Recent progress in G₂ geometry

Alessio Corti, Mark Haskins, Johannes Nordström & Tommaso Pacini

Blaine Fest, October 2012.

 Asymptotically cylindrical Calabi-Yau 3-folds from weak Fano 3-folds, arXiv:1206.2277.

2. *G*₂-manifolds and associative submanifolds via semi-Fano 3-folds, arXiv:1207.4470.

Original goal:

• Construct compact G₂ manifolds containing compact rigid associative 3-folds.

Original goal:

• Construct compact G₂ manifolds containing compact rigid associative 3-folds.

By-products:

Construct many new noncompact Calabi-Yau 3-folds.

Original goal:

• Construct compact G₂ manifolds containing compact rigid associative 3-folds.

- Construct many new noncompact Calabi-Yau 3-folds.
- Construct many new compact G₂ manifolds.

Original goal:

• Construct compact G₂ manifolds containing compact rigid associative 3-folds.

- Construct many new noncompact Calabi-Yau 3-folds.
- Construct many new compact G₂ manifolds.
- Identify the diffeomorphism type of 7-manifold underlying many of our G₂ manifolds; they are the first G₂ manifolds where diffeo type is understood.

Original goal:

• Construct compact G₂ manifolds containing compact rigid associative 3-folds.

- Construct many new noncompact Calabi-Yau 3-folds.
- Construct many new compact G₂ manifolds.
- Identify the diffeomorphism type of 7-manifold underlying many of our G₂ manifolds; they are the first G₂ manifolds where diffeo type is understood.
- Exhibit different ways to construct G₂ metrics on same underlying smooth 7-manifold; find G₂ metrics with different numbers of (obvious) rigid associative 3-folds.

Original goal:

• Construct compact G₂ manifolds containing compact rigid associative 3-folds.

- Construct many new noncompact Calabi-Yau 3-folds.
- Construct many new compact G₂ manifolds.
- Identify the diffeomorphism type of 7-manifold underlying many of our G₂ manifolds; they are the first G₂ manifolds where diffeo type is understood.
- Exhibit different ways to construct G₂ metrics on same underlying smooth 7-manifold; find G₂ metrics with different numbers of (obvious) rigid associative 3-folds.
- Exhibit "geometric transitions" between *G*₂-metrics on different 7-manifolds.

 \exists close relations between G_2 holonomy and Calabi-Yau geometries in 2 and 3 dimensions.

• Write $\mathbb{R}^7 = \mathbb{R} \times \mathbb{C}^3$ with $(\mathbb{C}^3, \omega, \Omega)$ the std SU(3) structure then

 $\phi_0 = dt \wedge \omega + \operatorname{Re} \Omega$

Hence stabilizer of \mathbb{R} factor in G_2 is SU(3) $\subset G_2$.

 \exists close relations between G_2 holonomy and Calabi-Yau geometries in 2 and 3 dimensions.

• Write $\mathbb{R}^7 = \mathbb{R} \times \mathbb{C}^3$ with $(\mathbb{C}^3, \omega, \Omega)$ the std SU(3) structure then

$$\phi_{\mathsf{0}} = dt \wedge \omega + \operatorname{Re} \Omega$$

Hence stabilizer of \mathbb{R} factor in G_2 is SU(3) $\subset G_2$. More generally if (X, g) is a Calabi-Yau 3-fold then product metric on $\mathbb{S}^1 \times X$ has holonomy SU(3) $\subset G_2$.

 \exists close relations between G_2 holonomy and Calabi-Yau geometries in 2 and 3 dimensions.

• Write $\mathbb{R}^7 = \mathbb{R} \times \mathbb{C}^3$ with $(\mathbb{C}^3, \omega, \Omega)$ the std SU(3) structure then

$$\phi_0 = dt \wedge \omega + \operatorname{Re} \Omega$$

Hence stabilizer of \mathbb{R} factor in G_2 is SU(3) $\subset G_2$. More generally if (X, g) is a Calabi-Yau 3-fold then product metric on $\mathbb{S}^1 \times X$ has holonomy SU(3) $\subset G_2$.

• Write $\mathbb{R}^7 = \mathbb{R}^3 \times \mathbb{C}^2$ with coords (x_1, x_2, x_3) on \mathbb{R}^3 , with std SU(2) structure $(\mathbb{C}^2, \omega_I, \Omega = \omega_J + i\omega_K)$ then

 \exists close relations between G_2 holonomy and Calabi-Yau geometries in 2 and 3 dimensions.

• Write $\mathbb{R}^7 = \mathbb{R} \times \mathbb{C}^3$ with $(\mathbb{C}^3, \omega, \Omega)$ the std SU(3) structure then

$$\phi_{\mathsf{0}} = dt \wedge \omega + \operatorname{Re} \Omega$$

Hence stabilizer of \mathbb{R} factor in G_2 is SU(3) $\subset G_2$. More generally if (X, g) is a Calabi-Yau 3-fold then product metric on $\mathbb{S}^1 \times X$ has holonomy SU(3) $\subset G_2$.

• Write $\mathbb{R}^7 = \mathbb{R}^3 \times \mathbb{C}^2$ with coords (x_1, x_2, x_3) on \mathbb{R}^3 , with std SU(2) structure $(\mathbb{C}^2, \omega_I, \Omega = \omega_J + i\omega_K)$ then

$$\phi_0 = dx_1 \wedge dx_2 \wedge dx_3 + dx_1 \wedge \omega_I + dx_2 \wedge \omega_J + dx_3 \wedge \omega_K,$$

where ω_I and $\Omega = \omega_J + i\omega_K$ are the standard Kahler and holo (2,0) forms on \mathbb{C}^2 .

 \exists close relations between G_2 holonomy and Calabi-Yau geometries in 2 and 3 dimensions.

• Write $\mathbb{R}^7 = \mathbb{R} \times \mathbb{C}^3$ with $(\mathbb{C}^3, \omega, \Omega)$ the std SU(3) structure then

$$\phi_{\mathsf{0}} = dt \wedge \omega + \operatorname{Re} \Omega$$

Hence stabilizer of \mathbb{R} factor in G_2 is SU(3) $\subset G_2$. More generally if (X, g) is a Calabi-Yau 3-fold then product metric on $\mathbb{S}^1 \times X$ has holonomy SU(3) $\subset G_2$.

• Write $\mathbb{R}^7 = \mathbb{R}^3 \times \mathbb{C}^2$ with coords (x_1, x_2, x_3) on \mathbb{R}^3 , with std SU(2) structure $(\mathbb{C}^2, \omega_I, \Omega = \omega_J + i\omega_K)$ then

$$\phi_0 = dx_1 \wedge dx_2 \wedge dx_3 + dx_1 \wedge \omega_I + dx_2 \wedge \omega_J + dx_3 \wedge \omega_K,$$

where ω_I and $\Omega = \omega_J + i\omega_K$ are the standard Kahler and holo (2,0) forms on \mathbb{C}^2 . Hence subgroup of G_2 fixing $\mathbb{R}^3 \subset \mathbb{R}^3 \times \mathbb{C}^2$ is SU(2) $\subset G_2$.

What is a G_2 structure?

- A G_2 structure is a 3-form ϕ on an oriented 7-mfd M such that $\forall p \in M$
 - \exists an oriented isomorphism

$$i: T_p M \to \mathbb{R}^7$$
, such that $i^* \phi_0 = \phi$.

What is a G_2 structure?

• A G_2 structure is a 3-form ϕ on an oriented 7-mfd M such that $\forall p \in M$

 \exists an oriented isomorphism

$$i: T_p M \to \mathbb{R}^7$$
, such that $i^* \phi_0 = \phi$.

•
$$G_2$$
-structures on $\mathbb{R}^7 \iff \operatorname{GL}_+(7,\mathbb{R})/G_2$.

■ dim(GL₊(7,
$$\mathbb{R}$$
)/G₂) = 35 = dim $\Lambda^3 \mathbb{R}^7$.
⇒ implies small perturbations of a G₂-structure are still G₂-structures.

What is a G_2 structure?

• A G_2 structure is a 3-form ϕ on an oriented 7-mfd M such that $\forall p \in M$

 \exists an oriented isomorphism

$$i: T_p M \to \mathbb{R}^7$$
, such that $i^* \phi_0 = \phi$.

- G_2 -structures on $\mathbb{R}^7 \iff \operatorname{GL}_+(7,\mathbb{R})/G_2$.
- dim(GL₊(7, \mathbb{R})/G₂) = 35 = dim $\Lambda^3 \mathbb{R}^7$. ⇒ implies small perturbations of a G₂-structure are still G₂-structures.

How to get a G_2 -holonomy metric from a G_2 structure?

What is a G_2 structure?

• A G_2 structure is a 3-form ϕ on an oriented 7-mfd M such that $\forall p \in M$

 \exists an oriented isomorphism

$$i: T_p M \to \mathbb{R}^7$$
, such that $i^* \phi_0 = \phi$.

- G_2 -structures on $\mathbb{R}^7 \iff \operatorname{GL}_+(7,\mathbb{R})/G_2$.
- dim(GL₊(7, \mathbb{R})/G₂) = 35 = dim $\Lambda^3 \mathbb{R}^7$. \Rightarrow implies small perturbations of a G₂-structure are still G₂-structures.

How to get a G_2 -holonomy metric from a G_2 structure?

Lemma

Let (M, ϕ, g) be a G_2 structure on a compact 7-manifold; the following are equivalent

1. $Hol(g) \subset G_2$ and ϕ is the induced 3-form

What is a G_2 structure?

• A G_2 structure is a 3-form ϕ on an oriented 7-mfd M such that $\forall p \in M$

 \exists an oriented isomorphism

$$i: T_p M \to \mathbb{R}^7$$
, such that $i^* \phi_0 = \phi$.

- G_2 -structures on $\mathbb{R}^7 \iff \operatorname{GL}_+(7,\mathbb{R})/G_2$.
- dim(GL₊(7, ℝ)/G₂) = 35 = dim Λ³ℝ⁷.
 ⇒ implies small perturbations of a G₂-structure are still G₂-structures.

