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Introduction

Original goal:

� Construct compact G2 manifolds containing compact rigid associative
3-folds.

By-products:

� Construct many new noncompact Calabi-Yau 3-folds.

� Construct many new compact G2 manifolds.

� Identify the diffeomorphism type of 7-manifold underlying many of our G2

manifolds; they are the first G2 manifolds where diffeo type is understood.

� Exhibit different ways to construct G2 metrics on same underlying
smooth 7-manifold; find G2 metrics with different numbers of (obvious)
rigid associative 3-folds.

� Exhibit “geometric transitions” between G2-metrics on different
7-manifolds.
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6 + 1 = 2× 3 + 1 = 7 & SU(2) ⊂ SU(3) ⊂ G2

∃ close relations between G2 holonomy and Calabi-Yau geometries in 2 and
3 dimensions.

� Write R7 = R× C3 with (C3, ω,Ω) the std SU(3) structure then

φ0 = dt ∧ ω + Re Ω

Hence stabilizer of R factor in G2 is SU(3) ⊂ G2.

More generally if (X , g)
is a Calabi-Yau 3-fold then product metric on S1 × X has holonomy
SU(3) ⊂ G2.

� Write R7 = R3 × C2 with coords (x1, x2, x3) on R3, with std SU(2)
structure (C2, ωI ,Ω = ωJ + iωK ) then

φ0 = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ ωI + dx2 ∧ ωJ + dx3 ∧ ωK ,

where ωI and Ω = ωJ + iωK are the standard Kahler and holo (2, 0)
forms on C2. Hence subgroup of G2 fixing R3 ⊂ R3 × C2 is SU(2) ⊂ G2.
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G2 structures and G2 holonomy metrics

What is a G2 structure?

� A G2 structure is a 3-form φ on an oriented 7-mfd M such that ∀ p ∈ M
∃ an oriented isomorphism

i : TpM → R7, such that i∗φ0 = φ.

� G2-structures on R7 ! GL+(7,R)/G2.
� dim(GL+(7,R)/G2) = 35 = dim Λ3R7.
⇒ implies small perturbations of a G2-structure are still G2-structures.

How to get a G2-holonomy metric from a G2 structure?

Lemma
Let (M, φ, g) be a G2 structure on a compact 7-manifold; the following are
equivalent

1. Hol(g) ⊂ G2 and φ is the induced 3-form
2. ∇φ = 0 where ∇ is Levi-Civita w.r.t g
3. dφ = d∗φ = 0.

Call such a G2 structure a torsion-free G2 structure.
NB (3) is nonlinear in φ because metric g depends nonlinearly on φ.
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G2 structures and G2 holonomy metrics II

Lemma
Let M be a compact 7-manifold.

1. M admits a G2 structure iff it is orientable and spin.

2. A torsion-free G2 structure (φ, g) on M has Hol(g) = G2 iff π1M is finite.

3. If Hol(g) = G2 then M has nonzero first Pontrjagin class p1(M).

A strategy to construct G2-holonomy metrics.

I. Find a G2 structure φ with sufficiently small torsion on a 7-manifold with
|π1| <∞

II. Perturb to a torsion-free G2 structure φ′ close to φ.

II was understood in some generality by Dominic Joyce (if dφ = 0).
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Associative submanifolds of G2-manifolds

3-form φ0 and 4-form ∗φ0 on R7 are G2-invariant calibrations.

� Oriented 3-planes calibrated by φ0 are called associative planes.

� R3 ⊂ R3 × C2 is an associative 3-plane.

� G2 acts transitively on associative 3-planes.

Oriented 4-planes calibrated by ∗φ0 are called coassociative. 4-plane is
coassociative iff its orthogonal complement is associative.

Holonomy/parallel tensor correspondence ⇒
� on any mfd (M, g) with Hol(g) ⊂ G2 we have parallel 3 and 4-forms φ

and ∗gφ modelled on φ0 and ∗φ0.

� associative (coassociative) calibration exists on any G2-manifold.
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1 + 2 = 3 and S1 × holomorphic = associative

Recall when we decomposed R7 as R× C3 we had

φ0 = dt ∧ ω + Re Ω.

