Recent progress in G_{2} geometry

Alessio Corti, Mark Haskins, Johannes Nordström \& Tommaso Pacini

Blaine Fest, October 2012.

1. Asymptotically cylindrical Calabi-Yau 3-folds from weak Fano 3-folds, arXiv:1206.2277.
2. G_{2}-manifolds and associative submanifolds via semi-Fano 3 -folds, arXiv:1207.4470.

Introduction

Original goal:

- Construct compact G_{2} manifolds containing compact rigid associative 3 -folds.

Introduction

Original goal:

- Construct compact G_{2} manifolds containing compact rigid associative 3-folds.

By-products:

- Construct many new noncompact Calabi-Yau 3-folds.

Introduction

Original goal:

- Construct compact G_{2} manifolds containing compact rigid associative 3-folds.

By-products:

- Construct many new noncompact Calabi-Yau 3-folds.
- Construct many new compact G_{2} manifolds.

Introduction

Original goal:

- Construct compact G_{2} manifolds containing compact rigid associative 3-folds.

By-products:

- Construct many new noncompact Calabi-Yau 3-folds.
- Construct many new compact G_{2} manifolds.
- Identify the diffeomorphism type of 7-manifold underlying many of our G_{2} manifolds; they are the first G_{2} manifolds where diffeo type is understood.

Introduction

Original goal:

- Construct compact G_{2} manifolds containing compact rigid associative 3-folds.

By-products:

- Construct many new noncompact Calabi-Yau 3-folds.
- Construct many new compact G_{2} manifolds.
- Identify the diffeomorphism type of 7-manifold underlying many of our G_{2} manifolds; they are the first G_{2} manifolds where diffeo type is understood.
- Exhibit different ways to construct G_{2} metrics on same underlying smooth 7-manifold; find G_{2} metrics with different numbers of (obvious) rigid associative 3 -folds.

Introduction

Original goal:

- Construct compact G_{2} manifolds containing compact rigid associative 3-folds.

By-products:

- Construct many new noncompact Calabi-Yau 3-folds.
- Construct many new compact G_{2} manifolds.
- Identify the diffeomorphism type of 7-manifold underlying many of our G_{2} manifolds; they are the first G_{2} manifolds where diffeo type is understood.
- Exhibit different ways to construct G_{2} metrics on same underlying smooth 7-manifold; find G_{2} metrics with different numbers of (obvious) rigid associative 3 -folds.
- Exhibit "geometric transitions" between G_{2}-metrics on different 7-manifolds.

$6+1=2 \times 3+1=7 \quad \& \mathbf{S U}(2) \subset \mathbf{S U}(3) \subset G_{2}$

\exists close relations between G_{2} holonomy and Calabi-Yau geometries in 2 and 3 dimensions.

- Write $\mathbb{R}^{7}=\mathbb{R} \times \mathbb{C}^{3}$ with $\left(\mathbb{C}^{3}, \omega, \Omega\right)$ the std $\operatorname{SU}(3)$ structure then

$$
\phi_{0}=d t \wedge \omega+\operatorname{Re} \Omega
$$

Hence stabilizer of \mathbb{R} factor in G_{2} is $\mathrm{SU}(3) \subset G_{2}$.

$6+1=2 \times 3+1=7 \quad \& \mathbf{S U}(2) \subset \mathbf{S U}(3) \subset G_{2}$

\exists close relations between G_{2} holonomy and Calabi-Yau geometries in 2 and 3 dimensions.

- Write $\mathbb{R}^{7}=\mathbb{R} \times \mathbb{C}^{3}$ with $\left(\mathbb{C}^{3}, \omega, \Omega\right)$ the std $\operatorname{SU}(3)$ structure then

$$
\phi_{0}=d t \wedge \omega+\operatorname{Re} \Omega
$$

Hence stabilizer of \mathbb{R} factor in G_{2} is $\mathrm{SU}(3) \subset G_{2}$. More generally if (X, g) is a Calabi-Yau 3-fold then product metric on $\mathbb{S}^{1} \times X$ has holonomy $\mathrm{SU}(3) \subset G_{2}$.

$6+1=2 \times 3+1=7 \quad \& \mathbf{S U}(2) \subset \mathbf{S U}(3) \subset G_{2}$

\exists close relations between G_{2} holonomy and Calabi-Yau geometries in 2 and 3 dimensions.

- Write $\mathbb{R}^{7}=\mathbb{R} \times \mathbb{C}^{3}$ with $\left(\mathbb{C}^{3}, \omega, \Omega\right)$ the std $\operatorname{SU}(3)$ structure then

$$
\phi_{0}=d t \wedge \omega+\operatorname{Re} \Omega
$$

Hence stabilizer of \mathbb{R} factor in G_{2} is $\mathrm{SU}(3) \subset G_{2}$. More generally if (X, g) is a Calabi-Yau 3-fold then product metric on $\mathbb{S}^{1} \times X$ has holonomy $\mathrm{SU}(3) \subset G_{2}$.

- Write $\mathbb{R}^{7}=\mathbb{R}^{3} \times \mathbb{C}^{2}$ with coords (x_{1}, x_{2}, x_{3}) on \mathbb{R}^{3}, with std $\operatorname{SU}(2)$ structure ($\left.\mathbb{C}^{2}, \omega_{l}, \Omega=\omega_{J}+i \omega_{K}\right)$ then

$6+1=2 \times 3+1=7 \quad \& \mathbf{S U}(2) \subset \mathbf{S U}(3) \subset G_{2}$

\exists close relations between G_{2} holonomy and Calabi-Yau geometries in 2 and 3 dimensions.

- Write $\mathbb{R}^{7}=\mathbb{R} \times \mathbb{C}^{3}$ with $\left(\mathbb{C}^{3}, \omega, \Omega\right)$ the std $\operatorname{SU}(3)$ structure then

$$
\phi_{0}=d t \wedge \omega+\operatorname{Re} \Omega
$$

Hence stabilizer of \mathbb{R} factor in G_{2} is $\mathrm{SU}(3) \subset G_{2}$. More generally if (X, g) is a Calabi-Yau 3-fold then product metric on $\mathbb{S}^{1} \times X$ has holonomy $\mathrm{SU}(3) \subset G_{2}$.

- Write $\mathbb{R}^{7}=\mathbb{R}^{3} \times \mathbb{C}^{2}$ with coords $\left(x_{1}, x_{2}, x_{3}\right)$ on \mathbb{R}^{3}, with std $\operatorname{SU}(2)$ structure ($\left.\mathbb{C}^{2}, \omega_{l}, \Omega=\omega_{J}+i \omega_{K}\right)$ then

$$
\phi_{0}=d x_{1} \wedge d x_{2} \wedge d x_{3}+d x_{1} \wedge \omega_{I}+d x_{2} \wedge \omega_{\jmath}+d x_{3} \wedge \omega_{K}
$$

where $\omega_{\boldsymbol{I}}$ and $\Omega=\omega_{J}+i \omega_{K}$ are the standard Kahler and holo $(2,0)$ forms on \mathbb{C}^{2}.

$6+1=2 \times 3+1=7 \quad \& \quad \mathbf{S U}(2) \subset \mathbf{S U}(3) \subset G_{2}$

\exists close relations between G_{2} holonomy and Calabi-Yau geometries in 2 and 3 dimensions.

- Write $\mathbb{R}^{7}=\mathbb{R} \times \mathbb{C}^{3}$ with $\left(\mathbb{C}^{3}, \omega, \Omega\right)$ the std $\operatorname{SU}(3)$ structure then

$$
\phi_{0}=d t \wedge \omega+\operatorname{Re} \Omega
$$

Hence stabilizer of \mathbb{R} factor in G_{2} is $\mathrm{SU}(3) \subset G_{2}$. More generally if (X, g) is a Calabi-Yau 3-fold then product metric on $\mathbb{S}^{1} \times X$ has holonomy $\mathrm{SU}(3) \subset G_{2}$.

- Write $\mathbb{R}^{7}=\mathbb{R}^{3} \times \mathbb{C}^{2}$ with coords $\left(x_{1}, x_{2}, x_{3}\right)$ on \mathbb{R}^{3}, with std $\operatorname{SU}(2)$ structure ($\left.\mathbb{C}^{2}, \omega_{l}, \Omega=\omega_{J}+i \omega_{K}\right)$ then

$$
\phi_{0}=d x_{1} \wedge d x_{2} \wedge d x_{3}+d x_{1} \wedge \omega_{I}+d x_{2} \wedge \omega_{\jmath}+d x_{3} \wedge \omega_{K}
$$

where $\omega_{\boldsymbol{J}}$ and $\Omega=\omega_{J}+i \omega_{K}$ are the standard Kahler and holo $(2,0)$ forms on \mathbb{C}^{2}. Hence subgroup of G_{2} fixing $\mathbb{R}^{3} \subset \mathbb{R}^{3} \times \mathbb{C}^{2}$ is $\operatorname{SU}(2) \subset G_{2}$.

G_{2} structures and G_{2} holonomy metrics

What is a G_{2} structure?

- A G_{2} structure is a 3 -form ϕ on an oriented 7 -mfd M such that $\forall p \in M$ \exists an oriented isomorphism

$$
i: T_{p} M \rightarrow \mathbb{R}^{7}, \text { such that } i^{*} \phi_{0}=\phi
$$

G_{2} structures and G_{2} holonomy metrics

What is a G_{2} structure?

- A G_{2} structure is a 3 -form ϕ on an oriented 7 -mfd M such that $\forall p \in M$ \exists an oriented isomorphism

$$
i: T_{p} M \rightarrow \mathbb{R}^{7}, \text { such that } i^{*} \phi_{0}=\phi
$$

- G_{2}-structures on $\mathbb{R}^{7} \leadsto \mathrm{GL}_{+}(7, \mathbb{R}) / G_{2}$.
- $\operatorname{dim}\left(\mathrm{GL}_{+}(7, \mathbb{R}) / G_{2}\right)=35=\operatorname{dim} \wedge^{3} \mathbb{R}^{7}$.
\Rightarrow implies small perturbations of a G_{2}-structure are still G_{2}-structures.

G_{2} structures and G_{2} holonomy metrics

What is a G_{2} structure?

- A G_{2} structure is a 3 -form ϕ on an oriented 7 -mfd M such that $\forall p \in M$ \exists an oriented isomorphism

$$
i: T_{\rho} M \rightarrow \mathbb{R}^{7}, \text { such that } i^{*} \phi_{0}=\phi
$$

- G_{2}-structures on $\mathbb{R}^{7} \leadsto \mathrm{GL}_{+}(7, \mathbb{R}) / G_{2}$.
- $\operatorname{dim}\left(\mathrm{GL}_{+}(7, \mathbb{R}) / G_{2}\right)=35=\operatorname{dim} \wedge^{3} \mathbb{R}^{7}$.
\Rightarrow implies small perturbations of a G_{2}-structure are still G_{2}-structures.
How to get a G_{2}-holonomy metric from a G_{2} structure?

G_{2} structures and G_{2} holonomy metrics

What is a G_{2} structure?

- A G_{2} structure is a 3 -form ϕ on an oriented 7 -mfd M such that $\forall p \in M$ \exists an oriented isomorphism

$$
i: T_{p} M \rightarrow \mathbb{R}^{7}, \text { such that } i^{*} \phi_{0}=\phi
$$

- G_{2}-structures on $\mathbb{R}^{7} \leadsto \mathrm{GL}_{+}(7, \mathbb{R}) / G_{2}$.
- $\operatorname{dim}\left(\mathrm{GL}_{+}(7, \mathbb{R}) / G_{2}\right)=35=\operatorname{dim} \wedge^{3} \mathbb{R}^{7}$.
\Rightarrow implies small perturbations of a G_{2}-structure are still G_{2}-structures.
How to get a G_{2}-holonomy metric from a G_{2} structure?
Lemma
Let (M, ϕ, g) be a G_{2} structure on a compact 7-manifold; the following are equivalent

1. $\mathrm{Hol}(g) \subset G_{2}$ and ϕ is the induced 3-form

G_{2} structures and G_{2} holonomy metrics

What is a G_{2} structure?

