Theorem A: Proof outline

A multiplicity bound implies that n = 3.

We may assume that Σ is parametrized by a conformal harmonic
map ϕ from M = [−T ,T ]× S1 with coordinates (t, θ).

The vector field X = ∂ϕ
∂θ is then a conformal Killing vector field

along Σ.

Goal: Show that X coincides with a rotation vector field of R3.

The key step in doing this is to show that the three components of
X are first eigenfunctions.

For functions or vector fields Y defined along Σ we consider the
quadratic form Q defined by

Q(Y ,Y ) =

∫
Σ
‖∇Y ‖2 da−

∫
∂Σ
‖Y ‖2 ds.



Theorem A: Proof outline

A multiplicity bound implies that n = 3.

We may assume that Σ is parametrized by a conformal harmonic
map ϕ from M = [−T ,T ]× S1 with coordinates (t, θ).

The vector field X = ∂ϕ
∂θ is then a conformal Killing vector field

along Σ.

Goal: Show that X coincides with a rotation vector field of R3.

The key step in doing this is to show that the three components of
X are first eigenfunctions.

For functions or vector fields Y defined along Σ we consider the
quadratic form Q defined by

Q(Y ,Y ) =

∫
Σ
‖∇Y ‖2 da−

∫
∂Σ
‖Y ‖2 ds.



Assumption that σ1 = 1 implies: if
∫
∂Σ Y ds = 0 then

Q(Y ,Y ) ≥ 0

with equality ⇐⇒ the components of Y are first eigenfunctions.

It is easy to check that the vector field X = ∂ϕ
∂θ is in the nullspace

of Q. If it were true that
∫
∂Σ X ds = 0, then we could complete

the argument.

The quadratic form Q is also the second variation of 1
2 E provided

that Y is tangent to S2 along ∂Σ.

Find a vector field Y such that Q(Y ,Y ) ≤ 0 and with∫
∂Σ(X − Y ) ds = 0.

It would then follow that Q(X − Y ,X − Y ) ≤ 0

and also, since
∫
∂Σ(X − Y ) ds = 0, Q(X − Y ,X − Y ) ≥ 0,

It would follow that the components of X − Y are first e.f.
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We are not able to find such vector fields directly, so we consider
the second variation of area for normal variations.

Note that for free boundary solutions there is a natural Jacobi field
given by x · ν. It is in the nullspace of the second variation form S
given by:

S(ψ,ψ) =

∫
Σ

(‖∇ψ‖2 − ‖A‖2ψ2) da−
∫
∂Σ
ψ2 ds

where A denotes the second fundamental form of Σ and we are
considering normal variations ψν where ν is the unit normal vector
of Σ. Note that this variation is tangent to S2 along the boundary.



We can show by a subtle argument that for any v ∈ R3

S(v · ν, v · ν) ≤ 0

This is not sufficient for the eigenvalue problem because the
normal deformation does not preserve the conformal structure of Σ
in general.

The way we get around this problem is to consider adding a
tangential vector field Y t to so that Y = Y t + ψν preserves the
conformal structure and is tangent to S2 along ∂Σ. This involves
solving a Cauchy-Riemann equation with boundary condition to
determine Y t .
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normal deformation does not preserve the conformal structure of Σ
in general.

The way we get around this problem is to consider adding a
tangential vector field Y t to so that Y = Y t + ψν preserves the
conformal structure and is tangent to S2 along ∂Σ. This involves
solving a Cauchy-Riemann equation with boundary condition to
determine Y t .



This problem is generally not solvable, but has a 1 dimensional
obstruction for its solvability (because Σ is an annulus). We then
get existence for ψ in a three dimensional subspace of the span of
ν1, ν2, ν3, x · ν. We can then arrange the resulting conformal vector
field Y to satisfy the boundary integral condition and we have

Q(Y ,Y ) = S(ψ,ψ) = S(v · ν, v · ν) ≤ 0.