Recall, V a Calabi-Yau 3-fold ⇒ S1 × V has holonomy SU(3) ⊂ G2

� S1 × C ⊂ S1 × V is associative iff C is a holomorphic curve in V .

� Infinitesimal deformations of S1 × C as an associative 3-fold ↔
infinitesimal deformations of C as a complex curve in V .

We also have S1 × L ⊂ S1 × V is coassociative iff L is a special Lagrangian
3-fold in X .
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SU(3) + SU(3) + ε = G2

Donaldson suggested constructing compact G2 manifolds from a pair of
asymptotically cylindrical Calabi-Yau 3-folds via a neck-stretching method.

i. Use noncompact version of Calabi conjecture to construct asymptotically
cylindrical Calabi-Yau 3-folds V with one end ∼ C∗ × D, with D a
smooth K 3.

ii. M = S1 × V is a 7-mfd with Hol g = SU(3) ⊂ G2 with end
∼ R+ × T 2 × K 3.

iii. Take a twisted connect sum of a pair of M± = S1 × V±

iv. For T >> 1 construct a G2-structure w/ small torsion (exponentially
small in T ) and prove it can be corrected to torsion-free.

Kovalev (2003) carried out Donaldson’s proposal for AC CY 3-folds arising
from Fano 3-folds.
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Twisted connect sum and hyperkahler rotation

Product G2 structure on M± = S1 × V± asymptotic to

dθ1 ∧ dθ2 ∧ dt + dθ1 ∧ ω±I + dθ2 ∧ ω±J + dt ∧ ω±K

ω±I , ω±J + i ω±K denote Ricci-flat Kähler metric, parallel (2, 0)-form on D±.

To get a well-defined G2 structure using

F : [T − 1,T ]× S1 × S1 × D− → [T − 1,T ]× S1 × S1 × D+

given by
(t, θ1, θ2, y) 7→ (2T − 1− t, θ2, θ1, f (y))

to identify end of M− with M+ we need f : D− → D+ to satisfy

f ∗ω+
I = ω−J , f ∗ω+

J = ω−I , f ∗ω+
K = −ω−K .

� Constructing such hyperkähler rotations is nontrivial and a major part of
the construction.

� Some problems in Kovalev’s original paper here.
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Twisted connect sum G2-manifolds

1. Construct suitable ACyl Calabi-Yau 3-folds V ;

� Kovalev used Fano 3-folds to construct ACyl CY 3-folds building on
previous analytic work of Tian-Yau;

2. Find sufficient conditions for existence of a hyperkähler rotation between
D− and D+;
� Use global Torelli theorems and lattice embedding results (e.g. Nikulin) to

find hyperkähler rotations from suitable initial pairs of (deformation families
of) ACyl CY 3-folds.

3. Given a pair of ACyl CY 3-folds V± and a HK-rotation f : D− → D+ can
always glue M− and M+ to get a 1-parameter family of closed manifolds
MT with holonomy G2.

⇒ have reduced solving nonlinear PDEs for G2-metric to two problems
about complex projective 3-folds.
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ACyl Calabi-Yau 3-folds from K3 fibrations

It suffices to find a smooth projective 3-fold X with D,D ′ ∈ |K−1
X | smooth

K 3 surfaces that intersect transversely.

� D ∩ D ′ is a smooth curve C (the base locus of the pencil defined by D
and D ′)

� Blowup X along the base locus C to get new projective 3-fold Z
� The proper transforms of D and D ′ are smooth anticanonical divisors on

Z ; the pencil they determine gives a morphism π : Z → P1 with generic
fibre a smooth anticanonical K 3.

� Now remove any smooth fibre of π from Z .

Theorem (ACyl Calabi-Yau theorem)

V = Z \ D admits (exponentially) ACyl CY metrics.

Proof: originally Tian-Yau plus Kovalev (plus corrections to Kovalev).