- A G_{2} structure is a 3 -form ϕ on an oriented 7 -mfd M such that $\forall p \in M$ \exists an oriented isomorphism

$$
i: T_{p} M \rightarrow \mathbb{R}^{7}, \text { such that } i^{*} \phi_{0}=\phi
$$

- G_{2}-structures on $\mathbb{R}^{7} \leadsto \mathrm{GL}_{+}(7, \mathbb{R}) / G_{2}$.
- $\operatorname{dim}\left(\mathrm{GL}_{+}(7, \mathbb{R}) / G_{2}\right)=35=\operatorname{dim} \wedge^{3} \mathbb{R}^{7}$.
\Rightarrow implies small perturbations of a G_{2}-structure are still G_{2}-structures.
How to get a G_{2}-holonomy metric from a G_{2} structure?
Lemma
Let (M, ϕ, g) be a G_{2} structure on a compact 7-manifold; the following are equivalent

1. $\mathrm{Hol}(g) \subset G_{2}$ and ϕ is the induced 3-form
2. $\nabla \phi=0$ where ∇ is Levi-Civita w.r.t g

G_{2} structures and G_{2} holonomy metrics

What is a G_{2} structure?

- A G_{2} structure is a 3 -form ϕ on an oriented 7 -mfd M such that $\forall p \in M$ \exists an oriented isomorphism

$$
i: T_{p} M \rightarrow \mathbb{R}^{7}, \text { such that } i^{*} \phi_{0}=\phi
$$

- G_{2}-structures on $\mathbb{R}^{7} \leadsto \mathrm{GL}_{+}(7, \mathbb{R}) / G_{2}$.
- $\operatorname{dim}\left(\mathrm{GL}_{+}(7, \mathbb{R}) / G_{2}\right)=35=\operatorname{dim} \wedge^{3} \mathbb{R}^{7}$.
\Rightarrow implies small perturbations of a G_{2}-structure are still G_{2}-structures.
How to get a G_{2}-holonomy metric from a G_{2} structure?
Lemma
Let (M, ϕ, g) be a G_{2} structure on a compact 7-manifold; the following are equivalent

1. $\mathrm{Hol}(g) \subset G_{2}$ and ϕ is the induced 3-form
2. $\nabla \phi=0$ where ∇ is Levi-Civita w.r.t g
3. $d \phi=d^{*} \phi=0$.

G_{2} structures and G_{2} holonomy metrics

What is a G_{2} structure?

- A G_{2} structure is a 3 -form ϕ on an oriented 7 -mfd M such that $\forall p \in M$ \exists an oriented isomorphism

$$
i: T_{p} M \rightarrow \mathbb{R}^{7}, \text { such that } i^{*} \phi_{0}=\phi
$$

- G_{2}-structures on $\mathbb{R}^{7} \leadsto \mathrm{GL}_{+}(7, \mathbb{R}) / G_{2}$.
- $\operatorname{dim}\left(\mathrm{GL}_{+}(7, \mathbb{R}) / G_{2}\right)=35=\operatorname{dim} \wedge^{3} \mathbb{R}^{7}$.
\Rightarrow implies small perturbations of a G_{2}-structure are still G_{2}-structures.
How to get a G_{2}-holonomy metric from a G_{2} structure?

Lemma

Let (M, ϕ, g) be a G_{2} structure on a compact 7-manifold; the following are equivalent

1. $\mathrm{Hol}(g) \subset G_{2}$ and ϕ is the induced 3-form
2. $\nabla \phi=0$ where ∇ is Levi-Civita w.r.t g
3. $d \phi=d^{*} \phi=0$.

Call such a G_{2} structure a torsion-free G_{2} structure.

G_{2} structures and G_{2} holonomy metrics

What is a G_{2} structure?

- A G_{2} structure is a 3 -form ϕ on an oriented 7 -mfd M such that $\forall p \in M$ \exists an oriented isomorphism

$$
i: T_{p} M \rightarrow \mathbb{R}^{7}, \text { such that } i^{*} \phi_{0}=\phi
$$

- G_{2}-structures on $\mathbb{R}^{7} \leadsto \mathrm{GL}_{+}(7, \mathbb{R}) / G_{2}$.
- $\operatorname{dim}\left(\mathrm{GL}_{+}(7, \mathbb{R}) / G_{2}\right)=35=\operatorname{dim} \wedge^{3} \mathbb{R}^{7}$.
\Rightarrow implies small perturbations of a G_{2}-structure are still G_{2}-structures.
How to get a G_{2}-holonomy metric from a G_{2} structure?

Lemma

Let (M, ϕ, g) be a G_{2} structure on a compact 7-manifold; the following are equivalent

1. $\mathrm{Hol}(g) \subset G_{2}$ and ϕ is the induced 3-form
2. $\nabla \phi=0$ where ∇ is Levi-Civita w.r.t g
3. $d \phi=d^{*} \phi=0$.

Call such a G_{2} structure a torsion-free G_{2} structure.
$\mathrm{NB}_{4}(3)$ is nonlinear in ϕ because metric g depends nonlinearly on ϕ.

G_{2} structures and G_{2} holonomy metrics II

Lemma
Let M be a compact 7-manifold.

1. M admits a G_{2} structure iff it is orientable and spin.

G_{2} structures and G_{2} holonomy metrics II

Lemma
Let M be a compact 7-manifold.

1. M admits a G_{2} structure iff it is orientable and spin.
2. A torsion-free G_{2} structure (ϕ, g) on M has $\operatorname{Hol}(g)=G_{2}$ iff $\pi_{1} M$ is finite.

G_{2} structures and G_{2} holonomy metrics II

Lemma
Let M be a compact 7-manifold.

1. M admits a G_{2} structure iff it is orientable and spin.
2. A torsion-free G_{2} structure (ϕ, g) on M has $\operatorname{Hol}(g)=G_{2}$ iff $\pi_{1} M$ is finite.
3. If $\mathrm{Hol}(g)=G_{2}$ then M has nonzero first Pontrjagin class $p_{1}(M)$.

G_{2} structures and G_{2} holonomy metrics II

Lemma
Let M be a compact 7-manifold.

1. M admits a G_{2} structure iff it is orientable and spin.
2. A torsion-free G_{2} structure (ϕ, g) on M has $\operatorname{Hol}(g)=G_{2}$ iff $\pi_{1} M$ is finite.
3. If $\mathrm{Hol}(g)=G_{2}$ then M has nonzero first Pontrjagin class $p_{1}(M)$.

A strategy to construct G_{2}-holonomy metrics.
I. Find a G_{2} structure ϕ with sufficiently small torsion on a 7 -manifold with $\left|\pi_{1}\right|<\infty$

G_{2} structures and G_{2} holonomy metrics II

Lemma
Let M be a compact 7-manifold.

1. M admits a G_{2} structure iff it is orientable and spin.
2. A torsion-free G_{2} structure (ϕ, g) on M has $\operatorname{Hol}(g)=G_{2}$ iff $\pi_{1} M$ is finite.
3. If $\mathrm{Hol}(g)=G_{2}$ then M has nonzero first Pontrjagin class $p_{1}(M)$.

A strategy to construct G_{2}-holonomy metrics.
I. Find a G_{2} structure ϕ with sufficiently small torsion on a 7 -manifold with $\left|\pi_{1}\right|<\infty$
II. Perturb to a torsion-free G_{2} structure ϕ^{\prime} close to ϕ.

II was understood in some generality by Dominic Joyce (if $d \phi=0$).

Associative submanifolds of G_{2}-manifolds

3-form ϕ_{0} and 4-form $* \phi_{0}$ on \mathbb{R}^{7} are G_{2}-invariant calibrations.

Associative submanifolds of G_{2}-manifolds

3 -form ϕ_{0} and 4-form $* \phi_{0}$ on \mathbb{R}^{7} are G_{2}-invariant calibrations.

- Oriented 3 -planes calibrated by ϕ_{0} are called associative planes.

Associative submanifolds of G_{2}-manifolds

3 -form ϕ_{0} and 4-form $* \phi_{0}$ on \mathbb{R}^{7} are G_{2}-invariant calibrations.

- Oriented 3-planes calibrated by ϕ_{0} are called associative planes.
- $\mathbb{R}^{3} \subset \mathbb{R}^{3} \times \mathbb{C}^{2}$ is an associative 3-plane.

Associative submanifolds of G_{2}-manifolds

3 -form ϕ_{0} and 4-form $* \phi_{0}$ on \mathbb{R}^{7} are G_{2}-invariant calibrations.

- Oriented 3 -planes calibrated by ϕ_{0} are called associative planes.
- $\mathbb{R}^{3} \subset \mathbb{R}^{3} \times \mathbb{C}^{2}$ is an associative 3-plane.
- G_{2} acts transitively on associative 3 -planes.

Associative submanifolds of G_{2}-manifolds

3 -form ϕ_{0} and 4-form $* \phi_{0}$ on \mathbb{R}^{7} are G_{2}-invariant calibrations.

- Oriented 3-planes calibrated by ϕ_{0} are called associative planes.
- $\mathbb{R}^{3} \subset \mathbb{R}^{3} \times \mathbb{C}^{2}$ is an associative 3-plane.
- G_{2} acts transitively on associative 3 -planes.

Oriented 4-planes calibrated by $* \phi_{0}$ are called coassociative. 4-plane is coassociative iff its orthogonal complement is associative.

Holonomy/parallel tensor correspondence \Rightarrow

- on any $\mathrm{mfd}(M, g)$ with $\mathrm{Hol}(g) \subset G_{2}$ we have parallel 3 and 4 -forms ϕ and $*_{g} \phi$ modelled on ϕ_{0} and $* \phi_{0}$.
- associative (coassociative) calibration exists on any G_{2}-manifold.

$1+2=3$ and $\mathbb{S}^{1} \times$ holomorphic $=$ associative

Recall when we decomposed \mathbb{R}^{7} as $\mathbb{R} \times \mathbb{C}^{3}$ we had

$$
\phi_{0}=d t \wedge \omega+\operatorname{Re} \Omega .
$$

Recall, V a Calabi-Yau 3-fold $\Rightarrow \mathbb{S}^{1} \times V$ has holonomy $\mathrm{SU}(3) \subset G_{2}$

$1+2=3$ and $\mathbb{S}^{1} \times$ holomorphic $=$ associative

Recall when we decomposed \mathbb{R}^{7} as $\mathbb{R} \times \mathbb{C}^{3}$ we had

$$
\phi_{0}=d t \wedge \omega+\operatorname{Re} \Omega .
$$

Recall, V a Calabi-Yau 3-fold $\Rightarrow \mathbb{S}^{1} \times V$ has holonomy $\operatorname{SU}(3) \subset G_{2}$

- $\mathbb{S}^{1} \times C \subset \mathbb{S}^{1} \times V$ is associative iff C is a holomorphic curve in V.

$1+2=3$ and $\mathbb{S}^{1} \times$ holomorphic $=$ associative

Recall when we decomposed \mathbb{R}^{7} as $\mathbb{R} \times \mathbb{C}^{3}$ we had

$$
\phi_{0}=d t \wedge \omega+\operatorname{Re} \Omega .
$$

Recall, V a Calabi-Yau 3-fold $\Rightarrow \mathbb{S}^{1} \times V$ has holonomy $\operatorname{SU}(3) \subset G_{2}$

- $\mathbb{S}^{1} \times C \subset \mathbb{S}^{1} \times V$ is associative iff C is a holomorphic curve in V.
- Infinitesimal deformations of $\mathbb{S}^{1} \times C$ as an associative 3 -fold \leftrightarrow infinitesimal deformations of C as a complex curve in V.

$1+2=3$ and $\mathbb{S}^{1} \times$ holomorphic $=$ associative

Recall when we decomposed \mathbb{R}^{7} as $\mathbb{R} \times \mathbb{C}^{3}$ we had

$$
\phi_{0}=d t \wedge \omega+\operatorname{Re} \Omega .
$$

Recall, V a Calabi-Yau 3-fold $\Rightarrow \mathbb{S}^{1} \times V$ has holonomy $\operatorname{SU}(3) \subset G_{2}$

- $\mathbb{S}^{1} \times C \subset \mathbb{S}^{1} \times V$ is associative iff C is a holomorphic curve in V.
- Infinitesimal deformations of $\mathbb{S}^{1} \times C$ as an associative 3 -fold \leftrightarrow infinitesimal deformations of C as a complex curve in V.

We also have $\mathbb{S}^{1} \times L \subset \mathbb{S}^{1} \times V$ is coassociative iff L is a special Lagrangian 3-fold in X.