How to get a G_2 -holonomy metric from a G_2 structure?

Lemma

Let (M, ϕ, g) be a G_2 structure on a compact 7-manifold; the following are equivalent

- **1.** Hol(g) \subset G₂ and ϕ is the induced 3-form
- **2.** $\nabla \phi = 0$ where ∇ is Levi-Civita w.r.t g

What is a G_2 structure?

• A G_2 structure is a 3-form ϕ on an oriented 7-mfd M such that $\forall p \in M$

 \exists an oriented isomorphism

$$i: T_p M \to \mathbb{R}^7$$
, such that $i^* \phi_0 = \phi$.

- G_2 -structures on $\mathbb{R}^7 \iff \operatorname{GL}_+(7,\mathbb{R})/G_2$.
- dim(GL₊(7, \mathbb{R})/G₂) = 35 = dim $\Lambda^3 \mathbb{R}^7$. ⇒ implies small perturbations of a G₂-structure are still G₂-structures.

How to get a G_2 -holonomy metric from a G_2 structure?

Lemma

Let (M, ϕ, g) be a G_2 structure on a compact 7-manifold; the following are equivalent

- **1.** Hol(g) \subset G₂ and ϕ is the induced 3-form
- **2.** $\nabla \phi = 0$ where ∇ is Levi-Civita w.r.t g
- **3.** $d\phi = d^*\phi = 0$.

What is a G_2 structure?

• A G_2 structure is a 3-form ϕ on an oriented 7-mfd M such that $\forall p \in M$

 \exists an oriented isomorphism

$$i: T_p M \to \mathbb{R}^7$$
, such that $i^* \phi_0 = \phi$.

•
$$G_2$$
-structures on $\mathbb{R}^7 \iff \operatorname{GL}_+(7,\mathbb{R})/G_2$.

dim(GL₊(7, ℝ)/G₂) = 35 = dim Λ³ℝ⁷.
 ⇒ implies small perturbations of a G₂-structure are still G₂-structures.

How to get a G_2 -holonomy metric from a G_2 structure?

Lemma

Let (M, ϕ, g) be a G_2 structure on a compact 7-manifold; the following are equivalent

- **1.** Hol(g) \subset G₂ and ϕ is the induced 3-form **2.** $\nabla \phi = 0$ where ∇ is Levi-Civita w.r.t g
- **3.** $d\phi = d^*\phi = 0$.

Call such a G_2 structure a *torsion-free* G_2 structure.

What is a G_2 structure?

• A G_2 structure is a 3-form ϕ on an oriented 7-mfd M such that $\forall p \in M$

 \exists an oriented isomorphism

$$i: T_p M \to \mathbb{R}^7$$
, such that $i^* \phi_0 = \phi$.

- G_2 -structures on $\mathbb{R}^7 \iff \operatorname{GL}_+(7,\mathbb{R})/G_2$.
- dim(GL₊(7, ℝ)/G₂) = 35 = dim Λ³ℝ⁷.
 ⇒ implies small perturbations of a G₂-structure are still G₂-structures.

How to get a G_2 -holonomy metric from a G_2 structure?

Lemma

Let (M, ϕ, g) be a G_2 structure on a compact 7-manifold; the following are equivalent

- **1.** $Hol(g) \subset G_2$ and ϕ is the induced 3-form
- **2.** $\nabla \phi = 0$ where ∇ is Levi-Civita w.r.t g
- **3.** $d\phi = d^*\phi = 0$.

Call such a G_2 structure a *torsion-free* G_2 structure. NB₄($^{(3)}_{2}$) is nonlinear in ϕ because metric g depends nonlinearly on ϕ .

Lemma

Let M be a compact 7-manifold.

1. *M* admits a G_2 structure iff it is orientable and spin.

Lemma

Let M be a compact 7-manifold.

- **1.** *M* admits a G_2 structure iff it is orientable and spin.
- **2.** A torsion-free G_2 structure (ϕ, g) on M has $Hol(g) = G_2$ iff $\pi_1 M$ is finite.

Lemma

Let M be a compact 7-manifold.

- **1.** *M* admits a G_2 structure iff it is orientable and spin.
- **2.** A torsion-free G_2 structure (ϕ, g) on M has $Hol(g) = G_2$ iff $\pi_1 M$ is finite.
- **3.** If $Hol(g) = G_2$ then M has nonzero first Pontrjagin class $p_1(M)$.

Lemma

Let M be a compact 7-manifold.

- **1.** *M* admits a G_2 structure iff it is orientable and spin.
- **2.** A torsion-free G_2 structure (ϕ, g) on M has $Hol(g) = G_2$ iff $\pi_1 M$ is finite.
- **3.** If $Hol(g) = G_2$ then M has nonzero first Pontrjagin class $p_1(M)$.

A strategy to construct G_2 -holonomy metrics.

I. Find a G_2 structure ϕ with sufficiently small torsion on a 7-manifold with $|\pi_1|<\infty$

Lemma

Let M be a compact 7-manifold.

- **1.** *M* admits a G_2 structure iff it is orientable and spin.
- **2.** A torsion-free G_2 structure (ϕ, g) on M has $Hol(g) = G_2$ iff $\pi_1 M$ is finite.
- **3.** If $Hol(g) = G_2$ then M has nonzero first Pontrjagin class $p_1(M)$.

A strategy to construct G_2 -holonomy metrics.

- I. Find a G_2 structure ϕ with sufficiently small torsion on a 7-manifold with $|\pi_1|<\infty$
- **II.** Perturb to a torsion-free G_2 structure ϕ' close to ϕ .

II was understood in some generality by Dominic Joyce (if $d\phi = 0$).

3-form ϕ_0 and 4-form $*\phi_0$ on \mathbb{R}^7 are G_2 -invariant calibrations.

3-form ϕ_0 and 4-form $*\phi_0$ on \mathbb{R}^7 are G_2 -invariant calibrations.

• Oriented 3-planes calibrated by ϕ_0 are called *associative* planes.

3-form ϕ_0 and 4-form $*\phi_0$ on \mathbb{R}^7 are G_2 -invariant calibrations.

- Oriented 3-planes calibrated by ϕ_0 are called *associative* planes.
- $\blacksquare \ \mathbb{R}^3 \subset \mathbb{R}^3 \times \mathbb{C}^2$ is an associative 3-plane.

3-form ϕ_0 and 4-form $*\phi_0$ on \mathbb{R}^7 are G_2 -invariant calibrations.

- Oriented 3-planes calibrated by ϕ_0 are called *associative* planes.
- $\mathbb{R}^3 \subset \mathbb{R}^3 \times \mathbb{C}^2$ is an associative 3-plane.
- G₂ acts transitively on associative 3-planes.

3-form ϕ_0 and 4-form $*\phi_0$ on \mathbb{R}^7 are G_2 -invariant calibrations.

- Oriented 3-planes calibrated by ϕ_0 are called *associative* planes.
- $\mathbb{R}^3 \subset \mathbb{R}^3 \times \mathbb{C}^2$ is an associative 3-plane.
- G₂ acts transitively on associative 3-planes.

Oriented 4-planes calibrated by $*\phi_0$ are called *coassociative*. 4-plane is coassociative iff its orthogonal complement is associative.

Holonomy/parallel tensor correspondence \Rightarrow

- on any mfd (M, g) with Hol $(g) \subset G_2$ we have parallel 3 and 4-forms ϕ and $*_g \phi$ modelled on ϕ_0 and $*\phi_0$.
- associative (coassociative) calibration exists on any *G*₂-manifold.

Recall when we decomposed \mathbb{R}^7 as $\mathbb{R}\times\mathbb{C}^3$ we had

 $\phi_0 = dt \wedge \omega + \operatorname{Re} \Omega.$

Recall, V a Calabi-Yau 3-fold $\Rightarrow \mathbb{S}^1 \times V$ has holonomy $\mathsf{SU}(3) \subset \mathcal{G}_2$

Recall when we decomposed \mathbb{R}^7 as $\mathbb{R}\times \mathbb{C}^3$ we had

 $\phi_0 = dt \wedge \omega + \operatorname{Re} \Omega.$

Recall, V a Calabi-Yau 3-fold $\Rightarrow \mathbb{S}^1 \times V$ has holonomy $\mathsf{SU}(3) \subset \mathcal{G}_2$

• $\mathbb{S}^1 \times C \subset \mathbb{S}^1 \times V$ is associative iff C is a holomorphic curve in V.

Recall when we decomposed \mathbb{R}^7 as $\mathbb{R}\times\mathbb{C}^3$ we had

 $\phi_0 = dt \wedge \omega + \operatorname{Re} \Omega.$

Recall, V a Calabi-Yau 3-fold $\Rightarrow \mathbb{S}^1 \times V$ has holonomy SU(3) $\subset G_2$

- $\mathbb{S}^1 \times C \subset \mathbb{S}^1 \times V$ is associative iff C is a holomorphic curve in V.
- Infinitesimal deformations of S¹ × C as an associative 3-fold ↔ infinitesimal deformations of C as a complex curve in V.

Recall when we decomposed \mathbb{R}^7 as $\mathbb{R}\times \mathbb{C}^3$ we had

 $\phi_0 = dt \wedge \omega + \operatorname{Re} \Omega.$

Recall, V a Calabi-Yau 3-fold $\Rightarrow \mathbb{S}^1 \times V$ has holonomy SU(3) $\subset G_2$

- $\mathbb{S}^1 \times C \subset \mathbb{S}^1 \times V$ is associative iff C is a holomorphic curve in V.
- Infinitesimal deformations of S¹ × C as an associative 3-fold ↔ infinitesimal deformations of C as a complex curve in V.

We also have $\mathbb{S}^1 \times L \subset \mathbb{S}^1 \times V$ is coassociative iff L is a special Lagrangian 3-fold in X.

Donaldson suggested constructing compact G_2 manifolds from a pair of asymptotically cylindrical Calabi-Yau 3-folds via a *neck-stretching* method.