Recently Hein-Haskins-Nordström gave simpler direct proof using ideas in
Hein’s thesis (and showed all “asymptotically split” ACyl CY 3-folds arise
from such a construction).
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Fano and weak Fano 3-folds

� A smooth Kahler 3-fold X is a Fano manifold if K−1
X is ample.

� A smooth projective 3-fold X is a weak Fano manifold if K−1
X is big and

nef.
� A holomorphic line bundle L on X is nef if

c1(L).C =

Z
C

c1(L) ≥ 0

for every irreducible holomorphic curve C ⊂ X .
� A holomorphic line bundle L on X is big if

h0(L⊗m) ≥ Cmn, for m� 1, n = dimC X .

i.e. we replace condition K−1
X is positive with sufficiently “semi-positive”.
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Basic facts about Fano and weak Fano 3-folds

� For ample line bundles we have Kodaira vanishing theorem

H i (X ,KX ⊗ L) = 0 for all i > 0.

For big and nef line bundles Kawamata-Viehweg vanishing replaces
Kodaira.

� Shokurov: on a smooth Fano 3-fold X any sufficiently generic
D ∈ |K−1

X | is a smooth K3 surface. Reid generalised Shokurov’s result to
weak Fano 3-folds.

� |D| is basepoint free for most Fano and weak Fano 3-folds.

ACyl Calabi-Yau Theorem implies can construct ACyl CY metrics from
(almost) any smooth Fano or weak Fano 3-fold.

Kovalev used ACyl Calabi-Yau 3-folds of Fano type for his twisted connect
sum G2-manifolds; we generalise to (certain classes of) weak Fano 3-folds.
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Advantages of weak Fano vs. Fano

1. Many more weak Fano than Fano 3-folds.

� Fano 3-folds classified: 105 deformation families.
� Hundreds of thousands of weak Fano 3-folds; classification ongoing.

⇒ get more topological types of ACyl CY 3-folds and hence (in good
cases) compact G2 mfds

2. In any Fano 3-fold K−1
X is ample:

⇒ any compact holo curve C ⊂ X must intersect any anticanonical
divisor.

A weak Fano 3-fold can contain holo curves C that do not meet
anticanonical divisors.

For each smooth rigid P1 in a weak Fano 3-fold X any G2 manifold built
from X contains a rigid associative submanifold w/ topology S1 × S2.
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Semi-Fano 3-folds and G2-manifolds

� Weak Fano is enough to construct ACyl Calabi-Yau 3-folds.

For
G2-manifolds also need to construct hyperkahler rotations f : D− → D+

between the asymptotic K3 surfaces of a pair of ACyl CY 3-folds
V± = Z± \ D±.

� This requires a sufficiently good deformation/moduli theory for pairs
(X ,D) where X is a (deformation class of) weak Fano 3-fold and D a
smooth anticanonical K3 divisor in X .

Definition (Semi-Fano 3-fold)

A weak Fano 3-fold is semi-Fano if the natural morphism to its
anti-canonical model is semismall, i.e. contracts no divisors to points.

Key Fact: The deformation theory of the pair (X ,D) is well-behaved if X is
a semi-Fano 3-fold.

Basic reason: semi-Fanos satisfy slightly stronger cohomology vanishing
theorems than weak Fano 3-folds. (Sommese-Esnault-Viehweg vanishing for
k-ample line bundles).

For ACyl CY 3-folds of semi-Fano type can still construct HK rotations by
similar techniques to those used for those of Fano type.
⇒ can use them to construct compact twisted connect sum G2 manifolds.
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G2-manifolds and rigid associative submanifolds

Theorem (CHNP)

There exist many topological types of compact G2 manifold which contain
rigid associative submanifolds diffeomorphic to S1 × S2.

Remarks:

1. First examples of rigid associative submanifolds in compact G2 manifolds.

2. Infinitesimal deformations of associative submfds ! twisted harmonic
spinors. Index of twisted Dirac operator is zero since in odd dimension,
but hard to control kernel. Deformation theory can be obstructed.