$\mathbf{S U}(3)+\mathbf{S U}(3)+\epsilon=G_{2}$

Donaldson suggested constructing compact G_{2} manifolds from a pair of asymptotically cylindrical Calabi-Yau 3-folds via a neck-stretching method.

$\mathbf{S U}(3)+\mathbf{S U}(3)+\epsilon=G_{2}$

Donaldson suggested constructing compact G_{2} manifolds from a pair of asymptotically cylindrical Calabi-Yau 3-folds via a neck-stretching method.
i. Use noncompact version of Calabi conjecture to construct asymptotically cylindrical Calabi-Yau 3-folds V with one end $\sim \mathbb{C}^{*} \times D$, with D a smooth K3.

$\mathbf{S U}(3)+\mathbf{S U}(3)+\epsilon=G_{2}$

Donaldson suggested constructing compact G_{2} manifolds from a pair of asymptotically cylindrical Calabi-Yau 3-folds via a neck-stretching method.
i. Use noncompact version of Calabi conjecture to construct asymptotically cylindrical Calabi-Yau 3-folds V with one end $\sim \mathbb{C}^{*} \times D$, with D a smooth K3.
ii. $M=\mathbb{S}^{1} \times V$ is a 7 -mfd with $\operatorname{Hol} g=\operatorname{SU}(3) \subset G_{2}$ with end $\sim \mathbb{R}^{+} \times T^{2} \times K 3$.

$\mathbf{S U}(3)+\mathbf{S U}(3)+\epsilon=G_{2}$

Donaldson suggested constructing compact G_{2} manifolds from a pair of asymptotically cylindrical Calabi-Yau 3-folds via a neck-stretching method.
i. Use noncompact version of Calabi conjecture to construct asymptotically cylindrical Calabi-Yau 3-folds V with one end $\sim \mathbb{C}^{*} \times D$, with D a smooth K3.
ii. $M=\mathbb{S}^{1} \times V$ is a 7 -mfd with $\operatorname{Hol} g=\operatorname{SU}(3) \subset G_{2}$ with end $\sim \mathbb{R}^{+} \times T^{2} \times K 3$.
iii. Take a twisted connect sum of a pair of $M_{ \pm}=\mathbb{S}^{1} \times V_{ \pm}$
iv. For $T \gg 1$ construct a G_{2}-structure $\mathrm{w} /$ small torsion (exponentially small in T) and prove it can be corrected to torsion-free.

$\mathbf{S U}(3)+\mathbf{S U}(3)+\epsilon=G_{2}$

Donaldson suggested constructing compact G_{2} manifolds from a pair of asymptotically cylindrical Calabi-Yau 3-folds via a neck-stretching method.
i. Use noncompact version of Calabi conjecture to construct asymptotically cylindrical Calabi-Yau 3-folds V with one end $\sim \mathbb{C}^{*} \times D$, with D a smooth $K 3$.
ii. $M=\mathbb{S}^{1} \times V$ is a 7 -mfd with $\operatorname{Hol} g=\operatorname{SU}(3) \subset G_{2}$ with end $\sim \mathbb{R}^{+} \times T^{2} \times K 3$.
iii. Take a twisted connect sum of a pair of $M_{ \pm}=\mathbb{S}^{1} \times V_{ \pm}$
iv. For $T \gg 1$ construct a G_{2}-structure $\mathrm{w} /$ small torsion (exponentially small in T) and prove it can be corrected to torsion-free.

Kovalev (2003) carried out Donaldson's proposal for AC CY 3-folds arising from Fano 3-folds.

Twisted connect sum and hyperkahler rotation

Product G_{2} structure on $M_{ \pm}=\mathbb{S}^{1} \times V_{ \pm}$asymptotic to

$$
d \theta_{1} \wedge d \theta_{2} \wedge d t+d \theta_{1} \wedge \omega_{I}^{ \pm}+d \theta_{2} \wedge \omega_{J}^{ \pm}+d t \wedge \omega_{K}^{ \pm}
$$

$\omega_{I}^{ \pm}, \omega_{J}^{ \pm}+i \omega_{K}^{ \pm}$denote Ricci-flat Kähler metric, parallel $(2,0)$-form on $D_{ \pm}$.

Twisted connect sum and hyperkahler rotation

Product G_{2} structure on $M_{ \pm}=\mathbb{S}^{1} \times V_{ \pm}$asymptotic to

$$
d \theta_{1} \wedge d \theta_{2} \wedge d t+d \theta_{1} \wedge \omega_{I}^{ \pm}+d \theta_{2} \wedge \omega_{J}^{ \pm}+d t \wedge \omega_{K}^{ \pm}
$$

$\omega_{I}^{ \pm}, \omega_{J}^{ \pm}+i \omega_{K}^{ \pm}$denote Ricci-flat Kähler metric, parallel $(2,0)$-form on $D_{ \pm}$.
To get a well-defined G_{2} structure using

$$
F:[T-1, T] \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times D_{-} \rightarrow[T-1, T] \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times D_{+}
$$

given by

$$
\left(t, \theta_{1}, \theta_{2}, y\right) \mapsto\left(2 T-1-t, \theta_{2}, \theta_{1}, f(y)\right)
$$

Twisted connect sum and hyperkahler rotation

Product G_{2} structure on $M_{ \pm}=\mathbb{S}^{1} \times V_{ \pm}$asymptotic to

$$
d \theta_{1} \wedge d \theta_{2} \wedge d t+d \theta_{1} \wedge \omega_{I}^{ \pm}+d \theta_{2} \wedge \omega_{J}^{ \pm}+d t \wedge \omega_{K}^{ \pm}
$$

$\omega_{I}^{ \pm}, \omega_{J}^{ \pm}+i \omega_{K}^{ \pm}$denote Ricci-flat Kähler metric, parallel $(2,0)$-form on $D_{ \pm}$.
To get a well-defined G_{2} structure using

$$
F:[T-1, T] \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times D_{-} \rightarrow[T-1, T] \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times D_{+}
$$

given by

$$
\left(t, \theta_{1}, \theta_{2}, y\right) \mapsto\left(2 T-1-t, \theta_{2}, \theta_{1}, f(y)\right)
$$

to identify end of M_{-}with M_{+}we need $f: D_{-} \rightarrow D_{+}$to satisfy

$$
f^{*} \omega_{l}^{+}=\omega_{J}^{-}, \quad f^{*} \omega_{J}^{+}=\omega_{I}^{-}, \quad f^{*} \omega_{K}^{+}=-\omega_{K}^{-} .
$$

Twisted connect sum and hyperkahler rotation

Product G_{2} structure on $M_{ \pm}=\mathbb{S}^{1} \times V_{ \pm}$asymptotic to

$$
d \theta_{1} \wedge d \theta_{2} \wedge d t+d \theta_{1} \wedge \omega_{I}^{ \pm}+d \theta_{2} \wedge \omega_{J}^{ \pm}+d t \wedge \omega_{K}^{ \pm}
$$

$\omega_{I}^{ \pm}, \omega_{J}^{ \pm}+i \omega_{K}^{ \pm}$denote Ricci-flat Kähler metric, parallel $(2,0)$-form on $D_{ \pm}$.
To get a well-defined G_{2} structure using

$$
F:[T-1, T] \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times D_{-} \rightarrow[T-1, T] \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times D_{+}
$$

given by

$$
\left(t, \theta_{1}, \theta_{2}, y\right) \mapsto\left(2 T-1-t, \theta_{2}, \theta_{1}, f(y)\right)
$$

to identify end of M_{-}with M_{+}we need $f: D_{-} \rightarrow D_{+}$to satisfy

$$
f^{*} \omega_{l}^{+}=\omega_{J}^{-}, \quad f^{*} \omega_{J}^{+}=\omega_{l}^{-}, \quad f^{*} \omega_{K}^{+}=-\omega_{K}^{-} .
$$

- Constructing such hyperkähler rotations is nontrivial and a major part of the construction.

Twisted connect sum and hyperkahler rotation

Product G_{2} structure on $M_{ \pm}=\mathbb{S}^{1} \times V_{ \pm}$asymptotic to

$$
d \theta_{1} \wedge d \theta_{2} \wedge d t+d \theta_{1} \wedge \omega_{I}^{ \pm}+d \theta_{2} \wedge \omega_{J}^{ \pm}+d t \wedge \omega_{K}^{ \pm}
$$

$\omega_{I}^{ \pm}, \omega_{J}^{ \pm}+i \omega_{K}^{ \pm}$denote Ricci-flat Kähler metric, parallel $(2,0)$-form on $D_{ \pm}$.
To get a well-defined G_{2} structure using

$$
F:[T-1, T] \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times D_{-} \rightarrow[T-1, T] \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times D_{+}
$$

given by

$$
\left(t, \theta_{1}, \theta_{2}, y\right) \mapsto\left(2 T-1-t, \theta_{2}, \theta_{1}, f(y)\right)
$$

to identify end of M_{-}with M_{+}we need $f: D_{-} \rightarrow D_{+}$to satisfy

$$
f^{*} \omega_{l}^{+}=\omega_{J}^{-}, \quad f^{*} \omega_{J}^{+}=\omega_{l}^{-}, \quad f^{*} \omega_{K}^{+}=-\omega_{K}^{-} .
$$

- Constructing such hyperkähler rotations is nontrivial and a major part of the construction.
- Some problems in Kovalev's original paper here.

Twisted connect sum G_{2}-manifolds

1. Construct suitable ACyl Calabi-Yau 3-folds V;

Twisted connect sum G_{2}-manifolds

1. Construct suitable ACyl Calabi-Yau 3-folds V;

- Kovalev used Fano 3-folds to construct ACyl CY 3-folds building on previous analytic work of Tian-Yau;

Twisted connect sum G_{2}-manifolds

1. Construct suitable ACyl Calabi-Yau 3-folds V;

- Kovalev used Fano 3-folds to construct ACyl CY 3-folds building on previous analytic work of Tian-Yau;

2. Find sufficient conditions for existence of a hyperkähler rotation between D_{-}and D_{+};

Twisted connect sum G_{2}-manifolds

1. Construct suitable ACyl Calabi-Yau 3-folds V;
\square Kovalev used Fano 3-folds to construct ACyl CY 3-folds building on previous analytic work of Tian-Yau;
2. Find sufficient conditions for existence of a hyperkähler rotation between D_{-}and D_{+};
\square Use global Torelli theorems and lattice embedding results (e.g. Nikulin) to find hyperkähler rotations from suitable initial pairs of (deformation families of) ACyl CY 3-folds.

Twisted connect sum G_{2}-manifolds

1. Construct suitable ACyl Calabi-Yau 3-folds V;
\square Kovalev used Fano 3-folds to construct ACyl CY 3-folds building on previous analytic work of Tian-Yau;
2. Find sufficient conditions for existence of a hyperkähler rotation between D_{-}and D_{+};
\square Use global Torelli theorems and lattice embedding results (e.g. Nikulin) to find hyperkähler rotations from suitable initial pairs of (deformation families of) ACyl CY 3-folds.
3. Given a pair of ACyl CY 3-folds $V_{ \pm}$and a HK-rotation $f: D_{-} \rightarrow D_{+}$can always glue M_{-}and M_{+}to get a 1-parameter family of closed manifolds M_{T} with holonomy G_{2}.

Twisted connect sum G_{2}-manifolds

1. Construct suitable ACyl Calabi-Yau 3-folds V;
\square Kovalev used Fano 3-folds to construct ACyl CY 3-folds building on previous analytic work of Tian-Yau;
2. Find sufficient conditions for existence of a hyperkähler rotation between D_{-}and D_{+};
\square Use global Torelli theorems and lattice embedding results (e.g. Nikulin) to find hyperkähler rotations from suitable initial pairs of (deformation families of) ACyl CY 3-folds.
3. Given a pair of ACyl CY 3-folds $V_{ \pm}$and a HK-rotation $f: D_{-} \rightarrow D_{+}$can always glue M_{-}and M_{+}to get a 1-parameter family of closed manifolds M_{T} with holonomy G_{2}.
\Rightarrow have reduced solving nonlinear PDEs for G_{2}-metric to two problems about complex projective 3-folds.

ACyl Calabi-Yau 3-folds from K3 fibrations

It suffices to find a smooth projective 3 -fold X with $D, D^{\prime} \in\left|K_{X}^{-1}\right|$ smooth $K 3$ surfaces that intersect transversely.