Donaldson suggested constructing compact G_2 manifolds from a pair of asymptotically cylindrical Calabi-Yau 3-folds via a *neck-stretching* method.

i. Use noncompact version of Calabi conjecture to construct asymptotically cylindrical Calabi-Yau 3-folds V with one end $\sim \mathbb{C}^* \times D$, with D a smooth K3.
Donaldson suggested constructing compact G_2 manifolds from a pair of asymptotically cylindrical Calabi-Yau 3-folds via a *neck-stretching* method.

- i. Use noncompact version of Calabi conjecture to construct asymptotically cylindrical Calabi-Yau 3-folds V with one end $\sim \mathbb{C}^* \times D$, with D a smooth K3.
- ii. $M = \mathbb{S}^1 \times V$ is a 7-mfd with Hol $g = SU(3) \subset G_2$ with end $\sim \mathbb{R}^+ \times T^2 \times K3$.

Donaldson suggested constructing compact G_2 manifolds from a pair of asymptotically cylindrical Calabi-Yau 3-folds via a *neck-stretching* method.

- i. Use noncompact version of Calabi conjecture to construct asymptotically cylindrical Calabi-Yau 3-folds V with one end $\sim \mathbb{C}^* \times D$, with D a smooth K3.
- ii. $M = \mathbb{S}^1 \times V$ is a 7-mfd with Hol $g = SU(3) \subset G_2$ with end $\sim \mathbb{R}^+ \times T^2 \times K3$.
- iii. Take a *twisted connect sum* of a pair of $M_{\pm} = \mathbb{S}^1 imes V_{\pm}$
- iv. For T >> 1 construct a G_2 -structure w/ small torsion (exponentially small in T) and prove it can be corrected to torsion-free.

Donaldson suggested constructing compact G_2 manifolds from a pair of asymptotically cylindrical Calabi-Yau 3-folds via a *neck-stretching* method.

- i. Use noncompact version of Calabi conjecture to construct asymptotically cylindrical Calabi-Yau 3-folds V with one end $\sim \mathbb{C}^* \times D$, with D a smooth K3.
- ii. $M = \mathbb{S}^1 \times V$ is a 7-mfd with Hol $g = SU(3) \subset G_2$ with end $\sim \mathbb{R}^+ \times T^2 \times K3$.
- iii. Take a *twisted connect sum* of a pair of $M_{\pm} = \mathbb{S}^1 imes V_{\pm}$
- iv. For T >> 1 construct a G_2 -structure w/ small torsion (exponentially small in T) and prove it can be corrected to torsion-free.

Kovalev (2003) carried out Donaldson's proposal for AC CY 3-folds arising from Fano 3-folds.

Product G_2 structure on $M_{\pm} = \mathbb{S}^1 imes V_{\pm}$ asymptotic to

 $d heta_1 \wedge d heta_2 \wedge dt + d heta_1 \wedge \omega_I^{\pm} + d heta_2 \wedge \omega_J^{\pm} + dt \wedge \omega_K^{\pm}$

 ω_I^{\pm} , $\omega_J^{\pm} + i \, \omega_K^{\pm}$ denote Ricci-flat Kähler metric, parallel (2,0)-form on D_{\pm} .

Product G_2 structure on $\mathit{M}_\pm = \mathbb{S}^1 imes \mathit{V}_\pm$ asymptotic to

 $d heta_1 \wedge d heta_2 \wedge dt + d heta_1 \wedge \omega_I^{\pm} + d heta_2 \wedge \omega_J^{\pm} + dt \wedge \omega_K^{\pm}$

 ω_I^{\pm} , $\omega_J^{\pm} + i \, \omega_K^{\pm}$ denote Ricci-flat Kähler metric, parallel (2,0)-form on D_{\pm} .

To get a well-defined G_2 structure using

$$F: [T-1,T] imes \mathbb{S}^1 imes \mathbb{S}^1 imes D_- o [T-1,T] imes \mathbb{S}^1 imes \mathbb{S}^1 imes D_+$$

given by

$$(t, \theta_1, \theta_2, y) \mapsto (2T - 1 - t, \theta_2, \theta_1, f(y))$$

Product G_2 structure on $M_{\pm} = \mathbb{S}^1 imes V_{\pm}$ asymptotic to

 $d heta_1 \wedge d heta_2 \wedge dt + d heta_1 \wedge \omega_I^{\pm} + d heta_2 \wedge \omega_J^{\pm} + dt \wedge \omega_K^{\pm}$

 ω_I^{\pm} , $\omega_J^{\pm} + i \, \omega_K^{\pm}$ denote Ricci-flat Kähler metric, parallel (2,0)-form on D_{\pm} .

To get a well-defined G_2 structure using

$$F: [T-1,T] imes \mathbb{S}^1 imes \mathbb{S}^1 imes D_- o [T-1,T] imes \mathbb{S}^1 imes \mathbb{S}^1 imes D_+$$

given by

$$(t, \theta_1, \theta_2, y) \mapsto (2T - 1 - t, \theta_2, \theta_1, f(y))$$

to identify end of M_- with M_+ we need $f: D_- \rightarrow D_+$ to satisfy

$$f^*\omega_I^+ = \omega_J^-, \quad f^*\omega_J^+ = \omega_I^-, \quad f^*\omega_K^+ = -\omega_K^-.$$

Product G_2 structure on $M_{\pm} = \mathbb{S}^1 imes V_{\pm}$ asymptotic to

 $d heta_1 \wedge d heta_2 \wedge dt + d heta_1 \wedge \omega_I^{\pm} + d heta_2 \wedge \omega_J^{\pm} + dt \wedge \omega_K^{\pm}$

 ω_I^{\pm} , $\omega_J^{\pm} + i \, \omega_K^{\pm}$ denote Ricci-flat Kähler metric, parallel (2,0)-form on D_{\pm} .

To get a well-defined G_2 structure using

$$F: [T-1,T] imes \mathbb{S}^1 imes \mathbb{S}^1 imes D_- o [T-1,T] imes \mathbb{S}^1 imes \mathbb{S}^1 imes D_+$$

given by

$$(t, \theta_1, \theta_2, y) \mapsto (2T - 1 - t, \theta_2, \theta_1, f(y))$$

to identify end of M_- with M_+ we need $f: D_- \rightarrow D_+$ to satisfy

$$f^*\omega_I^+ = \omega_J^-, \quad f^*\omega_J^+ = \omega_I^-, \quad f^*\omega_K^+ = -\omega_K^-.$$

 Constructing such hyperkähler rotations is nontrivial and a major part of the construction.

Product G_2 structure on $M_{\pm} = \mathbb{S}^1 imes V_{\pm}$ asymptotic to

 $d heta_1 \wedge d heta_2 \wedge dt + d heta_1 \wedge \omega_I^{\pm} + d heta_2 \wedge \omega_J^{\pm} + dt \wedge \omega_K^{\pm}$

 ω_I^{\pm} , $\omega_J^{\pm} + i \, \omega_K^{\pm}$ denote Ricci-flat Kähler metric, parallel (2,0)-form on D_{\pm} .

To get a well-defined G_2 structure using

$$\mathsf{F}: [\mathcal{T}-1,\mathcal{T}] imes \mathbb{S}^1 imes \mathbb{S}^1 imes D_- o [\mathcal{T}-1,\mathcal{T}] imes \mathbb{S}^1 imes \mathbb{S}^1 imes D_+$$

given by

$$(t, \theta_1, \theta_2, y) \mapsto (2T - 1 - t, \theta_2, \theta_1, f(y))$$

to identify end of M_- with M_+ we need $f: D_- \rightarrow D_+$ to satisfy

$$f^*\omega_I^+ = \omega_J^-, \quad f^*\omega_J^+ = \omega_I^-, \quad f^*\omega_K^+ = -\omega_K^-.$$

 Constructing such hyperkähler rotations is nontrivial and a major part of the construction.

Some problems in Kovalev's original paper here.

9 of 23

1. Construct suitable ACyl Calabi-Yau 3-folds V;

Kovalev used Fano 3-folds to construct ACyl CY 3-folds building on previous analytic work of Tian-Yau;

- Kovalev used Fano 3-folds to construct ACyl CY 3-folds building on previous analytic work of Tian-Yau;
- **2.** Find sufficient conditions for existence of a *hyperkähler rotation* between D_{-} and D_{+} ;

- Kovalev used Fano 3-folds to construct ACyl CY 3-folds building on previous analytic work of Tian-Yau;
- **2.** Find sufficient conditions for existence of a *hyperkähler rotation* between D_{-} and D_{+} ;
 - Use global Torelli theorems and lattice embedding results (e.g. Nikulin) to find hyperkähler rotations from suitable initial pairs of (deformation families of) ACyl CY 3-folds.

- Kovalev used Fano 3-folds to construct ACyl CY 3-folds building on previous analytic work of Tian-Yau;
- **2.** Find sufficient conditions for existence of a *hyperkähler rotation* between D_{-} and D_{+} ;
 - Use global Torelli theorems and lattice embedding results (e.g. Nikulin) to find hyperkähler rotations from suitable initial pairs of (deformation families of) ACyl CY 3-folds.
- **3.** Given a pair of ACyl CY 3-folds V_{\pm} and a HK-rotation $f : D_{-} \rightarrow D_{+}$ can *always* glue M_{-} and M_{+} to get a 1-parameter family of closed manifolds M_{T} with holonomy G_{2} .

1. Construct suitable ACyl Calabi-Yau 3-folds V;

- Kovalev used Fano 3-folds to construct ACyl CY 3-folds building on previous analytic work of Tian-Yau;
- **2.** Find sufficient conditions for existence of a *hyperkähler rotation* between D_{-} and D_{+} ;
 - Use global Torelli theorems and lattice embedding results (e.g. Nikulin) to find hyperkähler rotations from suitable initial pairs of (deformation families of) ACyl CY 3-folds.
- **3.** Given a pair of ACyl CY 3-folds V_{\pm} and a HK-rotation $f : D_{-} \rightarrow D_{+}$ can *always* glue M_{-} and M_{+} to get a 1-parameter family of closed manifolds M_{T} with holonomy G_{2} .