3. Can attempt to build invariants of G2 manifolds by counting associative
submfds in a given homology class.

Why do we get rigid associatives? Let C be a cpt holo curve in X not
meeting AC divisor D  cpt holo curve C ⊂ V = Z \ D  S1 × C is
compact associative submfd in S1 × V . C rigid curve in V iff S1 × C rigid
associative 3-fold of S1 ×V . Since S1 ×C is rigid in S1 ×V , easy to perturb
S1 × C to rigid associative 3-fold in glued G2 structure for T � 1.
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Simple examples of semi-Fano 3-folds I

Example 1: start with a (singular) quartic 3-fold Y ⊂ P4 containing a
projective plane Π and resolve.

If Π = (x0 = x1 = 0) then eqn of Y is

Y = (x0a3 + x1b3 = 0) ⊂ P4

where a3 and b3 are homogeneous cubic forms in (x0, . . . , x4). Generically
the plane cubics

(a3(0, 0, x2, x3, x4) = 0) ⊂ Π,

(b3(0, 0, x2, x3, x4) = 0) ⊂ Π

intersect in 9 distinct points, where Y has 9 ordinary double points.
Blowing-up Π ⊂ Y gives a smooth X f : X → Y is a projective small
resolution of all 9 nodes of Y .

X is a smooth (projective) semi-Fano 3-fold; it contains 9 smooth rigid
rational curves with normal bundle O(−1)⊕O(−1); X has genus 3 and
Picard rank 2.
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Simple examples of semi-Fano 3-folds II

Example 2: A quartic 3-fold in P4 with only ordinary double points has at
most 45 singular points.

Up to coordinate change, there is a unique such
3-fold, the Burkhardt quartic Y

(x4
0 − x0(x3

1 + x3
2 + x3

3 + x3
4 + 3x1x2x3x4)) = 0) ⊂ P4.

Y admits a small projective resolution X
X is a semi-Fano 3-fold w/ genus 3, Picard rank 16 and 45 smooth rigid P1s
with normal bundle O(−1)⊕O(−1).

Remarks

� Shows semi-Fano 3-folds can have larger Picard rank than Fanos. ⇒ can
get G2 manifolds with larger Betti numbers.

� Classification results ⇒ any Fano 3-fold has Picard rank ≤ 10. In fact,
Picard rank ≥ 6 forces X to be P1 × dP for some del Pezzo surface.

18 of 23



Simple examples of semi-Fano 3-folds II

Example 2: A quartic 3-fold in P4 with only ordinary double points has at
most 45 singular points. Up to coordinate change, there is a unique such
3-fold, the Burkhardt quartic Y

(x4
0 − x0(x3

1 + x3
2 + x3

3 + x3
4 + 3x1x2x3x4)) = 0) ⊂ P4.

Y admits a small projective resolution X
X is a semi-Fano 3-fold w/ genus 3, Picard rank 16 and 45 smooth rigid P1s
with normal bundle O(−1)⊕O(−1).

Remarks

� Shows semi-Fano 3-folds can have larger Picard rank than Fanos. ⇒ can
get G2 manifolds with larger Betti numbers.

� Classification results ⇒ any Fano 3-fold has Picard rank ≤ 10. In fact,
Picard rank ≥ 6 forces X to be P1 × dP for some del Pezzo surface.

18 of 23



Simple examples of semi-Fano 3-folds II

Example 2: A quartic 3-fold in P4 with only ordinary double points has at
most 45 singular points. Up to coordinate change, there is a unique such
3-fold, the Burkhardt quartic Y

(x4
0 − x0(x3

1 + x3
2 + x3

3 + x3
4 + 3x1x2x3x4)) = 0) ⊂ P4.

Y admits a small projective resolution X

X is a semi-Fano 3-fold w/ genus 3, Picard rank 16 and 45 smooth rigid P1s
with normal bundle O(−1)⊕O(−1).

Remarks

� Shows semi-Fano 3-folds can have larger Picard rank than Fanos. ⇒ can
get G2 manifolds with larger Betti numbers.

� Classification results ⇒ any Fano 3-fold has Picard rank ≤ 10. In fact,
Picard rank ≥ 6 forces X to be P1 × dP for some del Pezzo surface.