ACyl Calabi-Yau 3-folds from K3 fibrations

It suffices to find a smooth projective 3 -fold X with $D, D^{\prime} \in\left|K_{X}^{-1}\right|$ smooth $K 3$ surfaces that intersect transversely.

- $D \cap D^{\prime}$ is a smooth curve C (the base locus of the pencil defined by D and D^{\prime})
- Blowup X along the base locus C to get new projective 3 -fold Z

ACyl Calabi-Yau 3-folds from K3 fibrations

It suffices to find a smooth projective 3-fold X with $D, D^{\prime} \in\left|K_{X}^{-1}\right|$ smooth K3 surfaces that intersect transversely.

- $D \cap D^{\prime}$ is a smooth curve C (the base locus of the pencil defined by D and D^{\prime})
- Blowup X along the base locus C to get new projective 3 -fold Z
- The proper transforms of D and D^{\prime} are smooth anticanonical divisors on Z; the pencil they determine gives a morphism $\pi: Z \rightarrow \mathbb{P}^{1}$ with generic fibre a smooth anticanonical $K 3$.

ACyl Calabi-Yau 3-folds from K3 fibrations

It suffices to find a smooth projective 3-fold X with $D, D^{\prime} \in\left|K_{X}^{-1}\right|$ smooth K3 surfaces that intersect transversely.

- $D \cap D^{\prime}$ is a smooth curve C (the base locus of the pencil defined by D and D^{\prime})
- Blowup X along the base locus C to get new projective 3-fold Z
- The proper transforms of D and D^{\prime} are smooth anticanonical divisors on Z; the pencil they determine gives a morphism $\pi: Z \rightarrow \mathbb{P}^{1}$ with generic fibre a smooth anticanonical $K 3$.
- Now remove any smooth fibre of π from Z.

ACyl Calabi-Yau 3-folds from K3 fibrations

It suffices to find a smooth projective 3-fold X with $D, D^{\prime} \in\left|K_{X}^{-1}\right|$ smooth K3 surfaces that intersect transversely.

- $D \cap D^{\prime}$ is a smooth curve C (the base locus of the pencil defined by D and D^{\prime})
- Blowup X along the base locus C to get new projective 3-fold Z
- The proper transforms of D and D^{\prime} are smooth anticanonical divisors on Z; the pencil they determine gives a morphism $\pi: Z \rightarrow \mathbb{P}^{1}$ with generic fibre a smooth anticanonical K3.
- Now remove any smooth fibre of π from Z.

Theorem (ACyl Calabi-Yau theorem)
$V=Z \backslash D$ admits (exponentially) ACyl CY metrics.

ACyl Calabi-Yau 3-folds from K3 fibrations

It suffices to find a smooth projective 3-fold X with $D, D^{\prime} \in\left|K_{X}^{-1}\right|$ smooth K3 surfaces that intersect transversely.

- $D \cap D^{\prime}$ is a smooth curve C (the base locus of the pencil defined by D and D^{\prime})
- Blowup X along the base locus C to get new projective 3-fold Z
- The proper transforms of D and D^{\prime} are smooth anticanonical divisors on Z; the pencil they determine gives a morphism $\pi: Z \rightarrow \mathbb{P}^{1}$ with generic fibre a smooth anticanonical K3.
- Now remove any smooth fibre of π from Z.

Theorem (ACyl Calabi-Yau theorem)
$V=Z \backslash D$ admits (exponentially) ACyl CY metrics.
Proof: originally Tian-Yau plus Kovalev (plus corrections to Kovalev).

ACyl Calabi-Yau 3-folds from K3 fibrations

It suffices to find a smooth projective 3-fold X with $D, D^{\prime} \in\left|K_{X}^{-1}\right|$ smooth K3 surfaces that intersect transversely.

- $D \cap D^{\prime}$ is a smooth curve C (the base locus of the pencil defined by D and D^{\prime})
- Blowup X along the base locus C to get new projective 3-fold Z
- The proper transforms of D and D^{\prime} are smooth anticanonical divisors on Z; the pencil they determine gives a morphism $\pi: Z \rightarrow \mathbb{P}^{1}$ with generic fibre a smooth anticanonical $K 3$.
- Now remove any smooth fibre of π from Z.

Theorem (ACyl Calabi-Yau theorem)
$V=Z \backslash D$ admits (exponentially) ACyl CY metrics.
Proof: originally Tian-Yau plus Kovalev (plus corrections to Kovalev).
Recently Hein-Haskins-Nordström gave simpler direct proof using ideas in Hein's thesis (and showed all "asymptotically split" ACyl CY 3-folds arise from such a construction).

Fano and weak Fano 3-folds

- A smooth Kahler 3 -fold X is a Fano manifold if K_{X}^{-1} is ample.

Fano and weak Fano 3-folds

- A smooth Kahler 3 -fold X is a Fano manifold if K_{X}^{-1} is ample.
- A smooth projective 3 -fold X is a weak Fano manifold if K_{X}^{-1} is big and nef.

Fano and weak Fano 3-folds

- A smooth Kahler 3-fold X is a Fano manifold if K_{X}^{-1} is ample.
- A smooth projective 3 -fold X is a weak Fano manifold if K_{X}^{-1} is big and nef.
\square A holomorphic line bundle L on X is nef if

$$
c_{1}(L) \cdot C=\int_{C} c_{1}(L) \geq 0
$$

for every irreducible holomorphic curve $C \subset X$.
\square A holomorphic line bundle L on X is big if

$$
h^{0}\left(L^{\otimes m}\right) \geq C m^{n}, \quad \text { for } m \gg 1, \quad n=\operatorname{dim}_{\mathbb{C}} X
$$

i.e. we replace condition K_{X}^{-1} is positive with sufficiently "semi-positive".

Basic facts about Fano and weak Fano 3-folds

- For ample line bundles we have Kodaira vanishing theorem

$$
H^{i}\left(X, K_{X} \otimes L\right)=0 \text { for all } i>0
$$

Basic facts about Fano and weak Fano 3-folds

- For ample line bundles we have Kodaira vanishing theorem

$$
H^{i}\left(X, K_{X} \otimes L\right)=0 \text { for all } i>0
$$

For big and nef line bundles Kawamata-Viehweg vanishing replaces Kodaira.

- Shokurov: on a smooth Fano 3-fold X any sufficiently generic $D \in\left|K_{X}^{-1}\right|$ is a smooth K3 surface.

Basic facts about Fano and weak Fano 3-folds

- For ample line bundles we have Kodaira vanishing theorem

$$
H^{i}\left(X, K_{X} \otimes L\right)=0 \text { for all } i>0
$$

For big and nef line bundles Kawamata-Viehweg vanishing replaces Kodaira.

- Shokurov: on a smooth Fano 3-fold X any sufficiently generic $D \in\left|K_{X}^{-1}\right|$ is a smooth K3 surface. Reid generalised Shokurov's result to weak Fano 3-folds.

Basic facts about Fano and weak Fano 3-folds

- For ample line bundles we have Kodaira vanishing theorem

$$
H^{i}\left(X, K_{X} \otimes L\right)=0 \text { for all } i>0
$$

For big and nef line bundles Kawamata-Viehweg vanishing replaces Kodaira.

- Shokurov: on a smooth Fano 3-fold X any sufficiently generic $D \in\left|K_{X}^{-1}\right|$ is a smooth K3 surface. Reid generalised Shokurov's result to weak Fano 3-folds.
- $|D|$ is basepoint free for most Fano and weak Fano 3-folds.

Basic facts about Fano and weak Fano 3-folds

- For ample line bundles we have Kodaira vanishing theorem

$$
H^{i}\left(X, K_{X} \otimes L\right)=0 \text { for all } i>0
$$

For big and nef line bundles Kawamata-Viehweg vanishing replaces Kodaira.

- Shokurov: on a smooth Fano 3-fold X any sufficiently generic $D \in\left|K_{X}^{-1}\right|$ is a smooth K3 surface. Reid generalised Shokurov's result to weak Fano 3-folds.
- $|D|$ is basepoint free for most Fano and weak Fano 3-folds.

ACyl Calabi-Yau Theorem implies can construct ACyl CY metrics from (almost) any smooth Fano or weak Fano 3-fold.

Kovalev used ACyl Calabi-Yau 3-folds of Fano type for his twisted connect sum G_{2}-manifolds;

Basic facts about Fano and weak Fano 3-folds

- For ample line bundles we have Kodaira vanishing theorem

$$
H^{i}\left(X, K_{X} \otimes L\right)=0 \text { for all } i>0
$$

For big and nef line bundles Kawamata-Viehweg vanishing replaces Kodaira.

- Shokurov: on a smooth Fano 3-fold X any sufficiently generic $D \in\left|K_{X}^{-1}\right|$ is a smooth K3 surface. Reid generalised Shokurov's result to weak Fano 3-folds.
- $|D|$ is basepoint free for most Fano and weak Fano 3-folds.

ACyl Calabi-Yau Theorem implies can construct ACyl CY metrics from (almost) any smooth Fano or weak Fano 3-fold.

Kovalev used ACyl Calabi-Yau 3-folds of Fano type for his twisted connect sum G_{2}-manifolds; we generalise to (certain classes of) weak Fano 3 -folds.

Advantages of weak Fano vs. Fano

1. Many more weak Fano than Fano 3-folds.

Advantages of weak Fano vs. Fano

1. Many more weak Fano than Fano 3-folds.
\square Fano 3-folds classified: 105 deformation families.

Advantages of weak Fano vs. Fano

1. Many more weak Fano than Fano 3-folds.
\square Fano 3-folds classified: 105 deformation families.
\square Hundreds of thousands of weak Fano 3-folds; classification ongoing.

Advantages of weak Fano vs. Fano

1. Many more weak Fano than Fano 3-folds.
\square Fano 3-folds classified: 105 deformation families.
\square Hundreds of thousands of weak Fano 3-folds; classification ongoing.
\Rightarrow get more topological types of ACyl CY 3-folds and hence (in good cases) compact $G_{2} \mathrm{mfds}$

Advantages of weak Fano vs. Fano

1. Many more weak Fano than Fano 3-folds.
\square Fano 3-folds classified: 105 deformation families.
\square Hundreds of thousands of weak Fano 3-folds; classification ongoing.
\Rightarrow get more topological types of ACyl CY 3-folds and hence (in good cases) compact G_{2} mfds
2. In any Fano 3-fold K_{X}^{-1} is ample:
\Rightarrow any compact holo curve $C \subset X$ must intersect any anticanonical divisor.

Advantages of weak Fano vs. Fano

1. Many more weak Fano than Fano 3-folds.
\square Fano 3-folds classified: 105 deformation families.
\square Hundreds of thousands of weak Fano 3-folds; classification ongoing.
\Rightarrow get more topological types of ACyl CY 3-folds and hence (in good cases) compact $G_{2} \mathrm{mfds}$
2. In any Fano 3-fold K_{X}^{-1} is ample:
\Rightarrow any compact holo curve $C \subset X$ must intersect any anticanonical divisor.

A weak Fano 3-fold can contain holo curves C that do not meet anticanonical divisors.

Advantages of weak Fano vs. Fano

1. Many more weak Fano than Fano 3-folds.
\square Fano 3-folds classified: 105 deformation families.
\square Hundreds of thousands of weak Fano 3-folds; classification ongoing.
\Rightarrow get more topological types of ACyl CY 3-folds and hence (in good cases) compact G_{2} mfds
2. In any Fano 3 -fold K_{X}^{-1} is ample:
\Rightarrow any compact holo curve $C \subset X$ must intersect any anticanonical divisor.

A weak Fano 3-fold can contain holo curves C that do not meet anticanonical divisors.

For each smooth rigid \mathbb{P}^{1} in a weak Fano 3-fold X any G_{2} manifold built from X contains a rigid associative submanifold $\mathrm{w} /$ topology $S^{1} \times S^{2}$.

Semi-Fano 3-folds and G_{2}-manifolds

- Weak Fano is enough to construct ACyl Calabi-Yau 3-folds.