 \Rightarrow have reduced solving nonlinear PDEs for G_2 -metric to two problems about complex projective 3-folds.

- $D \cap D'$ is a smooth curve C (the base locus of the pencil defined by D and D')
- Blowup X along the base locus C to get new projective 3-fold Z

- $D \cap D'$ is a smooth curve C (the base locus of the pencil defined by D and D')
- Blowup X along the base locus C to get new projective 3-fold Z
- The proper transforms of D and D' are smooth anticanonical divisors on Z; the pencil they determine gives a morphism $\pi : Z \to \mathbb{P}^1$ with generic fibre a smooth anticanonical K3.

- $D \cap D'$ is a smooth curve C (the base locus of the pencil defined by D and D')
- Blowup X along the base locus C to get new projective 3-fold Z
- The proper transforms of D and D' are smooth anticanonical divisors on Z; the pencil they determine gives a morphism $\pi : Z \to \mathbb{P}^1$ with generic fibre a smooth anticanonical K3.
- Now remove any smooth fibre of π from Z.

It suffices to find a smooth projective 3-fold X with $D, D' \in |K_X^{-1}|$ smooth K3 surfaces that intersect transversely.

- $D \cap D'$ is a smooth curve C (the base locus of the pencil defined by D and D')
- Blowup X along the base locus C to get new projective 3-fold Z
- The proper transforms of D and D' are smooth anticanonical divisors on Z; the pencil they determine gives a morphism $\pi : Z \to \mathbb{P}^1$ with generic fibre a smooth anticanonical K3.
- Now remove any smooth fibre of π from Z.

Theorem (ACyl Calabi-Yau theorem)

 $V = Z \setminus D$ admits (exponentially) ACyl CY metrics.

It suffices to find a smooth projective 3-fold X with $D, D' \in |K_X^{-1}|$ smooth K3 surfaces that intersect transversely.

- $D \cap D'$ is a smooth curve C (the base locus of the pencil defined by D and D')
- Blowup X along the base locus C to get new projective 3-fold Z
- The proper transforms of D and D' are smooth anticanonical divisors on Z; the pencil they determine gives a morphism $\pi : Z \to \mathbb{P}^1$ with generic fibre a smooth anticanonical K3.
- Now remove any smooth fibre of π from Z.

Theorem (ACyl Calabi-Yau theorem)

 $V = Z \setminus D$ admits (exponentially) ACyl CY metrics.

Proof: originally Tian-Yau plus Kovalev (plus corrections to Kovalev).

It suffices to find a smooth projective 3-fold X with $D, D' \in |K_X^{-1}|$ smooth K3 surfaces that intersect transversely.

- $D \cap D'$ is a smooth curve C (the base locus of the pencil defined by D and D')
- Blowup X along the base locus C to get new projective 3-fold Z
- The proper transforms of D and D' are smooth anticanonical divisors on Z; the pencil they determine gives a morphism $\pi : Z \to \mathbb{P}^1$ with generic fibre a smooth anticanonical K3.
- Now remove any smooth fibre of π from Z.

Theorem (ACyl Calabi-Yau theorem)

 $V = Z \setminus D$ admits (exponentially) ACyl CY metrics.

Proof: originally Tian-Yau plus Kovalev (plus corrections to Kovalev).

Recently Hein-Haskins-Nordström gave simpler direct proof using ideas in Hein's thesis (and showed all "asymptotically split" ACyl CY 3-folds arise from such a construction).

Fano and weak Fano 3-folds

• A smooth Kahler 3-fold X is a Fano manifold if K_X^{-1} is ample.

Fano and weak Fano 3-folds

- A smooth Kahler 3-fold X is a Fano manifold if K_X^{-1} is ample.
- A smooth projective 3-fold X is a weak Fano manifold if K_X⁻¹ is big and nef.

Fano and weak Fano 3-folds

- A smooth Kahler 3-fold X is a Fano manifold if K_{x}^{-1} is ample.
- A smooth projective 3-fold X is a weak Fano manifold if K_X⁻¹ is big and nef.
 - \Box A holomorphic line bundle *L* on *X* is *nef* if

$$c_1(L).C=\int_C c_1(L)\geq 0$$

for every irreducible holomorphic curve $C \subset X$.

 \Box A holomorphic line bundle *L* on *X* is *big* if

$$h^0(L^{\otimes m}) \ge Cm^n$$
, for $m \gg 1$, $n = \dim_{\mathbb{C}} X$.

i.e. we replace condition K_{χ}^{-1} is positive with sufficiently "semi-positive".

• For *ample* line bundles we have Kodaira vanishing theorem

 $H^i(X, K_X \otimes L) = 0$ for all i > 0.

• For *ample* line bundles we have Kodaira vanishing theorem

 $H^i(X, K_X \otimes L) = 0$ for all i > 0.

For *big and nef* line bundles Kawamata-Viehweg vanishing replaces Kodaira.

 Shokurov: on a smooth Fano 3-fold X any sufficiently generic D ∈ |K_X⁻¹| is a smooth K3 surface.

• For *ample* line bundles we have Kodaira vanishing theorem

 $H^i(X, K_X \otimes L) = 0$ for all i > 0.

For *big and nef* line bundles Kawamata-Viehweg vanishing replaces Kodaira.

Shokurov: on a smooth Fano 3-fold X any sufficiently generic
 D ∈ |K_X⁻¹| is a smooth K3 surface. Reid generalised Shokurov's result to weak Fano 3-folds.

• For *ample* line bundles we have Kodaira vanishing theorem

 $H^i(X, K_X \otimes L) = 0$ for all i > 0.

For *big and nef* line bundles Kawamata-Viehweg vanishing replaces Kodaira.

- Shokurov: on a smooth Fano 3-fold X any sufficiently generic
 D ∈ |K_X⁻¹| is a smooth K3 surface. Reid generalised Shokurov's result to
 weak Fano 3-folds.
- |D| is basepoint free for most Fano and weak Fano 3-folds.

• For *ample* line bundles we have Kodaira vanishing theorem

 $H^i(X, K_X \otimes L) = 0$ for all i > 0.

For *big and nef* line bundles Kawamata-Viehweg vanishing replaces Kodaira.

- Shokurov: on a smooth Fano 3-fold X any sufficiently generic
 D ∈ |K_X⁻¹| is a smooth K3 surface. Reid generalised Shokurov's result to weak Fano 3-folds.
- |D| is basepoint free for most Fano and weak Fano 3-folds.

ACyl Calabi-Yau Theorem implies can construct ACyl CY metrics from (almost) any smooth Fano or weak Fano 3-fold.

Kovalev used ACyl Calabi-Yau 3-folds of *Fano type* for his twisted connect sum G_2 -manifolds;

• For *ample* line bundles we have Kodaira vanishing theorem

 $H^i(X, K_X \otimes L) = 0$ for all i > 0.

For *big and nef* line bundles Kawamata-Viehweg vanishing replaces Kodaira.

- Shokurov: on a smooth Fano 3-fold X any sufficiently generic
 D ∈ |K_X⁻¹| is a smooth K3 surface. Reid generalised Shokurov's result to
 weak Fano 3-folds.
- |D| is basepoint free for most Fano and weak Fano 3-folds.

ACyl Calabi-Yau Theorem implies can construct ACyl CY metrics from (almost) any smooth Fano or weak Fano 3-fold.

Kovalev used ACyl Calabi-Yau 3-folds of *Fano type* for his twisted connect sum G_2 -manifolds; we generalise to (certain classes of) **weak Fano** 3-folds. ^{13 of 23}

1. Many more weak Fano than Fano 3-folds.

- 1. Many more weak Fano than Fano 3-folds.
 - □ Fano 3-folds classified: 105 deformation families.

- 1. Many more weak Fano than Fano 3-folds.
 - □ Fano 3-folds classified: 105 deformation families.
 - □ Hundreds of thousands of weak Fano 3-folds; classification ongoing.

- 1. Many more weak Fano than Fano 3-folds.
 - □ Fano 3-folds classified: 105 deformation families.
 - □ Hundreds of thousands of weak Fano 3-folds; classification ongoing.

 \Rightarrow get more topological types of ACyl CY 3-folds and hence (in good cases) compact G_2 mfds

- 1. Many more weak Fano than Fano 3-folds.
 - □ Fano 3-folds classified: 105 deformation families.
 - □ Hundreds of thousands of weak Fano 3-folds; classification ongoing.

 \Rightarrow get more topological types of ACyl CY 3-folds and hence (in good cases) compact G_2 mfds

2. In any Fano 3-fold K_X^{-1} is ample:

 \Rightarrow any compact holo curve $C \subset X$ must intersect any anticanonical divisor.

- 1. Many more weak Fano than Fano 3-folds.
 - □ Fano 3-folds classified: 105 deformation families.
 - □ Hundreds of thousands of weak Fano 3-folds; classification ongoing.

 \Rightarrow get more topological types of ACyl CY 3-folds and hence (in good cases) compact G_2 mfds

2. In any Fano 3-fold K_X^{-1} is ample:

 \Rightarrow any compact holo curve $C \subset X$ must intersect any anticanonical divisor.

A weak Fano 3-fold can contain holo curves C that do not meet anticanonical divisors.
Advantages of weak Fano vs. Fano

- 1. Many more weak Fano than Fano 3-folds.
 - □ Fano 3-folds classified: 105 deformation families.
 - □ Hundreds of thousands of weak Fano 3-folds; classification ongoing.

 \Rightarrow get more topological types of ACyl CY 3-folds and hence (in good cases) compact G_2 mfds

2. In any Fano 3-fold K_X^{-1} is ample:

 \Rightarrow any compact holo curve $C \subset X$ must intersect any anticanonical divisor.

A weak Fano 3-fold can contain holo curves C that do not meet anticanonical divisors.