18 of 23



Simple examples of semi-Fano 3-folds II

Example 2: A quartic 3-fold in P4 with only ordinary double points has at
most 45 singular points. Up to coordinate change, there is a unique such
3-fold, the Burkhardt quartic Y

(x4
0 − x0(x3

1 + x3
2 + x3

3 + x3
4 + 3x1x2x3x4)) = 0) ⊂ P4.

Y admits a small projective resolution X
X is a semi-Fano 3-fold w/ genus 3, Picard rank 16 and 45 smooth rigid P1s
with normal bundle O(−1)⊕O(−1).

Remarks

� Shows semi-Fano 3-folds can have larger Picard rank than Fanos. ⇒ can
get G2 manifolds with larger Betti numbers.

� Classification results ⇒ any Fano 3-fold has Picard rank ≤ 10. In fact,
Picard rank ≥ 6 forces X to be P1 × dP for some del Pezzo surface.

18 of 23



Simple examples of semi-Fano 3-folds II

Example 2: A quartic 3-fold in P4 with only ordinary double points has at
most 45 singular points. Up to coordinate change, there is a unique such
3-fold, the Burkhardt quartic Y

(x4
0 − x0(x3

1 + x3
2 + x3

3 + x3
4 + 3x1x2x3x4)) = 0) ⊂ P4.

Y admits a small projective resolution X
X is a semi-Fano 3-fold w/ genus 3, Picard rank 16 and 45 smooth rigid P1s
with normal bundle O(−1)⊕O(−1).

Remarks

� Shows semi-Fano 3-folds can have larger Picard rank than Fanos.

⇒ can
get G2 manifolds with larger Betti numbers.

� Classification results ⇒ any Fano 3-fold has Picard rank ≤ 10. In fact,
Picard rank ≥ 6 forces X to be P1 × dP for some del Pezzo surface.

18 of 23



Simple examples of semi-Fano 3-folds II

Example 2: A quartic 3-fold in P4 with only ordinary double points has at
most 45 singular points. Up to coordinate change, there is a unique such
3-fold, the Burkhardt quartic Y

(x4
0 − x0(x3

1 + x3
2 + x3

3 + x3
4 + 3x1x2x3x4)) = 0) ⊂ P4.

Y admits a small projective resolution X
X is a semi-Fano 3-fold w/ genus 3, Picard rank 16 and 45 smooth rigid P1s
with normal bundle O(−1)⊕O(−1).

Remarks

� Shows semi-Fano 3-folds can have larger Picard rank than Fanos. ⇒ can
get G2 manifolds with larger Betti numbers.

� Classification results ⇒ any Fano 3-fold has Picard rank ≤ 10. In fact,
Picard rank ≥ 6 forces X to be P1 × dP for some del Pezzo surface.

18 of 23



Simple examples of semi-Fano 3-folds II

Example 2: A quartic 3-fold in P4 with only ordinary double points has at
most 45 singular points. Up to coordinate change, there is a unique such
3-fold, the Burkhardt quartic Y

(x4
0 − x0(x3

1 + x3
2 + x3

3 + x3
4 + 3x1x2x3x4)) = 0) ⊂ P4.

Y admits a small projective resolution X
X is a semi-Fano 3-fold w/ genus 3, Picard rank 16 and 45 smooth rigid P1s
with normal bundle O(−1)⊕O(−1).

Remarks

� Shows semi-Fano 3-folds can have larger Picard rank than Fanos. ⇒ can
get G2 manifolds with larger Betti numbers.

� Classification results ⇒ any Fano 3-fold has Picard rank ≤ 10. In fact,
Picard rank ≥ 6 forces X to be P1 × dP for some del Pezzo surface.

18 of 23



Toric semi-Fano 3-folds

Theorem (Coates-Haskins-Kasprzyk)

There exist over 400,000 deformation types of rigid toric semi-Fano 3-folds.
There exist 1009 deformation types of semi-Fano 3-folds with nodal AC
model.

� There exist only 18 smooth toric Fano 3-folds.