Semi-Fano 3-folds and G_{2}-manifolds

- Weak Fano is enough to construct ACyl Calabi-Yau 3-folds. For G_{2}-manifolds also need to construct hyperkahler rotations $f: D_{-} \rightarrow D_{+}$ between the asymptotic K3 surfaces of a pair of ACyl CY 3-folds $V_{ \pm}=Z_{ \pm} \backslash D_{ \pm}$.

Semi-Fano 3-folds and G_{2}-manifolds

- Weak Fano is enough to construct ACyl Calabi-Yau 3-folds. For G_{2}-manifolds also need to construct hyperkahler rotations $f: D_{-} \rightarrow D_{+}$ between the asymptotic K3 surfaces of a pair of ACyl CY 3-folds $V_{ \pm}=Z_{ \pm} \backslash D_{ \pm}$.
- This requires a sufficiently good deformation/moduli theory for pairs (X, D) where X is a (deformation class of) weak Fano 3-fold and D a smooth anticanonical K 3 divisor in X.

Semi-Fano 3-folds and G_{2}-manifolds

- Weak Fano is enough to construct ACyl Calabi-Yau 3-folds. For G_{2}-manifolds also need to construct hyperkahler rotations $f: D_{-} \rightarrow D_{+}$ between the asymptotic K3 surfaces of a pair of ACyl CY 3-folds $V_{ \pm}=Z_{ \pm} \backslash D_{ \pm}$.
- This requires a sufficiently good deformation/moduli theory for pairs (X, D) where X is a (deformation class of) weak Fano 3-fold and D a smooth anticanonical K 3 divisor in X.

Definition (Semi-Fano 3-fold)
A weak Fano 3-fold is semi-Fano if the natural morphism to its anti-canonical model is semismall, i.e. contracts no divisors to points.

Semi-Fano 3-folds and G_{2}-manifolds

- Weak Fano is enough to construct ACyl Calabi-Yau 3-folds. For G_{2}-manifolds also need to construct hyperkahler rotations $f: D_{-} \rightarrow D_{+}$ between the asymptotic K3 surfaces of a pair of ACyl CY 3-folds $V_{ \pm}=Z_{ \pm} \backslash D_{ \pm}$.
- This requires a sufficiently good deformation/moduli theory for pairs (X, D) where X is a (deformation class of) weak Fano 3-fold and D a smooth anticanonical K 3 divisor in X.

Definition (Semi-Fano 3-fold)
A weak Fano 3-fold is semi-Fano if the natural morphism to its anti-canonical model is semismall, i.e. contracts no divisors to points.

Key Fact: The deformation theory of the pair (X, D) is well-behaved if X is a semi-Fano 3-fold.

Semi-Fano 3-folds and G_{2}-manifolds

- Weak Fano is enough to construct ACyl Calabi-Yau 3-folds. For G_{2}-manifolds also need to construct hyperkahler rotations $f: D_{-} \rightarrow D_{+}$ between the asymptotic K3 surfaces of a pair of ACyl CY 3-folds $V_{ \pm}=Z_{ \pm} \backslash D_{ \pm}$.
- This requires a sufficiently good deformation/moduli theory for pairs (X, D) where X is a (deformation class of) weak Fano 3-fold and D a smooth anticanonical K 3 divisor in X.

Definition (Semi-Fano 3-fold)
A weak Fano 3-fold is semi-Fano if the natural morphism to its anti-canonical model is semismall, i.e. contracts no divisors to points.

Key Fact: The deformation theory of the pair (X, D) is well-behaved if X is a semi-Fano 3-fold.

Basic reason: semi-Fanos satisfy slightly stronger cohomology vanishing theorems than weak Fano 3-folds.

Semi-Fano 3-folds and G_{2}-manifolds

- Weak Fano is enough to construct ACyl Calabi-Yau 3-folds. For G_{2}-manifolds also need to construct hyperkahler rotations $f: D_{-} \rightarrow D_{+}$ between the asymptotic K3 surfaces of a pair of ACyl CY 3-folds $V_{ \pm}=Z_{ \pm} \backslash D_{ \pm}$.
- This requires a sufficiently good deformation/moduli theory for pairs (X, D) where X is a (deformation class of) weak Fano 3-fold and D a smooth anticanonical K 3 divisor in X.

Definition (Semi-Fano 3-fold)
A weak Fano 3-fold is semi-Fano if the natural morphism to its anti-canonical model is semismall, i.e. contracts no divisors to points.

Key Fact: The deformation theory of the pair (X, D) is well-behaved if X is a semi-Fano 3-fold.

Basic reason: semi-Fanos satisfy slightly stronger cohomology vanishing theorems than weak Fano 3-folds. (Sommese-Esnault-Viehweg vanishing for k-ample line bundles).

For ACyl CY 3-folds of semi-Fano type can still construct HK rotations by similar techniques to those used for those of Fano type.

Semi-Fano 3-folds and G_{2}-manifolds

- Weak Fano is enough to construct ACyl Calabi-Yau 3-folds. For G_{2}-manifolds also need to construct hyperkahler rotations $f: D_{-} \rightarrow D_{+}$ between the asymptotic K3 surfaces of a pair of ACyl CY 3-folds $V_{ \pm}=Z_{ \pm} \backslash D_{ \pm}$.
- This requires a sufficiently good deformation/moduli theory for pairs (X, D) where X is a (deformation class of) weak Fano 3-fold and D a smooth anticanonical K 3 divisor in X.

Definition (Semi-Fano 3-fold)
A weak Fano 3-fold is semi-Fano if the natural morphism to its anti-canonical model is semismall, i.e. contracts no divisors to points.

Key Fact: The deformation theory of the pair (X, D) is well-behaved if X is a semi-Fano 3-fold.

Basic reason: semi-Fanos satisfy slightly stronger cohomology vanishing theorems than weak Fano 3-folds. (Sommese-Esnault-Viehweg vanishing for k-ample line bundles).

For ACyl CY 3-folds of semi-Fano type can still construct HK rotations by similar techniques to those used for those of Fano type.
$\Rightarrow{ }_{15}{ }^{\text {of }}{ }^{2} n_{3}$ use them to construct compact twisted connect sum G_{2} manifolds.

G_{2}-manifolds and rigid associative submanifolds

Theorem (CHNP)

There exist many topological types of compact G_{2} manifold which contain rigid associative submanifolds diffeomorphic to $S^{1} \times S^{2}$.

G_{2}-manifolds and rigid associative submanifolds

Theorem (CHNP)

There exist many topological types of compact G_{2} manifold which contain rigid associative submanifolds diffeomorphic to $S^{1} \times S^{2}$.
Remarks:

1. First examples of rigid associative submanifolds in compact G_{2} manifolds.

G_{2}-manifolds and rigid associative submanifolds

Theorem (CHNP)

There exist many topological types of compact G_{2} manifold which contain rigid associative submanifolds diffeomorphic to $S^{1} \times S^{2}$.

Remarks:

1. First examples of rigid associative submanifolds in compact G_{2} manifolds.
2. Infinitesimal deformations of associative submfds \longleftrightarrow twisted harmonic spinors.

G_{2}-manifolds and rigid associative submanifolds

Theorem (CHNP)

There exist many topological types of compact G_{2} manifold which contain rigid associative submanifolds diffeomorphic to $S^{1} \times S^{2}$.

Remarks:

1. First examples of rigid associative submanifolds in compact G_{2} manifolds.
2. Infinitesimal deformations of associative submfds $\leadsto \rightarrow$ twisted harmonic spinors. Index of twisted Dirac operator is zero since in odd dimension, but hard to control kernel. Deformation theory can be obstructed.

G_{2}-manifolds and rigid associative submanifolds

Theorem (CHNP)

There exist many topological types of compact G_{2} manifold which contain rigid associative submanifolds diffeomorphic to $S^{1} \times S^{2}$.

Remarks:

1. First examples of rigid associative submanifolds in compact G_{2} manifolds.
2. Infinitesimal deformations of associative submfds $\leadsto \rightarrow$ twisted harmonic spinors. Index of twisted Dirac operator is zero since in odd dimension, but hard to control kernel. Deformation theory can be obstructed.
3. Can attempt to build invariants of G_{2} manifolds by counting associative submfds in a given homology class.

G_{2}-manifolds and rigid associative submanifolds

Theorem (CHNP)

There exist many topological types of compact G_{2} manifold which contain rigid associative submanifolds diffeomorphic to $S^{1} \times S^{2}$.

Remarks:

1. First examples of rigid associative submanifolds in compact G_{2} manifolds.
2. Infinitesimal deformations of associative submfds \longleftrightarrow twisted harmonic spinors. Index of twisted Dirac operator is zero since in odd dimension, but hard to control kernel. Deformation theory can be obstructed.
3. Can attempt to build invariants of G_{2} manifolds by counting associative submfds in a given homology class.

Why do we get rigid associatives?

G_{2}-manifolds and rigid associative submanifolds

Theorem (CHNP)

There exist many topological types of compact G_{2} manifold which contain rigid associative submanifolds diffeomorphic to $S^{1} \times S^{2}$.

Remarks:

1. First examples of rigid associative submanifolds in compact G_{2} manifolds.
2. Infinitesimal deformations of associative submfds \leadsto twisted harmonic spinors. Index of twisted Dirac operator is zero since in odd dimension, but hard to control kernel. Deformation theory can be obstructed.
3. Can attempt to build invariants of G_{2} manifolds by counting associative submfds in a given homology class.

Why do we get rigid associatives? Let C be a cpt holo curve in X not meeting AC divisor $D \rightsquigarrow \mathrm{cpt}$ holo curve $C \subset V=Z \backslash D$

G_{2}-manifolds and rigid associative submanifolds

Theorem (CHNP)

There exist many topological types of compact G_{2} manifold which contain rigid associative submanifolds diffeomorphic to $S^{1} \times S^{2}$.

Remarks:

1. First examples of rigid associative submanifolds in compact G_{2} manifolds.
2. Infinitesimal deformations of associative submfds $\rightsquigarrow \rightarrow$ twisted harmonic spinors. Index of twisted Dirac operator is zero since in odd dimension, but hard to control kernel. Deformation theory can be obstructed.
3. Can attempt to build invariants of G_{2} manifolds by counting associative submfds in a given homology class.

Why do we get rigid associatives? Let C be a cpt holo curve in X not meeting AC divisor $D \rightsquigarrow c$ ct holo curve $C \subset V=Z \backslash D \rightsquigarrow \mathbb{S}^{1} \times C$ is compact associative submfd in $\mathbb{S}^{1} \times V$.

G_{2}-manifolds and rigid associative submanifolds

Theorem (CHNP)

There exist many topological types of compact G_{2} manifold which contain rigid associative submanifolds diffeomorphic to $S^{1} \times S^{2}$.

Remarks:

1. First examples of rigid associative submanifolds in compact G_{2} manifolds.
2. Infinitesimal deformations of associative submfds \leadsto twisted harmonic spinors. Index of twisted Dirac operator is zero since in odd dimension, but hard to control kernel. Deformation theory can be obstructed.
3. Can attempt to build invariants of G_{2} manifolds by counting associative submfds in a given homology class.

Why do we get rigid associatives? Let C be a cpt holo curve in X not meeting AC divisor $D \rightsquigarrow \mathrm{cpt}$ holo curve $C \subset V=Z \backslash D \rightsquigarrow \mathbb{S}^{1} \times C$ is compact associative submfd in $\mathbb{S}^{1} \times V$. C rigid curve in V iff $\mathbb{S}^{1} \times C$ rigid associative 3 -fold of $\mathbb{S}^{1} \times V$.

G_{2}-manifolds and rigid associative submanifolds

Theorem (CHNP)

There exist many topological types of compact G_{2} manifold which contain rigid associative submanifolds diffeomorphic to $S^{1} \times S^{2}$.

Remarks:

1. First examples of rigid associative submanifolds in compact G_{2} manifolds.
2. Infinitesimal deformations of associative submfds $\rightsquigarrow \rightarrow$ twisted harmonic spinors. Index of twisted Dirac operator is zero since in odd dimension, but hard to control kernel. Deformation theory can be obstructed.
3. Can attempt to build invariants of G_{2} manifolds by counting associative submfds in a given homology class.