For each smooth rigid \mathbb{P}^1 in a weak Fano 3-fold X any G_2 manifold built from X contains a *rigid associative submanifold* w/ topology $S^1 \times S^2$.

• Weak Fano is enough to construct ACyl Calabi-Yau 3-folds.

• Weak Fano is enough to construct ACyl Calabi-Yau 3-folds. For G_2 -manifolds also need to construct hyperkahler rotations $f: D_- \rightarrow D_+$ between the asymptotic K3 surfaces of a pair of ACyl CY 3-folds $V_{\pm} = Z_{\pm} \setminus D_{\pm}$.

- Weak Fano is enough to construct ACyl Calabi-Yau 3-folds. For G_2 -manifolds also need to construct hyperkahler rotations $f: D_- \rightarrow D_+$ between the asymptotic K3 surfaces of a pair of ACyl CY 3-folds $V_{\pm} = Z_{\pm} \setminus D_{\pm}$.
- This requires a sufficiently good deformation/moduli theory for pairs (X, D) where X is a (deformation class of) weak Fano 3-fold and D a smooth anticanonical K3 divisor in X.

- Weak Fano is enough to construct ACyl Calabi-Yau 3-folds. For G_2 -manifolds also need to construct hyperkahler rotations $f: D_- \rightarrow D_+$ between the asymptotic K3 surfaces of a pair of ACyl CY 3-folds $V_{\pm} = Z_{\pm} \setminus D_{\pm}$.
- This requires a sufficiently good deformation/moduli theory for pairs (X, D) where X is a (deformation class of) weak Fano 3-fold and D a smooth anticanonical K3 divisor in X.

Definition (Semi-Fano 3-fold)

A weak Fano 3-fold is *semi-Fano* if the natural morphism to its anti-canonical model is *semismall*, i.e. contracts no divisors to points.

- Weak Fano is enough to construct ACyl Calabi-Yau 3-folds. For G_2 -manifolds also need to construct hyperkahler rotations $f: D_- \rightarrow D_+$ between the asymptotic K3 surfaces of a pair of ACyl CY 3-folds $V_{\pm} = Z_{\pm} \setminus D_{\pm}$.
- This requires a sufficiently good deformation/moduli theory for pairs (X, D) where X is a (deformation class of) weak Fano 3-fold and D a smooth anticanonical K3 divisor in X.

Definition (Semi-Fano 3-fold)

A weak Fano 3-fold is *semi-Fano* if the natural morphism to its anti-canonical model is *semismall*, i.e. contracts no divisors to points.

Key Fact: The deformation theory of the pair (X, D) is well-behaved if X is a semi-Fano 3-fold.

- Weak Fano is enough to construct ACyl Calabi-Yau 3-folds. For G_2 -manifolds also need to construct hyperkahler rotations $f: D_- \rightarrow D_+$ between the asymptotic K3 surfaces of a pair of ACyl CY 3-folds $V_{\pm} = Z_{\pm} \setminus D_{\pm}$.
- This requires a sufficiently good deformation/moduli theory for pairs (X, D) where X is a (deformation class of) weak Fano 3-fold and D a smooth anticanonical K3 divisor in X.

Definition (Semi-Fano 3-fold)

A weak Fano 3-fold is *semi-Fano* if the natural morphism to its anti-canonical model is *semismall*, i.e. contracts no divisors to points.

Key Fact: The deformation theory of the pair (X, D) is well-behaved if X is a semi-Fano 3-fold.

Basic reason: semi-Fanos satisfy slightly stronger cohomology vanishing theorems than weak Fano 3-folds.

- Weak Fano is enough to construct ACyl Calabi-Yau 3-folds. For G_2 -manifolds also need to construct hyperkahler rotations $f: D_- \rightarrow D_+$ between the asymptotic K3 surfaces of a pair of ACyl CY 3-folds $V_{\pm} = Z_{\pm} \setminus D_{\pm}$.
- This requires a sufficiently good deformation/moduli theory for pairs (X, D) where X is a (deformation class of) weak Fano 3-fold and D a smooth anticanonical K3 divisor in X.

Definition (Semi-Fano 3-fold)

A weak Fano 3-fold is *semi-Fano* if the natural morphism to its anti-canonical model is *semismall*, i.e. contracts no divisors to points.

Key Fact: The deformation theory of the pair (X, D) is well-behaved if X is a semi-Fano 3-fold.

Basic reason: semi-Fanos satisfy slightly stronger cohomology vanishing theorems than weak Fano 3-folds. (Sommese-Esnault-Viehweg vanishing for *k*-ample line bundles).

For ACyl CY 3-folds of *semi-Fano type* can still construct HK rotations by similar techniques to those used for those of Fano type.

- Weak Fano is enough to construct ACyl Calabi-Yau 3-folds. For G_2 -manifolds also need to construct hyperkahler rotations $f: D_- \rightarrow D_+$ between the asymptotic K3 surfaces of a pair of ACyl CY 3-folds $V_{\pm} = Z_{\pm} \setminus D_{\pm}$.
- This requires a sufficiently good deformation/moduli theory for pairs (X, D) where X is a (deformation class of) weak Fano 3-fold and D a smooth anticanonical K3 divisor in X.

Definition (Semi-Fano 3-fold)

A weak Fano 3-fold is *semi-Fano* if the natural morphism to its anti-canonical model is *semismall*, i.e. contracts no divisors to points.

Key Fact: The deformation theory of the pair (X, D) is well-behaved if X is a semi-Fano 3-fold.

Basic reason: semi-Fanos satisfy slightly stronger cohomology vanishing theorems than weak Fano 3-folds. (Sommese-Esnault-Viehweg vanishing for *k*-ample line bundles).

For ACyl CY 3-folds of *semi-Fano type* can still construct HK rotations by similar techniques to those used for those of Fano type.

 $\Rightarrow_{15 \text{ of } 23}$ use them to construct compact twisted connect sum G_2 manifolds.

Theorem (CHNP)

There exist many topological types of compact G_2 manifold which contain rigid associative submanifolds diffeomorphic to $S^1 \times S^2$.

Theorem (CHNP)

There exist many topological types of compact G_2 manifold which contain rigid associative submanifolds diffeomorphic to $S^1 \times S^2$.

Remarks:

1. First examples of *rigid* associative submanifolds in compact G_2 manifolds.

Theorem (CHNP)

There exist many topological types of compact G_2 manifold which contain rigid associative submanifolds diffeomorphic to $S^1 \times S^2$.

Remarks:

- 1. First examples of *rigid* associative submanifolds in compact G_2 manifolds.
- 2. Infinitesimal deformations of associative submfds *we twisted harmonic spinors*.

Theorem (CHNP)

There exist many topological types of compact G_2 manifold which contain rigid associative submanifolds diffeomorphic to $S^1 \times S^2$.

Remarks:

- 1. First examples of *rigid* associative submanifolds in compact G_2 manifolds.
- Infinitesimal deformations of associative submfds
 twisted harmonic spinors. Index of twisted Dirac operator is zero since in odd dimension, but hard to control kernel. Deformation theory can be obstructed.

Theorem (CHNP)

There exist many topological types of compact G_2 manifold which contain rigid associative submanifolds diffeomorphic to $S^1 \times S^2$.

Remarks:

- 1. First examples of *rigid* associative submanifolds in compact G_2 manifolds.
- **3.** Can attempt to build invariants of G_2 manifolds by counting associative submfds in a given homology class.

Theorem (CHNP)

There exist many topological types of compact G_2 manifold which contain rigid associative submanifolds diffeomorphic to $S^1 \times S^2$.

Remarks:

- 1. First examples of *rigid* associative submanifolds in compact G_2 manifolds.
- Infinitesimal deformations of associative submfds
 twisted harmonic spinors. Index of twisted Dirac operator is zero since in odd dimension, but hard to control kernel. Deformation theory can be obstructed.
- **3.** Can attempt to build invariants of G_2 manifolds by counting associative submfds in a given homology class.

Why do we get rigid associatives?

Theorem (CHNP)

There exist many topological types of compact G_2 manifold which contain rigid associative submanifolds diffeomorphic to $S^1 \times S^2$.

Remarks:

- 1. First examples of *rigid* associative submanifolds in compact G_2 manifolds.
- 2. Infinitesimal deformations of associative submfds $\leftrightarrow \Rightarrow$ *twisted harmonic spinors*. Index of twisted Dirac operator is zero since in odd dimension, but hard to control kernel. Deformation theory can be obstructed.
- **3.** Can attempt to build invariants of G_2 manifolds by counting associative submfds in a given homology class.

Why do we get rigid associatives? Let C be a cpt holo curve in X not meeting AC divisor $D \rightsquigarrow$ cpt holo curve $C \subset V = Z \setminus D$

Theorem (CHNP)

There exist many topological types of compact G_2 manifold which contain rigid associative submanifolds diffeomorphic to $S^1 \times S^2$.

Remarks:

- 1. First examples of *rigid* associative submanifolds in compact G_2 manifolds.
- 2. Infinitesimal deformations of associative submfds $\leftrightarrow \Rightarrow$ *twisted harmonic spinors*. Index of twisted Dirac operator is zero since in odd dimension, but hard to control kernel. Deformation theory can be obstructed.
- **3.** Can attempt to build invariants of G_2 manifolds by counting associative submfds in a given homology class.

Why do we get rigid associatives? Let C be a cpt holo curve in X not meeting AC divisor $D \rightsquigarrow \text{cpt}$ holo curve $C \subset V = Z \setminus D \rightsquigarrow \mathbb{S}^1 \times C$ is compact associative submfd in $\mathbb{S}^1 \times V$.

Theorem (CHNP)

There exist many topological types of compact G_2 manifold which contain rigid associative submanifolds diffeomorphic to $S^1 \times S^2$.

Remarks:

- 1. First examples of *rigid* associative submanifolds in compact G_2 manifolds.
- 2. Infinitesimal deformations of associative submfds $\leftrightarrow \Rightarrow$ *twisted harmonic spinors*. Index of twisted Dirac operator is zero since in odd dimension, but hard to control kernel. Deformation theory can be obstructed.
- **3.** Can attempt to build invariants of G_2 manifolds by counting associative submfds in a given homology class.