� The anticanonical model of a toric weak Fano 3-fold is a singular toric
Fano 3-fold with mild (Gorenstein canonical) singularities. Toric
Gorenstein canonical Fano 3-folds classified in terms of reflexive
polytopes.

� Kreuzer-Skarke: ∃ 4319 reflexive polytopes. Every toric Gorenstein
canonical Fano 3-fold admits at least one projective crepant resolution;
this is a toric weak Fano 3-fold. 899 polytopes give rise to toric
semi-Fanos.
� Most admit many nonisomorphic projective small resolutions. Can

enumerate those completely in terms of geometry of the polytopes.
� Not every toric semi-Fano is rigid; rigidity is determined by polytope.
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G2-manifolds and toric semi-Fano 3-folds

Theorem (CHNP+CHK)

There exist over 50 million matching pairs of ACyl CY 3-folds of semi-Fano
type for which the resulting G2-manifold is 2-connected.

Sketch of proof.

� Use a pair of ACyl CY 3-folds with one of toric semi-Fano type and the
other a semi-Fano (or Fano) of rank at most 2.

� Use further arithmetic information about polarising lattices (discriminant
group information) to prove there are over 250,000 toric semi-Fanos that
can be matched to any ACyl CY 3-fold of Fano/semi-Fano type of rank
at most 2. Over 250,000 rigid toric semi-Fanos arise from only the 12
most “prolific” polytopes.

� There are over 200 deformation types of Fanos/semi-Fanos of rank at
most 2.
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Diffeomorphism types of twisted connect sums

To understand the diffeomorphism types of many G2-manifolds we need to:

1. Understand cohomology (over Z) of building blocks (including torsion).

2. Understand cohomology (over Z) of twisted connect sums.
� Cohomology depends on choice of matching diffeo f ; but sum b2 + b3

depends only on building blocks (in orthogonal gluing cases).

3. Understand what conditions on building blocks allow us to construct
G2-manifolds which are 2-connected e.g. if sum of b2 of both building
blocks is sufficiently small.

4. Understand classification theory for 2-connected 7-manifolds.
� Wilkens classified M up to almost diffeomorphism, i.e. up to connect sum

with some homotopy 7-sphere.
In good cases can understand how many diffeomorphism classes belong to a
given almost diffeomorphism class.

� Divisibility of p1(M) ∈ H4(M, Z) plays a key role.
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Diffeomorphism type of twisted connect sums II
Simplest setting: M is 2-connected and H4M is torsion-free.

Wilkens ⇒ M classified by b = b4(M) and p1(M) ∈ H4M.

� Need to study divisibility of p1(M) for twisted connect sums.
if div(p1) = 4, 8, 12 or 24 then almost-diffeomorphism class contains only
one diffeomorphism type.

Observation: 4|p1 and p1|48 for any twisted connect sum.
Strategy to pin-down divisibility: Relate divisibility of p1 of twisted connect
sum to divisibility of c2 on the pair of building blocks. In the best case:

div(p1) = 2 gcd(div(c+
2 ), div(c−2 )). (∗)

In many cases can understand div(c2) e.g. any Fano w/ b2 = 1.

Look for building block with div(c−2 ) = 2 (∗∗)
e.g. happens for 6 out of 17 Fanos with b2 = 1
(*) + observation ⇒ div(p1) = 4 whatever happens for c+

2 .

⇒ only one diffeo type in almost-diffeo class for any 2-connected twisted
connect sum with one side satisfying (**)
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Diffeomorphic G2 manifolds

1. Fix a building block Z− with div(c−2 ) = 2

2. Choose any building block Z+ s.t. can construct 2-connected twisted
connect sum of V+ and V− (w/ H4M torsion-free).
e.g. suffices to choose example with b2X+ not too large.

3. Then diffeomorphism type of M is determined by b4(M) = b3(M) and
hence by sum of b3 of building blocks.

⇒ to construct diffeomorphic twisted connect sum 7-manifolds it now
suffices to find

i. building blocks with b3Z equal

ii. no torsion in H3 of building blocks

iii. b2 of Z not too large.

Easy to find many examples satisfying i–iii from toric semi-Fanos
(but lots of other ways of doing this too..)
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