Why do we get rigid associatives? Let C be a cpt holo curve in X not meeting AC divisor $D \rightsquigarrow c$ cpt holo curve $C \subset V=Z \backslash D \rightsquigarrow \mathbb{S}^{1} \times C$ is compact associative submfd in $\mathbb{S}^{1} \times V$. C rigid curve in V iff $\mathbb{S}^{1} \times C$ rigid associative 3-fold of $\mathbb{S}^{1} \times V$. Since $\mathbb{S}^{1} \times C$ is rigid in $\mathbb{S}^{1} \times V$, easy to perturb $\mathbb{S}^{1} \times C$ to rigid associative 3-fold in glued G_{2} structure for $T \gg 1$.

Simple examples of semi-Fano 3-folds I

Example 1: start with a (singular) quartic 3-fold $Y \subset \mathbb{P}^{4}$ containing a projective plane Π and resolve.

Simple examples of semi-Fano 3-folds I

Example 1: start with a (singular) quartic 3-fold $Y \subset \mathbb{P}^{4}$ containing a projective plane Π and resolve. If $\Pi=\left(x_{0}=x_{1}=0\right)$ then eqn of Y is

$$
Y=\left(x_{0} a_{3}+x_{1} b_{3}=0\right) \subset \mathbb{P}^{4}
$$

where a_{3} and b_{3} are homogeneous cubic forms in $\left(x_{0}, \ldots, x_{4}\right)$.

Simple examples of semi-Fano 3-folds I

Example 1: start with a (singular) quartic 3-fold $Y \subset \mathbb{P}^{4}$ containing a projective plane Π and resolve. If $\Pi=\left(x_{0}=x_{1}=0\right)$ then eqn of Y is

$$
Y=\left(x_{0} a_{3}+x_{1} b_{3}=0\right) \subset \mathbb{P}^{4}
$$

where a_{3} and b_{3} are homogeneous cubic forms in $\left(x_{0}, \ldots, x_{4}\right)$. Generically the plane cubics

$$
\begin{aligned}
& \left(a_{3}\left(0,0, x_{2}, x_{3}, x_{4}\right)=0\right) \subset \Pi, \\
& \left(b_{3}\left(0,0, x_{2}, x_{3}, x_{4}\right)=0\right) \subset \Pi
\end{aligned}
$$

intersect in 9 distinct points, where Y has 9 ordinary double points.

Simple examples of semi-Fano 3-folds I

Example 1: start with a (singular) quartic 3-fold $Y \subset \mathbb{P}^{4}$ containing a projective plane Π and resolve. If $\Pi=\left(x_{0}=x_{1}=0\right)$ then eqn of Y is

$$
Y=\left(x_{0} a_{3}+x_{1} b_{3}=0\right) \subset \mathbb{P}^{4}
$$

where a_{3} and b_{3} are homogeneous cubic forms in $\left(x_{0}, \ldots, x_{4}\right)$. Generically the plane cubics

$$
\begin{aligned}
& \left(a_{3}\left(0,0, x_{2}, x_{3}, x_{4}\right)=0\right) \subset \Pi, \\
& \left(b_{3}\left(0,0, x_{2}, x_{3}, x_{4}\right)=0\right) \subset \Pi
\end{aligned}
$$

intersect in 9 distinct points, where Y has 9 ordinary double points. Blowing-up $\Pi \subset Y$ gives a smooth $X f: X \rightarrow Y$ is a projective small resolution of all 9 nodes of Y.

Simple examples of semi-Fano 3-folds I

Example 1: start with a (singular) quartic 3-fold $Y \subset \mathbb{P}^{4}$ containing a projective plane Π and resolve. If $\Pi=\left(x_{0}=x_{1}=0\right)$ then eqn of Y is

$$
Y=\left(x_{0} a_{3}+x_{1} b_{3}=0\right) \subset \mathbb{P}^{4}
$$

where a_{3} and b_{3} are homogeneous cubic forms in $\left(x_{0}, \ldots, x_{4}\right)$. Generically the plane cubics

$$
\begin{aligned}
& \left(a_{3}\left(0,0, x_{2}, x_{3}, x_{4}\right)=0\right) \subset \Pi, \\
& \left(b_{3}\left(0,0, x_{2}, x_{3}, x_{4}\right)=0\right) \subset \Pi
\end{aligned}
$$

intersect in 9 distinct points, where Y has 9 ordinary double points. Blowing-up $\Pi \subset Y$ gives a smooth $X f: X \rightarrow Y$ is a projective small resolution of all 9 nodes of Y.
X is a smooth (projective) semi-Fano 3-fold; it contains 9 smooth rigid rational curves with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$; X has genus 3 and Picard rank 2.

Simple examples of semi-Fano 3-folds II

Example 2: A quartic 3-fold in \mathbb{P}^{4} with only ordinary double points has at most 45 singular points.

Simple examples of semi-Fano 3-folds II

Example 2: A quartic 3 -fold in \mathbb{P}^{4} with only ordinary double points has at most 45 singular points. Up to coordinate change, there is a unique such 3-fold, the Burkhardt quartic Y

$$
\left.\left(x_{0}^{4}-x_{0}\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+3 x_{1} x_{2} x_{3} x_{4}\right)\right)=0\right) \subset \mathbb{P}^{4} .
$$

Simple examples of semi-Fano 3-folds II

Example 2: A quartic 3 -fold in \mathbb{P}^{4} with only ordinary double points has at most 45 singular points. Up to coordinate change, there is a unique such 3-fold, the Burkhardt quartic Y

$$
\left.\left(x_{0}^{4}-x_{0}\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+3 x_{1} x_{2} x_{3} x_{4}\right)\right)=0\right) \subset \mathbb{P}^{4} .
$$

Y admits a small projective resolution X

Simple examples of semi-Fano 3-folds II

Example 2: A quartic 3-fold in \mathbb{P}^{4} with only ordinary double points has at most 45 singular points. Up to coordinate change, there is a unique such 3-fold, the Burkhardt quartic Y

$$
\left.\left(x_{0}^{4}-x_{0}\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+3 x_{1} x_{2} x_{3} x_{4}\right)\right)=0\right) \subset \mathbb{P}^{4} .
$$

Y admits a small projective resolution X X is a semi-Fano 3 -fold w/ genus 3, Picard rank 16 and 45 smooth rigid $\mathbb{P}^{11} s$ with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

Simple examples of semi-Fano 3-folds II

Example 2: A quartic 3-fold in \mathbb{P}^{4} with only ordinary double points has at most 45 singular points. Up to coordinate change, there is a unique such 3-fold, the Burkhardt quartic Y

$$
\left.\left(x_{0}^{4}-x_{0}\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+3 x_{1} x_{2} x_{3} x_{4}\right)\right)=0\right) \subset \mathbb{P}^{4} .
$$

Y admits a small projective resolution X
X is a semi-Fano 3 -fold w/ genus 3, Picard rank 16 and 45 smooth rigid $\mathbb{P}^{11} s$ with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

Remarks

- Shows semi-Fano 3-folds can have larger Picard rank than Fanos.

Simple examples of semi-Fano 3-folds II

Example 2: A quartic 3-fold in \mathbb{P}^{4} with only ordinary double points has at most 45 singular points. Up to coordinate change, there is a unique such 3-fold, the Burkhardt quartic Y

$$
\left.\left(x_{0}^{4}-x_{0}\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+3 x_{1} x_{2} x_{3} x_{4}\right)\right)=0\right) \subset \mathbb{P}^{4} .
$$

Y admits a small projective resolution X
X is a semi-Fano 3 -fold w/ genus 3, Picard rank 16 and 45 smooth rigid \mathbb{P}^{1} s with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

Remarks

- Shows semi-Fano 3-folds can have larger Picard rank than Fanos. \Rightarrow can get G_{2} manifolds with larger Betti numbers.

Simple examples of semi-Fano 3-folds II

Example 2: A quartic 3 -fold in \mathbb{P}^{4} with only ordinary double points has at most 45 singular points. Up to coordinate change, there is a unique such 3-fold, the Burkhardt quartic Y

$$
\left.\left(x_{0}^{4}-x_{0}\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+3 x_{1} x_{2} x_{3} x_{4}\right)\right)=0\right) \subset \mathbb{P}^{4} .
$$

Y admits a small projective resolution X
X is a semi-Fano 3 -fold w/ genus 3, Picard rank 16 and 45 smooth rigid $\mathbb{P}^{11} s$ with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

Remarks

- Shows semi-Fano 3-folds can have larger Picard rank than Fanos. \Rightarrow can get G_{2} manifolds with larger Betti numbers.
- Classification results \Rightarrow any Fano 3-fold has Picard rank ≤ 10. In fact, Picard rank ≥ 6 forces X to be $\mathbb{P}^{1} \times d P$ for some del Pezzo surface.

Toric semi-Fano 3-folds

Theorem (Coates-Haskins-Kasprzyk)

There exist over 400,000 deformation types of rigid toric semi-Fano 3-folds.
There exist 1009 deformation types of semi-Fano 3-folds with nodal AC model.

- There exist only 18 smooth toric Fano 3-folds.

Toric semi-Fano 3-folds

Theorem (Coates-Haskins-Kasprzyk)

There exist over 400,000 deformation types of rigid toric semi-Fano 3-folds. There exist 1009 deformation types of semi-Fano 3-folds with nodal AC model.

- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities.

Toric semi-Fano 3-folds

Theorem (Coates-Haskins-Kasprzyk)

There exist over 400,000 deformation types of rigid toric semi-Fano 3-folds.
There exist 1009 deformation types of semi-Fano 3-folds with nodal AC model.

- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities. Toric Gorenstein canonical Fano 3-folds classified in terms of reflexive polytopes.

Toric semi-Fano 3-folds

Theorem (Coates-Haskins-Kasprzyk)

There exist over 400,000 deformation types of rigid toric semi-Fano 3-folds.
There exist 1009 deformation types of semi-Fano 3-folds with nodal AC model.

- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities. Toric Gorenstein canonical Fano 3-folds classified in terms of reflexive polytopes.
- Kreuzer-Skarke: $\exists 4319$ reflexive polytopes.

Toric semi-Fano 3-folds

Theorem (Coates-Haskins-Kasprzyk)

There exist over 400,000 deformation types of rigid toric semi-Fano 3-folds.
There exist 1009 deformation types of semi-Fano 3-folds with nodal AC model.

- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities. Toric Gorenstein canonical Fano 3-folds classified in terms of reflexive polytopes.
- Kreuzer-Skarke: $\exists 4319$ reflexive polytopes. Every toric Gorenstein canonical Fano 3-fold admits at least one projective crepant resolution;

Toric semi-Fano 3-folds

Theorem (Coates-Haskins-Kasprzyk)

There exist over 400,000 deformation types of rigid toric semi-Fano 3-folds.
There exist 1009 deformation types of semi-Fano 3-folds with nodal AC model.

- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities. Toric Gorenstein canonical Fano 3-folds classified in terms of reflexive polytopes.
- Kreuzer-Skarke: $\exists 4319$ reflexive polytopes. Every toric Gorenstein canonical Fano 3-fold admits at least one projective crepant resolution; this is a toric weak Fano 3-fold.

Toric semi-Fano 3-folds

Theorem (Coates-Haskins-Kasprzyk)

There exist over 400,000 deformation types of rigid toric semi-Fano 3-folds.
There exist 1009 deformation types of semi-Fano 3-folds with nodal AC model.

- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities. Toric Gorenstein canonical Fano 3-folds classified in terms of reflexive polytopes.
- Kreuzer-Skarke: $\exists 4319$ reflexive polytopes. Every toric Gorenstein canonical Fano 3-fold admits at least one projective crepant resolution; this is a toric weak Fano 3-fold. 899 polytopes give rise to toric semi-Fanos.

Toric semi-Fano 3-folds

Theorem (Coates-Haskins-Kasprzyk)

There exist over 400,000 deformation types of rigid toric semi-Fano 3-folds. There exist 1009 deformation types of semi-Fano 3-folds with nodal AC model.

- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities. Toric Gorenstein canonical Fano 3-folds classified in terms of reflexive polytopes.
- Kreuzer-Skarke: $\exists 4319$ reflexive polytopes. Every toric Gorenstein canonical Fano 3-fold admits at least one projective crepant resolution; this is a toric weak Fano 3-fold. 899 polytopes give rise to toric semi-Fanos.
\square Most admit many nonisomorphic projective small resolutions.

Toric semi-Fano 3-folds

Theorem (Coates-Haskins-Kasprzyk)

There exist over 400,000 deformation types of rigid toric semi-Fano 3-folds. There exist 1009 deformation types of semi-Fano 3-folds with nodal AC model.