Why do we get rigid associatives? Let *C* be a cpt holo curve in *X* not meeting AC divisor $D \rightsquigarrow$ cpt holo curve $C \subset V = Z \setminus D \rightsquigarrow \mathbb{S}^1 \times C$ is compact associative submfd in $\mathbb{S}^1 \times V$. *C* rigid curve in *V* iff $\mathbb{S}^1 \times C$ rigid associative 3-fold of $\mathbb{S}^1 \times V$.

Theorem (CHNP)

There exist many topological types of compact G_2 manifold which contain rigid associative submanifolds diffeomorphic to $S^1 \times S^2$.

Remarks:

- 1. First examples of *rigid* associative submanifolds in compact G_2 manifolds.
- 2. Infinitesimal deformations of associative submfds *www twisted harmonic spinors.* Index of twisted Dirac operator is zero since in odd dimension, but hard to control kernel. Deformation theory can be obstructed.
- **3.** Can attempt to build invariants of G_2 manifolds by counting associative submfds in a given homology class.

Why do we get rigid associatives? Let *C* be a cpt holo curve in *X* not meeting AC divisor $D \rightsquigarrow \text{cpt}$ holo curve $C \subset V = Z \setminus D \rightsquigarrow \mathbb{S}^1 \times C$ is compact associative submfd in $\mathbb{S}^1 \times V$. *C* rigid curve in *V* iff $\mathbb{S}^1 \times C$ rigid associative 3-fold of $\mathbb{S}^1 \times V$. Since $\mathbb{S}^1 \times C$ is rigid in $\mathbb{S}^1 \times V$, easy to perturb $\mathbb{S}^1 \times C$ to rigid associative 3-fold in glued G_2 structure for $T \gg 1$.

Example 1: start with a (singular) quartic 3-fold $Y \subset \mathbb{P}^4$ containing a projective plane Π and resolve.

Example 1: start with a (singular) quartic 3-fold $Y \subset \mathbb{P}^4$ containing a projective plane Π and resolve. If $\Pi = (x_0 = x_1 = 0)$ then eqn of Y is

$$Y = (x_0a_3 + x_1b_3 = 0) \subset \mathbb{P}^4$$

where a_3 and b_3 are homogeneous cubic forms in (x_0, \ldots, x_4) .

Example 1: start with a (singular) quartic 3-fold $Y \subset \mathbb{P}^4$ containing a projective plane Π and resolve. If $\Pi = (x_0 = x_1 = 0)$ then eqn of Y is

$$Y = (x_0a_3 + x_1b_3 = 0) \subset \mathbb{P}^4$$

where a_3 and b_3 are homogeneous cubic forms in (x_0, \ldots, x_4) . Generically the plane cubics

$$egin{aligned} &(a_3(0,0,x_2,x_3,x_4)=0)\subset\Pi,\ &(b_3(0,0,x_2,x_3,x_4)=0)\subset\Pi \end{aligned}$$

intersect in 9 distinct points, where Y has 9 ordinary double points.

Example 1: start with a (singular) quartic 3-fold $Y \subset \mathbb{P}^4$ containing a projective plane Π and resolve. If $\Pi = (x_0 = x_1 = 0)$ then eqn of Y is

$$Y = (x_0a_3 + x_1b_3 = 0) \subset \mathbb{P}^4$$

where a_3 and b_3 are homogeneous cubic forms in (x_0, \ldots, x_4) . Generically the plane cubics

$$egin{aligned} &(a_3(0,0,x_2,x_3,x_4)=0)\subset\Pi, \ &(b_3(0,0,x_2,x_3,x_4)=0)\subset\Pi \end{aligned}$$

intersect in 9 distinct points, where Y has 9 ordinary double points. Blowing-up $\Pi \subset Y$ gives a smooth X $f : X \to Y$ is a *projective* small resolution of all 9 nodes of Y.

Example 1: start with a (singular) quartic 3-fold $Y \subset \mathbb{P}^4$ containing a projective plane Π and resolve. If $\Pi = (x_0 = x_1 = 0)$ then eqn of Y is

$$Y = (x_0a_3 + x_1b_3 = 0) \subset \mathbb{P}^4$$

where a_3 and b_3 are homogeneous cubic forms in (x_0, \ldots, x_4) . Generically the plane cubics

$$egin{aligned} &(a_3(0,0,x_2,x_3,x_4)=0)\subset\Pi, \ &(b_3(0,0,x_2,x_3,x_4)=0)\subset\Pi \end{aligned}$$

intersect in 9 distinct points, where Y has 9 ordinary double points. Blowing-up $\Pi \subset Y$ gives a smooth X $f : X \to Y$ is a *projective* small resolution of all 9 nodes of Y.

X is a smooth (projective) semi-Fano 3-fold; it contains 9 smooth rigid rational curves with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$; X has genus 3 and Picard rank 2.

17 of 23

Example 2: A quartic 3-fold in \mathbb{P}^4 with only ordinary double points has at most 45 singular points.

Example 2: A quartic 3-fold in \mathbb{P}^4 with only ordinary double points has at most 45 singular points. Up to coordinate change, there is a unique such 3-fold, the *Burkhardt quartic* Y

$$(x_0^4 - x_0(x_1^3 + x_2^3 + x_3^3 + x_4^3 + 3x_1x_2x_3x_4)) = 0) \subset \mathbb{P}^4$$

Example 2: A quartic 3-fold in \mathbb{P}^4 with only ordinary double points has at most 45 singular points. Up to coordinate change, there is a unique such 3-fold, the *Burkhardt quartic* Y

$$(x_0^4 - x_0(x_1^3 + x_2^3 + x_3^3 + x_4^3 + 3x_1x_2x_3x_4)) = 0) \subset \mathbb{P}^4.$$

Y admits a small projective resolution X

Example 2: A quartic 3-fold in \mathbb{P}^4 with only ordinary double points has at most 45 singular points. Up to coordinate change, there is a unique such 3-fold, the *Burkhardt quartic* Y

$$(x_0^4 - x_0(x_1^3 + x_2^3 + x_3^3 + x_4^3 + 3x_1x_2x_3x_4)) = 0) \subset \mathbb{P}^4$$

Y admits a small projective resolution X X is a semi-Fano 3-fold w/ genus 3, Picard rank 16 and 45 smooth rigid \mathbb{P}^1 s with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

Example 2: A quartic 3-fold in \mathbb{P}^4 with only ordinary double points has at most 45 singular points. Up to coordinate change, there is a unique such 3-fold, the *Burkhardt quartic* Y

$$(x_0^4 - x_0(x_1^3 + x_2^3 + x_3^3 + x_4^3 + 3x_1x_2x_3x_4)) = 0) \subset \mathbb{P}^4$$

Y admits a small projective resolution XX is a semi-Fano 3-fold w/ genus 3, Picard rank 16 and 45 smooth rigid \mathbb{P}^1 s with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

Remarks

Shows semi-Fano 3-folds can have larger Picard rank than Fanos.

Example 2: A quartic 3-fold in \mathbb{P}^4 with only ordinary double points has at most 45 singular points. Up to coordinate change, there is a unique such 3-fold, the *Burkhardt quartic* Y

$$(x_0^4 - x_0(x_1^3 + x_2^3 + x_3^3 + x_4^3 + 3x_1x_2x_3x_4)) = 0) \subset \mathbb{P}^4$$

Y admits a small projective resolution XX is a semi-Fano 3-fold w/ genus 3, Picard rank 16 and 45 smooth rigid \mathbb{P}^1 s with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

Remarks

■ Shows semi-Fano 3-folds can have larger Picard rank than Fanos. ⇒ can get G₂ manifolds with larger Betti numbers.

Example 2: A quartic 3-fold in \mathbb{P}^4 with only ordinary double points has at most 45 singular points. Up to coordinate change, there is a unique such 3-fold, the *Burkhardt quartic* Y

$$(x_0^4 - x_0(x_1^3 + x_2^3 + x_3^3 + x_4^3 + 3x_1x_2x_3x_4)) = 0) \subset \mathbb{P}^4$$

Y admits a small projective resolution XX is a semi-Fano 3-fold w/ genus 3, Picard rank 16 and 45 smooth rigid \mathbb{P}^1 s with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

Remarks

- Shows semi-Fano 3-folds can have larger Picard rank than Fanos. ⇒ can get G₂ manifolds with larger Betti numbers.
- Classification results \Rightarrow any Fano 3-fold has Picard rank \leq 10. In fact, Picard rank \geq 6 forces X to be $\mathbb{P}^1 \times dP$ for some del Pezzo surface.

There exist over 400,000 deformation types of rigid toric semi-Fano 3-folds. There exist 1009 deformation types of semi-Fano 3-folds with nodal AC model.

• There exist only 18 smooth toric Fano 3-folds.

- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities.

- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities. Toric Gorenstein canonical Fano 3-folds classified in terms of *reflexive polytopes*.

- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities. Toric Gorenstein canonical Fano 3-folds classified in terms of *reflexive polytopes*.
- Kreuzer-Skarke: ∃ 4319 reflexive polytopes.

- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities. Toric Gorenstein canonical Fano 3-folds classified in terms of *reflexive polytopes*.
- Kreuzer-Skarke: ∃ 4319 reflexive polytopes. Every toric Gorenstein canonical Fano 3-fold admits at least one projective crepant resolution;
- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities. Toric Gorenstein canonical Fano 3-folds classified in terms of *reflexive polytopes*.
- Kreuzer-Skarke: ∃ 4319 reflexive polytopes. Every toric Gorenstein canonical Fano 3-fold admits at least one projective crepant resolution; this is a toric weak Fano 3-fold.

- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities. Toric Gorenstein canonical Fano 3-folds classified in terms of *reflexive polytopes*.
- Kreuzer-Skarke: ∃ 4319 reflexive polytopes. Every toric Gorenstein canonical Fano 3-fold admits at least one projective crepant resolution; this is a toric weak Fano 3-fold. 899 polytopes give rise to toric semi-Fanos.

- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities. Toric Gorenstein canonical Fano 3-folds classified in terms of *reflexive polytopes*.
- Kreuzer-Skarke: ∃ 4319 reflexive polytopes. Every toric Gorenstein canonical Fano 3-fold admits at least one projective crepant resolution; this is a toric weak Fano 3-fold. 899 polytopes give rise to toric semi-Fanos.
 - □ Most admit *many* nonisomorphic projective small resolutions.

- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities. Toric Gorenstein canonical Fano 3-folds classified in terms of *reflexive polytopes*.
- Kreuzer-Skarke: ∃ 4319 reflexive polytopes. Every toric Gorenstein canonical Fano 3-fold admits at least one projective crepant resolution; this is a toric weak Fano 3-fold. 899 polytopes give rise to toric semi-Fanos.
 - Most admit *many* nonisomorphic projective small resolutions. Can enumerate those completely in terms of geometry of the polytopes.
- Not every toric semi-Fano is rigid; rigidity is determined by polytope. ^{19 of 23}

Theorem (CHNP+CHK)

There exist over 50 million matching pairs of ACyl CY 3-folds of semi-Fano type for which the resulting G_2 -manifold is 2-connected.

Theorem (CHNP+CHK)

There exist over 50 million matching pairs of ACyl CY 3-folds of semi-Fano type for which the resulting G_2 -manifold is 2-connected.

Sketch of proof.

 Use a pair of ACyl CY 3-folds with one of toric semi-Fano type and the other a semi-Fano (or Fano) of rank at most 2.

Theorem (CHNP+CHK)

There exist over 50 million matching pairs of ACyl CY 3-folds of semi-Fano type for which the resulting G_2 -manifold is 2-connected.

- Use a pair of ACyl CY 3-folds with one of toric semi-Fano type and the other a semi-Fano (or Fano) of rank at most 2.
- Use further arithmetic information about polarising lattices (discriminant group information) to prove there are over 250,000 toric semi-Fanos that can be matched to *any* ACyl CY 3-fold of Fano/semi-Fano type of rank at most 2.

Theorem (CHNP+CHK)

There exist over 50 million matching pairs of ACyl CY 3-folds of semi-Fano type for which the resulting G_2 -manifold is 2-connected.

- Use a pair of ACyl CY 3-folds with one of toric semi-Fano type and the other a semi-Fano (or Fano) of rank at most 2.
- Use further arithmetic information about polarising lattices (discriminant group information) to prove there are over 250,000 toric semi-Fanos that can be matched to any ACyl CY 3-fold of Fano/semi-Fano type of rank at most 2. Over 250,000 rigid toric semi-Fanos arise from only the 12 most "prolific" polytopes.

Theorem (CHNP+CHK)

There exist over 50 million matching pairs of ACyl CY 3-folds of semi-Fano type for which the resulting G_2 -manifold is 2-connected.

- Use a pair of ACyl CY 3-folds with one of toric semi-Fano type and the other a semi-Fano (or Fano) of rank at most 2.
- Use further arithmetic information about polarising lattices (discriminant group information) to prove there are over 250,000 toric semi-Fanos that can be matched to any ACyl CY 3-fold of Fano/semi-Fano type of rank at most 2. Over 250,000 rigid toric semi-Fanos arise from only the 12 most "prolific" polytopes.
- There are over 200 deformation types of Fanos/semi-Fanos of rank at most 2.

Theorem (CHNP+CHK)

There exist over 50 million matching pairs of ACyl CY 3-folds of semi-Fano type for which the resulting G_2 -manifold is 2-connected.

- Use a pair of ACyl CY 3-folds with one of toric semi-Fano type and the other a semi-Fano (or Fano) of rank at most 2.
- Use further arithmetic information about polarising lattices (discriminant group information) to prove there are over 250,000 toric semi-Fanos that can be matched to any ACyl CY 3-fold of Fano/semi-Fano type of rank at most 2. Over 250,000 rigid toric semi-Fanos arise from only the 12 most "prolific" polytopes.
- There are over 200 deformation types of Fanos/semi-Fanos of rank at most 2.

To understand the diffeomorphism types of many G_2 -manifolds we need to:

1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).

- **1.** Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
- **2.** Understand cohomology (over \mathbb{Z}) of twisted connect sums.

- 1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
- **2.** Understand cohomology (over \mathbb{Z}) of twisted connect sums.
 - \Box Cohomology depends on choice of matching diffeo f;

- 1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
- **2.** Understand cohomology (over \mathbb{Z}) of twisted connect sums.
 - □ Cohomology depends on choice of matching diffeo f; but sum $b^2 + b^3$ depends only on building blocks (in orthogonal gluing cases).

- **1.** Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
- **2.** Understand cohomology (over \mathbb{Z}) of twisted connect sums.
 - □ Cohomology depends on choice of matching diffeo f; but sum $b^2 + b^3$ depends only on building blocks (in orthogonal gluing cases).
- **3.** Understand what conditions on building blocks allow us to construct G_2 -manifolds which are 2-connected

- 1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
- **2.** Understand cohomology (over \mathbb{Z}) of twisted connect sums.
 - □ Cohomology depends on choice of matching diffeo f; but sum $b^2 + b^3$ depends only on building blocks (in orthogonal gluing cases).
- **3.** Understand what conditions on building blocks allow us to construct G_2 -manifolds which are 2-connected *e.g.* if sum of b^2 of both building blocks is sufficiently small.

- **1.** Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
- **2.** Understand cohomology (over \mathbb{Z}) of twisted connect sums.
 - □ Cohomology depends on choice of matching diffeo f; but sum $b^2 + b^3$ depends only on building blocks (in orthogonal gluing cases).
- **3.** Understand what conditions on building blocks allow us to construct G_2 -manifolds which are 2-connected *e.g.* if sum of b^2 of both building blocks is sufficiently small.
- 4. Understand classification theory for 2-connected 7-manifolds.

- 1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
- **2.** Understand cohomology (over \mathbb{Z}) of twisted connect sums.
 - □ Cohomology depends on choice of matching diffeo f; but sum $b^2 + b^3$ depends only on building blocks (in orthogonal gluing cases).
- **3.** Understand what conditions on building blocks allow us to construct G_2 -manifolds which are 2-connected *e.g.* if sum of b^2 of both building blocks is sufficiently small.
- 4. Understand classification theory for 2-connected 7-manifolds.
 - \Box Wilkens classified *M* up to *almost diffeomorphism*, i.e. up to connect sum with some homotopy 7-sphere.

To understand the diffeomorphism types of many G_2 -manifolds we need to:

- 1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
- **2.** Understand cohomology (over \mathbb{Z}) of twisted connect sums.
 - □ Cohomology depends on choice of matching diffeo f; but sum $b^2 + b^3$ depends only on building blocks (in orthogonal gluing cases).
- **3.** Understand what conditions on building blocks allow us to construct G_2 -manifolds which are 2-connected *e.g.* if sum of b^2 of both building blocks is sufficiently small.
- 4. Understand classification theory for 2-connected 7-manifolds.
 - \Box Wilkens classified *M* up to *almost diffeomorphism*, i.e. up to connect sum with some homotopy 7-sphere.

In good cases can understand how many diffeomorphism classes belong to a given almost diffeomorphism class.

To understand the diffeomorphism types of many G_2 -manifolds we need to:

- 1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
- **2.** Understand cohomology (over \mathbb{Z}) of twisted connect sums.
 - □ Cohomology depends on choice of matching diffeo f; but sum $b^2 + b^3$ depends only on building blocks (in orthogonal gluing cases).
- **3.** Understand what conditions on building blocks allow us to construct G_2 -manifolds which are 2-connected *e.g.* if sum of b^2 of both building blocks is sufficiently small.
- 4. Understand classification theory for 2-connected 7-manifolds.
 - \Box Wilkens classified *M* up to *almost diffeomorphism*, i.e. up to connect sum with some homotopy 7-sphere.

In good cases can understand how many diffeomorphism classes belong to a given almost diffeomorphism class.

□ Divisibility of $p_1(M) \in H^4(M, \mathbb{Z})$ plays a key role.

Simplest setting: M is 2-connected and H^4M is torsion-free.

Wilkens \Rightarrow *M* classified by $b = b^4(M)$ and $p_1(M) \in H^4M$.

Simplest setting: M is 2-connected and H^4M is torsion-free.

Wilkens \Rightarrow *M* classified by $b = b^4(M)$ and $p_1(M) \in H^4M$.

• Need to study divisibility of $p_1(M)$ for twisted connect sums.

Simplest setting: M is 2-connected and H^4M is torsion-free.

Wilkens \Rightarrow *M* classified by $b = b^4(M)$ and $p_1(M) \in H^4M$.

Need to study divisibility of p₁(M) for twisted connect sums.
 if div(p₁) = 4,8,12 or 24 then almost-diffeomorphism class contains only one diffeomorphism type.

Simplest setting: M is 2-connected and H^4M is torsion-free.

Wilkens \Rightarrow *M* classified by $b = b^4(M)$ and $p_1(M) \in H^4M$.

Need to study divisibility of p₁(M) for twisted connect sums.
 if div(p₁) = 4, 8, 12 or 24 then almost-diffeomorphism class contains only one diffeomorphism type.

Observation: $4|p_1$ and $p_1|48$ for any twisted connect sum.

Simplest setting: M is 2-connected and H^4M is torsion-free.

Wilkens \Rightarrow *M* classified by $b = b^4(M)$ and $p_1(M) \in H^4M$.

Need to study divisibility of p₁(M) for twisted connect sums.
 if div(p₁) = 4, 8, 12 or 24 then almost-diffeomorphism class contains only one diffeomorphism type.

Observation: $4|p_1$ and $p_1|48$ for any twisted connect sum. Strategy to pin-down divisibility:

Simplest setting: M is 2-connected and H^4M is torsion-free.