- There exist only 18 smooth toric Fano 3-folds.
- The anticanonical model of a toric weak Fano 3-fold is a singular toric Fano 3-fold with mild (Gorenstein canonical) singularities. Toric Gorenstein canonical Fano 3-folds classified in terms of reflexive polytopes.
- Kreuzer-Skarke: $\exists 4319$ reflexive polytopes. Every toric Gorenstein canonical Fano 3-fold admits at least one projective crepant resolution; this is a toric weak Fano 3-fold. 899 polytopes give rise to toric semi-Fanos.
\square Most admit many nonisomorphic projective small resolutions. Can enumerate those completely in terms of geometry of the polytopes.
■ Not every toric semi-Fano is rigid; rigidity is determined by polytope.

G_{2}-manifolds and toric semi-Fano 3-folds

Theorem (CHNP+CHK)

There exist over 50 million matching pairs of ACyl CY 3-folds of semi-Fano type for which the resulting G_{2}-manifold is 2-connected.

G_{2}-manifolds and toric semi-Fano 3-folds

Theorem (CHNP+CHK)

There exist over 50 million matching pairs of ACyl CY 3-folds of semi-Fano type for which the resulting G_{2}-manifold is 2-connected.

Sketch of proof.

- Use a pair of ACyl CY 3-folds with one of toric semi-Fano type and the other a semi-Fano (or Fano) of rank at most 2.

G_{2}-manifolds and toric semi-Fano 3-folds

Theorem (CHNP+CHK)

There exist over 50 million matching pairs of ACyl CY 3-folds of semi-Fano type for which the resulting G_{2}-manifold is 2-connected.

Sketch of proof.

- Use a pair of ACyl CY 3-folds with one of toric semi-Fano type and the other a semi-Fano (or Fano) of rank at most 2.
- Use further arithmetic information about polarising lattices (discriminant group information) to prove there are over 250,000 toric semi-Fanos that can be matched to any ACyl CY 3-fold of Fano/semi-Fano type of rank at most 2 .

G_{2}-manifolds and toric semi-Fano 3-folds

Theorem (CHNP+CHK)

There exist over 50 million matching pairs of ACyl CY 3-folds of semi-Fano type for which the resulting G_{2}-manifold is 2-connected.

Sketch of proof.

- Use a pair of ACyl CY 3-folds with one of toric semi-Fano type and the other a semi-Fano (or Fano) of rank at most 2.
- Use further arithmetic information about polarising lattices (discriminant group information) to prove there are over 250,000 toric semi-Fanos that can be matched to any ACyl CY 3-fold of Fano/semi-Fano type of rank at most 2. Over 250,000 rigid toric semi-Fanos arise from only the 12 most "prolific" polytopes.

G_{2}-manifolds and toric semi-Fano 3-folds

Theorem (CHNP+CHK)

There exist over 50 million matching pairs of ACyl CY 3-folds of semi-Fano type for which the resulting G_{2}-manifold is 2-connected.

Sketch of proof.

- Use a pair of ACyl CY 3-folds with one of toric semi-Fano type and the other a semi-Fano (or Fano) of rank at most 2.
- Use further arithmetic information about polarising lattices (discriminant group information) to prove there are over 250,000 toric semi-Fanos that can be matched to any ACyl CY 3-fold of Fano/semi-Fano type of rank at most 2. Over 250,000 rigid toric semi-Fanos arise from only the 12 most "prolific" polytopes.
- There are over 200 deformation types of Fanos/semi-Fanos of rank at most 2.

G_{2}-manifolds and toric semi-Fano 3-folds

Theorem (CHNP+CHK)

There exist over 50 million matching pairs of ACyl CY 3-folds of semi-Fano type for which the resulting G_{2}-manifold is 2-connected.

Sketch of proof.

- Use a pair of ACyl CY 3-folds with one of toric semi-Fano type and the other a semi-Fano (or Fano) of rank at most 2.
- Use further arithmetic information about polarising lattices (discriminant group information) to prove there are over 250,000 toric semi-Fanos that can be matched to any ACyl CY 3-fold of Fano/semi-Fano type of rank at most 2. Over 250,000 rigid toric semi-Fanos arise from only the 12 most "prolific" polytopes.
- There are over 200 deformation types of Fanos/semi-Fanos of rank at most 2.

Diffeomorphism types of twisted connect sums

To understand the diffeomorphism types of many G_{2}-manifolds we need to:

1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).

Diffeomorphism types of twisted connect sums

To understand the diffeomorphism types of many G_{2}-manifolds we need to:

1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
2. Understand cohomology (over \mathbb{Z}) of twisted connect sums.

Diffeomorphism types of twisted connect sums

To understand the diffeomorphism types of many G_{2}-manifolds we need to:

1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
2. Understand cohomology (over \mathbb{Z}) of twisted connect sums.
\square Cohomology depends on choice of matching diffeo f;

Diffeomorphism types of twisted connect sums

To understand the diffeomorphism types of many G_{2}-manifolds we need to:

1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
2. Understand cohomology (over \mathbb{Z}) of twisted connect sums.

- Cohomology depends on choice of matching diffeo f; but sum $b^{2}+b^{3}$ depends only on building blocks (in orthogonal gluing cases).

Diffeomorphism types of twisted connect sums

To understand the diffeomorphism types of many G_{2}-manifolds we need to:

1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
2. Understand cohomology (over \mathbb{Z}) of twisted connect sums.
\square Cohomology depends on choice of matching diffeo f; but sum $b^{2}+b^{3}$ depends only on building blocks (in orthogonal gluing cases).
3. Understand what conditions on building blocks allow us to construct G_{2}-manifolds which are 2-connected

Diffeomorphism types of twisted connect sums

To understand the diffeomorphism types of many G_{2}-manifolds we need to:

1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
2. Understand cohomology (over \mathbb{Z}) of twisted connect sums.
\square Cohomology depends on choice of matching diffeo f; but sum $b^{2}+b^{3}$ depends only on building blocks (in orthogonal gluing cases).
3. Understand what conditions on building blocks allow us to construct G_{2}-manifolds which are 2-connected e.g. if sum of b^{2} of both building blocks is sufficiently small.

Diffeomorphism types of twisted connect sums

To understand the diffeomorphism types of many G_{2}-manifolds we need to:

1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
2. Understand cohomology (over \mathbb{Z}) of twisted connect sums.
\square Cohomology depends on choice of matching diffeo f; but sum $b^{2}+b^{3}$ depends only on building blocks (in orthogonal gluing cases).
3. Understand what conditions on building blocks allow us to construct G_{2}-manifolds which are 2-connected e.g. if sum of b^{2} of both building blocks is sufficiently small.
4. Understand classification theory for 2-connected 7-manifolds.

Diffeomorphism types of twisted connect sums

To understand the diffeomorphism types of many G_{2}-manifolds we need to:

1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
2. Understand cohomology (over \mathbb{Z}) of twisted connect sums.

- Cohomology depends on choice of matching diffeo f; but sum $b^{2}+b^{3}$ depends only on building blocks (in orthogonal gluing cases).

3. Understand what conditions on building blocks allow us to construct G_{2}-manifolds which are 2-connected e.g. if sum of b^{2} of both building blocks is sufficiently small.
4. Understand classification theory for 2-connected 7-manifolds.
\square Wilkens classified M up to almost diffeomorphism, i.e. up to connect sum with some homotopy 7 -sphere.

Diffeomorphism types of twisted connect sums

To understand the diffeomorphism types of many G_{2}-manifolds we need to:

1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
2. Understand cohomology (over \mathbb{Z}) of twisted connect sums.
\square Cohomology depends on choice of matching diffeo f; but sum $b^{2}+b^{3}$ depends only on building blocks (in orthogonal gluing cases).
3. Understand what conditions on building blocks allow us to construct G_{2}-manifolds which are 2-connected e.g. if sum of b^{2} of both building blocks is sufficiently small.
4. Understand classification theory for 2-connected 7-manifolds.
\square Wilkens classified M up to almost diffeomorphism, i.e. up to connect sum with some homotopy 7 -sphere.
In good cases can understand how many diffeomorphism classes belong to a given almost diffeomorphism class.

Diffeomorphism types of twisted connect sums

To understand the diffeomorphism types of many G_{2}-manifolds we need to:

1. Understand cohomology (over \mathbb{Z}) of building blocks (including torsion).
2. Understand cohomology (over \mathbb{Z}) of twisted connect sums.
\square Cohomology depends on choice of matching diffeo f; but sum $b^{2}+b^{3}$ depends only on building blocks (in orthogonal gluing cases).
3. Understand what conditions on building blocks allow us to construct G_{2}-manifolds which are 2-connected e.g. if sum of b^{2} of both building blocks is sufficiently small.
4. Understand classification theory for 2-connected 7-manifolds.
\square Wilkens classified M up to almost diffeomorphism, i.e. up to connect sum with some homotopy 7 -sphere.
In good cases can understand how many diffeomorphism classes belong to a given almost diffeomorphism class.
\square Divisibility of $p_{1}(M) \in H^{4}(M, \mathbb{Z})$ plays a key role.

Diffeomorphism type of twisted connect sums II

Simplest setting: M is 2-connected and $H^{4} M$ is torsion-free.
Wilkens $\Rightarrow M$ classified by $b=b^{4}(M)$ and $p_{1}(M) \in H^{4} M$.

Diffeomorphism type of twisted connect sums II

Simplest setting: M is 2-connected and $H^{4} M$ is torsion-free.
Wilkens $\Rightarrow M$ classified by $b=b^{4}(M)$ and $p_{1}(M) \in H^{4} M$.

- Need to study divisibility of $p_{1}(M)$ for twisted connect sums.

Diffeomorphism type of twisted connect sums II

Simplest setting: M is 2-connected and $H^{4} M$ is torsion-free.
Wilkens $\Rightarrow M$ classified by $b=b^{4}(M)$ and $p_{1}(M) \in H^{4} M$.

- Need to study divisibility of $p_{1}(M)$ for twisted connect sums. if $\operatorname{div}\left(p_{1}\right)=4,8,12$ or 24 then almost-diffeomorphism class contains only one diffeomorphism type.

Diffeomorphism type of twisted connect sums II

Simplest setting: M is 2-connected and $H^{4} M$ is torsion-free.
Wilkens $\Rightarrow M$ classified by $b=b^{4}(M)$ and $p_{1}(M) \in H^{4} M$.

- Need to study divisibility of $p_{1}(M)$ for twisted connect sums. if $\operatorname{div}\left(p_{1}\right)=4,8,12$ or 24 then almost-diffeomorphism class contains only one diffeomorphism type.
Observation: $4 \mid p_{1}$ and $p_{1} \mid 48$ for any twisted connect sum.

Diffeomorphism type of twisted connect sums II

Simplest setting: M is 2-connected and $H^{4} M$ is torsion-free.
Wilkens $\Rightarrow M$ classified by $b=b^{4}(M)$ and $p_{1}(M) \in H^{4} M$.

- Need to study divisibility of $p_{1}(M)$ for twisted connect sums. if $\operatorname{div}\left(p_{1}\right)=4,8,12$ or 24 then almost-diffeomorphism class contains only one diffeomorphism type.
Observation: $4 \mid p_{1}$ and $p_{1} \mid 48$ for any twisted connect sum. Strategy to pin-down divisibility:

Diffeomorphism type of twisted connect sums II

Simplest setting: M is 2-connected and $H^{4} M$ is torsion-free.
Wilkens $\Rightarrow M$ classified by $b=b^{4}(M)$ and $p_{1}(M) \in H^{4} M$.

- Need to study divisibility of $p_{1}(M)$ for twisted connect sums. if $\operatorname{div}\left(p_{1}\right)=4,8,12$ or 24 then almost-diffeomorphism class contains only one diffeomorphism type.
Observation: $4 \mid p_{1}$ and $p_{1} \mid 48$ for any twisted connect sum. Strategy to pin-down divisibility: Relate divisibility of p_{1} of twisted connect sum to divisibility of c_{2} on the pair of building blocks.

Diffeomorphism type of twisted connect sums II

Simplest setting: M is 2-connected and $H^{4} M$ is torsion-free.
Wilkens $\Rightarrow M$ classified by $b=b^{4}(M)$ and $p_{1}(M) \in H^{4} M$.

- Need to study divisibility of $p_{1}(M)$ for twisted connect sums. if $\operatorname{div}\left(p_{1}\right)=4,8,12$ or 24 then almost-diffeomorphism class contains only one diffeomorphism type.
Observation: $4 \mid p_{1}$ and $p_{1} \mid 48$ for any twisted connect sum.
Strategy to pin-down divisibility: Relate divisibility of p_{1} of twisted connect sum to divisibility of c_{2} on the pair of building blocks. In the best case:

$$
\begin{equation*}
\operatorname{div}\left(p_{1}\right)=2 \operatorname{gcd}\left(\operatorname{div}\left(c_{2}^{+}\right), \operatorname{div}\left(c_{2}^{-}\right)\right) . \tag{*}
\end{equation*}
$$

Diffeomorphism type of twisted connect sums II

Simplest setting: M is 2-connected and $H^{4} M$ is torsion-free.
Wilkens $\Rightarrow M$ classified by $b=b^{4}(M)$ and $p_{1}(M) \in H^{4} M$.

- Need to study divisibility of $p_{1}(M)$ for twisted connect sums. if $\operatorname{div}\left(p_{1}\right)=4,8,12$ or 24 then almost-diffeomorphism class contains only one diffeomorphism type.
Observation: $4 \mid p_{1}$ and $p_{1} \mid 48$ for any twisted connect sum.
Strategy to pin-down divisibility: Relate divisibility of p_{1} of twisted connect sum to divisibility of c_{2} on the pair of building blocks. In the best case:

$$
\begin{equation*}
\operatorname{div}\left(p_{1}\right)=2 \operatorname{gcd}\left(\operatorname{div}\left(c_{2}^{+}\right), \operatorname{div}\left(c_{2}^{-}\right)\right) . \tag{*}
\end{equation*}
$$

In many cases can understand $\operatorname{div}\left(c_{2}\right)$ e.g. any Fano $w / b^{2}=1$.

Diffeomorphism type of twisted connect sums II

Simplest setting: M is 2-connected and $H^{4} M$ is torsion-free.
Wilkens $\Rightarrow M$ classified by $b=b^{4}(M)$ and $p_{1}(M) \in H^{4} M$.

- Need to study divisibility of $p_{1}(M)$ for twisted connect sums. if $\operatorname{div}\left(p_{1}\right)=4,8,12$ or 24 then almost-diffeomorphism class contains only one diffeomorphism type.
Observation: $4 \mid p_{1}$ and $p_{1} \mid 48$ for any twisted connect sum.
Strategy to pin-down divisibility: Relate divisibility of p_{1} of twisted connect sum to divisibility of c_{2} on the pair of building blocks. In the best case:

$$
\begin{equation*}
\operatorname{div}\left(p_{1}\right)=2 \operatorname{gcd}\left(\operatorname{div}\left(c_{2}^{+}\right), \operatorname{div}\left(c_{2}^{-}\right)\right) . \tag{*}
\end{equation*}
$$

In many cases can understand $\operatorname{div}\left(c_{2}\right)$ e.g. any Fano $w / b^{2}=1$.
Look for building block with $\operatorname{div}\left(c_{2}^{-}\right)=2 \quad(* *)$

Diffeomorphism type of twisted connect sums II

Simplest setting: M is 2-connected and $H^{4} M$ is torsion-free.
Wilkens $\Rightarrow M$ classified by $b=b^{4}(M)$ and $p_{1}(M) \in H^{4} M$.

- Need to study divisibility of $p_{1}(M)$ for twisted connect sums. if $\operatorname{div}\left(p_{1}\right)=4,8,12$ or 24 then almost-diffeomorphism class contains only one diffeomorphism type.
Observation: $4 \mid p_{1}$ and $p_{1} \mid 48$ for any twisted connect sum.
Strategy to pin-down divisibility: Relate divisibility of p_{1} of twisted connect sum to divisibility of c_{2} on the pair of building blocks. In the best case:

$$
\begin{equation*}
\operatorname{div}\left(p_{1}\right)=2 \operatorname{gcd}\left(\operatorname{div}\left(c_{2}^{+}\right), \operatorname{div}\left(c_{2}^{-}\right)\right) . \tag{*}
\end{equation*}
$$

In many cases can understand $\operatorname{div}\left(c_{2}\right)$ e.g. any Fano $w / b^{2}=1$.
Look for building block with $\operatorname{div}\left(c_{2}^{-}\right)=2 \quad(* *)$
e.g. happens for 6 out of 17 Fanos with $b^{2}=1$

Diffeomorphism type of twisted connect sums II

Simplest setting: M is 2-connected and $H^{4} M$ is torsion-free.
Wilkens $\Rightarrow M$ classified by $b=b^{4}(M)$ and $p_{1}(M) \in H^{4} M$.

- Need to study divisibility of $p_{1}(M)$ for twisted connect sums. if $\operatorname{div}\left(p_{1}\right)=4,8,12$ or 24 then almost-diffeomorphism class contains only one diffeomorphism type.
Observation: $4 \mid p_{1}$ and $p_{1} \mid 48$ for any twisted connect sum.
Strategy to pin-down divisibility: Relate divisibility of p_{1} of twisted connect sum to divisibility of c_{2} on the pair of building blocks. In the best case:

$$
\begin{equation*}
\operatorname{div}\left(p_{1}\right)=2 \operatorname{gcd}\left(\operatorname{div}\left(c_{2}^{+}\right), \operatorname{div}\left(c_{2}^{-}\right)\right) . \tag{*}
\end{equation*}
$$

In many cases can understand $\operatorname{div}\left(c_{2}\right)$ e.g. any Fano $w / b^{2}=1$.
Look for building block with $\operatorname{div}\left(c_{2}^{-}\right)=2 \quad(* *)$
e.g. happens for 6 out of 17 Fanos with $b^{2}=1$
$\left(^{*}\right)+$ observation $\Rightarrow \operatorname{div}\left(p_{1}\right)=4$ whatever happens for c_{2}^{+}.

Diffeomorphism type of twisted connect sums II

Simplest setting: M is 2-connected and $H^{4} M$ is torsion-free.
Wilkens $\Rightarrow M$ classified by $b=b^{4}(M)$ and $p_{1}(M) \in H^{4} M$.

- Need to study divisibility of $p_{1}(M)$ for twisted connect sums.
if $\operatorname{div}\left(p_{1}\right)=4,8,12$ or 24 then almost-diffeomorphism class contains only one diffeomorphism type.
Observation: $4 \mid p_{1}$ and $p_{1} \mid 48$ for any twisted connect sum.
Strategy to pin-down divisibility: Relate divisibility of p_{1} of twisted connect sum to divisibility of c_{2} on the pair of building blocks. In the best case:

$$
\begin{equation*}
\operatorname{div}\left(p_{1}\right)=2 \operatorname{gcd}\left(\operatorname{div}\left(c_{2}^{+}\right), \operatorname{div}\left(c_{2}^{-}\right)\right) \tag{*}
\end{equation*}
$$

In many cases can understand $\operatorname{div}\left(c_{2}\right)$ e.g. any Fano $w / b^{2}=1$.
Look for building block with $\operatorname{div}\left(c_{2}^{-}\right)=2 \quad(* *)$
e.g. happens for 6 out of 17 Fanos with $b^{2}=1$
$\left(^{*}\right)+$ observation $\Rightarrow \operatorname{div}\left(p_{1}\right)=4$ whatever happens for c_{2}^{+}.
\Rightarrow only one diffeo type in almost-diffeo class for any 2-connected twisted connect sum with one side satisfying (**)

Diffeomorphic G_{2} manifolds

1. Fix a building block Z_{-}with $\operatorname{div}\left(c_{2}^{-}\right)=2$

Diffeomorphic G_{2} manifolds

1. Fix a building block Z_{-}with $\operatorname{div}\left(c_{2}^{-}\right)=2$
2. Choose any building block Z_{+}s.t. can construct 2-connected twisted connect sum of V_{+}and $V_{-}\left(w / H^{4} M\right.$ torsion-free). e.g. suffices to choose example with $b^{2} X_{+}$not too large.

Diffeomorphic G_{2} manifolds

1. Fix a building block Z_{-}with $\operatorname{div}\left(c_{2}^{-}\right)=2$
2. Choose any building block Z_{+}s.t. can construct 2-connected twisted connect sum of V_{+}and $V_{-}\left(w / H^{4} M\right.$ torsion-free). e.g. suffices to choose example with $b^{2} X_{+}$not too large.
3. Then diffeomorphism type of M is determined by $b^{4}(M)=b^{3}(M)$ and hence by sum of b^{3} of building blocks.

Diffeomorphic G_{2} manifolds

1. Fix a building block Z_{-}with $\operatorname{div}\left(c_{2}^{-}\right)=2$
2. Choose any building block Z_{+}s.t. can construct 2-connected twisted connect sum of V_{+}and $V_{-}\left(w / H^{4} M\right.$ torsion-free). e.g. suffices to choose example with $b^{2} X_{+}$not too large.
3. Then diffeomorphism type of M is determined by $b^{4}(M)=b^{3}(M)$ and hence by sum of b^{3} of building blocks.
\Rightarrow to construct diffeomorphic twisted connect sum 7-manifolds it now suffices to find

Diffeomorphic G_{2} manifolds

1. Fix a building block Z_{-}with $\operatorname{div}\left(c_{2}^{-}\right)=2$
2. Choose any building block Z_{+}s.t. can construct 2-connected twisted connect sum of V_{+}and $V_{-}\left(\mathrm{w} / H^{4} M\right.$ torsion-free). e.g. suffices to choose example with $b^{2} X_{+}$not too large.
3. Then diffeomorphism type of M is determined by $b^{4}(M)=b^{3}(M)$ and hence by sum of b^{3} of building blocks.
\Rightarrow to construct diffeomorphic twisted connect sum 7-manifolds it now suffices to find
i. building blocks with $b^{3} Z$ equal

Diffeomorphic G_{2} manifolds

1. Fix a building block Z_{-}with $\operatorname{div}\left(c_{2}^{-}\right)=2$
2. Choose any building block Z_{+}s.t. can construct 2-connected twisted connect sum of V_{+}and $V_{-}\left(\mathrm{w} / H^{4} M\right.$ torsion-free). e.g. suffices to choose example with $b^{2} X_{+}$not too large.
3. Then diffeomorphism type of M is determined by $b^{4}(M)=b^{3}(M)$ and hence by sum of b^{3} of building blocks.
\Rightarrow to construct diffeomorphic twisted connect sum 7-manifolds it now suffices to find
i. building blocks with $b^{3} Z$ equal
ii. no torsion in H^{3} of building blocks

Diffeomorphic G_{2} manifolds

1. Fix a building block Z_{-}with $\operatorname{div}\left(c_{2}^{-}\right)=2$
2. Choose any building block Z_{+}s.t. can construct 2-connected twisted connect sum of V_{+}and $V_{-}\left(\mathrm{w} / H^{4} M\right.$ torsion-free). e.g. suffices to choose example with $b^{2} X_{+}$not too large.
3. Then diffeomorphism type of M is determined by $b^{4}(M)=b^{3}(M)$ and hence by sum of b^{3} of building blocks.
\Rightarrow to construct diffeomorphic twisted connect sum 7-manifolds it now suffices to find
i. building blocks with $b^{3} Z$ equal
ii. no torsion in H^{3} of building blocks
iii. b^{2} of Z not too large.

Diffeomorphic G_{2} manifolds

1. Fix a building block Z_{-}with $\operatorname{div}\left(c_{2}^{-}\right)=2$
2. Choose any building block Z_{+}s.t. can construct 2-connected twisted connect sum of V_{+}and $V_{-}\left(\mathrm{w} / H^{4} M\right.$ torsion-free). e.g. suffices to choose example with $b^{2} X_{+}$not too large.
3. Then diffeomorphism type of M is determined by $b^{4}(M)=b^{3}(M)$ and hence by sum of b^{3} of building blocks.
\Rightarrow to construct diffeomorphic twisted connect sum 7-manifolds it now suffices to find
i. building blocks with $b^{3} Z$ equal
ii. no torsion in H^{3} of building blocks
iii. b^{2} of Z not too large.

Easy to find many examples satisfying i-iii from toric semi-Fanos
(but lots of other ways of doing this too..)