Wilkens \Rightarrow *M* classified by $b = b^4(M)$ and $p_1(M) \in H^4M$.

Need to study divisibility of p₁(M) for twisted connect sums.
 if div(p₁) = 4, 8, 12 or 24 then almost-diffeomorphism class contains only one diffeomorphism type.

Observation: $4|p_1$ and $p_1|48$ for any twisted connect sum.

Strategy to pin-down divisibility: Relate divisibility of p_1 of twisted connect sum to divisibility of c_2 on the pair of building blocks.

Simplest setting: M is 2-connected and H^4M is torsion-free.

Wilkens \Rightarrow *M* classified by $b = b^4(M)$ and $p_1(M) \in H^4M$.

Need to study divisibility of p₁(M) for twisted connect sums.
 if div(p₁) = 4, 8, 12 or 24 then almost-diffeomorphism class contains only one diffeomorphism type.

Observation: $4|p_1$ and $p_1|48$ for any twisted connect sum.

Strategy to pin-down divisibility: Relate divisibility of p_1 of twisted connect sum to divisibility of c_2 on the pair of building blocks. In the best case:

$$div(p_1) = 2 \operatorname{gcd}(div(c_2^+), div(c_2^-)).$$
 (*)

Simplest setting: M is 2-connected and H^4M is torsion-free.

Wilkens \Rightarrow *M* classified by $b = b^4(M)$ and $p_1(M) \in H^4M$.

Need to study divisibility of p₁(M) for twisted connect sums.
 if div(p₁) = 4, 8, 12 or 24 then almost-diffeomorphism class contains only one diffeomorphism type.

Observation: $4|p_1$ and $p_1|48$ for any twisted connect sum.

Strategy to pin-down divisibility: Relate divisibility of p_1 of twisted connect sum to divisibility of c_2 on the pair of building blocks. In the best case:

$$div(p_1) = 2 \operatorname{gcd}(div(c_2^+), div(c_2^-)).$$
 (*)

In many cases can understand $div(c_2)$ e.g. any Fano w/ $b^2 = 1$.

Simplest setting: M is 2-connected and H^4M is torsion-free.

Wilkens \Rightarrow *M* classified by $b = b^4(M)$ and $p_1(M) \in H^4M$.

Need to study divisibility of p₁(M) for twisted connect sums.
 if div(p₁) = 4, 8, 12 or 24 then almost-diffeomorphism class contains only one diffeomorphism type.

Observation: $4|p_1$ and $p_1|48$ for any twisted connect sum.

Strategy to pin-down divisibility: Relate divisibility of p_1 of twisted connect sum to divisibility of c_2 on the pair of building blocks. In the best case:

$$div(p_1) = 2 \operatorname{gcd}(div(c_2^+), div(c_2^-)).$$
 (*)

In many cases can understand $div(c_2)$ e.g. any Fano w/ $b^2 = 1$.

Look for building block with $div(c_2^-) = 2$ (**)

Simplest setting: M is 2-connected and H^4M is torsion-free.

Wilkens \Rightarrow *M* classified by $b = b^4(M)$ and $p_1(M) \in H^4M$.

Need to study divisibility of p₁(M) for twisted connect sums.
 if div(p₁) = 4, 8, 12 or 24 then almost-diffeomorphism class contains only one diffeomorphism type.

Observation: $4|p_1$ and $p_1|48$ for any twisted connect sum.

Strategy to pin-down divisibility: Relate divisibility of p_1 of twisted connect sum to divisibility of c_2 on the pair of building blocks. In the best case:

$$div(p_1) = 2 \operatorname{gcd}(div(c_2^+), div(c_2^-)).$$
 (*)

In many cases can understand $div(c_2)$ e.g. any Fano w/ $b^2 = 1$.

Look for building block with $div(c_2^-) = 2$ (**) e.g. happens for 6 out of 17 Fanos with $b^2 = 1$

Simplest setting: M is 2-connected and H^4M is torsion-free.

Wilkens \Rightarrow *M* classified by $b = b^4(M)$ and $p_1(M) \in H^4M$.

Need to study divisibility of p₁(M) for twisted connect sums.
 if div(p₁) = 4, 8, 12 or 24 then almost-diffeomorphism class contains only one diffeomorphism type.

Observation: $4|p_1$ and $p_1|48$ for any twisted connect sum.

Strategy to pin-down divisibility: Relate divisibility of p_1 of twisted connect sum to divisibility of c_2 on the pair of building blocks. In the best case:

$$div(p_1) = 2 \operatorname{gcd}(div(c_2^+), div(c_2^-)).$$
 (*)

In many cases can understand $div(c_2)$ e.g. any Fano w/ $b^2 = 1$.

Look for building block with $div(c_2^-) = 2$ (**) e.g. happens for 6 out of 17 Fanos with $b^2 = 1$ (*) + observation $\Rightarrow div(p_1) = 4$ whatever happens for c_2^+ .

Simplest setting: M is 2-connected and H^4M is torsion-free.

Wilkens \Rightarrow *M* classified by $b = b^4(M)$ and $p_1(M) \in H^4M$.

Need to study divisibility of p₁(M) for twisted connect sums.
 if div(p₁) = 4, 8, 12 or 24 then almost-diffeomorphism class contains only one diffeomorphism type.

Observation: $4|p_1$ and $p_1|48$ for any twisted connect sum.

Strategy to pin-down divisibility: Relate divisibility of p_1 of twisted connect sum to divisibility of c_2 on the pair of building blocks. In the best case:

$$div(p_1) = 2 \operatorname{gcd}(div(c_2^+), div(c_2^-)).$$
 (*)

In many cases can understand $div(c_2)$ e.g. any Fano w/ $b^2 = 1$.

Look for building block with $div(c_2^-) = 2$ (**) e.g. happens for 6 out of 17 Fanos with $b^2 = 1$ (*) + observation $\Rightarrow div(p_1) = 4$ whatever happens for c_2^+ .

 \Rightarrow only one diffeo type in almost-diffeo class for any 2-connected twisted connect sum with one side satisfying (**)

1. Fix a building block Z_{-} with $div(c_{2}^{-}) = 2$

- **1.** Fix a building block Z_{-} with $div(c_{2}^{-}) = 2$
- Choose any building block Z₊ s.t. can construct 2-connected twisted connect sum of V₊ and V₋ (w/ H⁴M torsion-free).
 e.g. suffices to choose example with b²X₊ not too large.

- **1.** Fix a building block Z_{-} with $div(c_{2}^{-}) = 2$
- Choose any building block Z₊ s.t. can construct 2-connected twisted connect sum of V₊ and V₋ (w/ H⁴M torsion-free).
 e.g. suffices to choose example with b²X₊ not too large.
- **3.** Then diffeomorphism type of *M* is determined by $b^4(M) = b^3(M)$ and hence by sum of b^3 of building blocks.

- **1.** Fix a building block Z_{-} with $div(c_{2}^{-}) = 2$
- Choose any building block Z₊ s.t. can construct 2-connected twisted connect sum of V₊ and V₋ (w/ H⁴M torsion-free).
 e.g. suffices to choose example with b²X₊ not too large.
- **3.** Then diffeomorphism type of *M* is determined by $b^4(M) = b^3(M)$ and hence by sum of b^3 of building blocks.

 \Rightarrow to construct diffeomorphic twisted connect sum 7-manifolds it now suffices to find
- **1.** Fix a building block Z_{-} with $div(c_{2}^{-}) = 2$
- Choose any building block Z₊ s.t. can construct 2-connected twisted connect sum of V₊ and V₋ (w/ H⁴M torsion-free).
 e.g. suffices to choose example with b²X₊ not too large.
- **3.** Then diffeomorphism type of *M* is determined by $b^4(M) = b^3(M)$ and hence by sum of b^3 of building blocks.

 \Rightarrow to construct diffeomorphic twisted connect sum 7-manifolds it now suffices to find

i. building blocks with $b^3 Z$ equal

- **1.** Fix a building block Z_{-} with $div(c_{2}^{-}) = 2$
- Choose any building block Z₊ s.t. can construct 2-connected twisted connect sum of V₊ and V₋ (w/ H⁴M torsion-free).
 e.g. suffices to choose example with b²X₊ not too large.
- **3.** Then diffeomorphism type of *M* is determined by $b^4(M) = b^3(M)$ and hence by sum of b^3 of building blocks.

 \Rightarrow to construct diffeomorphic twisted connect sum 7-manifolds it now suffices to find

- i. building blocks with $b^3 Z$ equal
- ii. no torsion in H^3 of building blocks

- **1.** Fix a building block Z_{-} with $div(c_{2}^{-}) = 2$
- Choose any building block Z₊ s.t. can construct 2-connected twisted connect sum of V₊ and V₋ (w/ H⁴M torsion-free).
 e.g. suffices to choose example with b²X₊ not too large.
- **3.** Then diffeomorphism type of *M* is determined by $b^4(M) = b^3(M)$ and hence by sum of b^3 of building blocks.

 \Rightarrow to construct diffeomorphic twisted connect sum 7-manifolds it now suffices to find

- i. building blocks with $b^3 Z$ equal
- ii. no torsion in H^3 of building blocks
- iii. b^2 of Z not too large.

- **1.** Fix a building block Z_{-} with $div(c_{2}^{-}) = 2$
- Choose any building block Z₊ s.t. can construct 2-connected twisted connect sum of V₊ and V₋ (w/ H⁴M torsion-free).
 e.g. suffices to choose example with b²X₊ not too large.
- **3.** Then diffeomorphism type of *M* is determined by $b^4(M) = b^3(M)$ and hence by sum of b^3 of building blocks.

 \Rightarrow to construct diffeomorphic twisted connect sum 7-manifolds it now suffices to find

- i. building blocks with $b^3 Z$ equal
- ii. no torsion in H^3 of building blocks
- iii. b^2 of Z not too large.

Easy to find many examples satisfying i-iii from *toric* semi-Fanos (but lots of other ways of doing this too..)