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Constraint satisfaction problem (CSP): is it possible to assign
values to a set of variables to satisfy a given set of constraints?

m Scheduling your appointments for the day
m System of linear equations.
m Colouring a graph or finding a large independent set.

m Satisfying a Boolean formula.

Random CSPs
Our focus is to investigate properties when the constraints are
chosen randomly.
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When is there a proper k-colouring?
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K-SAT The random K-SAT problem, a model of a random
Boolean formula, is perhaps the canonical random CSP.

Basic Definition:

Variables: xi,...,x, € {TRUE,FALSE} = {+,-}

Constraints: m clauses taking the OR of k variables uniformly
chosen from {+x1, -x1, ..., +Xn, ~Xn}.

Example: A 3-SAT formula with 4 clauses:

clause
1 1

4(x) = (+x1 OR +xp OR -x3) AND (+x3 OR +x4 OR —X5)
AND (=x1 OR —xa OR +x5) AND (+x2 OR -x3 OR +xg)

Clause density: The K-SAT model is parameterized the problem
by the density of clauses « = m/n.

Variant NAE-SAT: An assignment x is a solution if both x and
—x are satisfying.
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bipartite hyper-graph:

Take a 4-SAT formula with 3 clauses: ¢(x) =

(+x1 OR +x3 OR —x5 OR —x7) AND (-x1 OR -x2 OR +x5 OR +Xxg)
AND (-x3 OR +x4 OR X5 OR +x7)

We can encode the formula as a bipartite graph ¥4 = (V, F,E):

clauses F

clause a € F, variable ve V: E\ edges E

blue edge (av) if +x, in clause a

yellow edge (av) if -x, in clause a
o \

variables V

(4-SAT: each clause has degree 4)

The resulting random graph is locally tree-like, almost no short
cycles and it's local distribution can be described completely.
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Main Question:

m Satisfiability Threshold: For which « are there satisfying
assignments?

Other Question:

m Free Energy: How many solutions are there?

m Local Statistics: Properties of solutions such as how many
clauses are satisfied only once?

m Algorithmic: Can solutions be found efficiently?



CSPs: Satisfiability conjecture (6/23)
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The Satisfiability Conjecture. For each k = 2,
random k-SAT has a sharp satisfiability threshold csa:.

with k fixed

P(SAT) > 1
as n — o0

P(UNSAT) — 1
as n— o0

— that is, a single critical value s, separates SAT|UNSAT

For general k, Friedgut ('99) proved the transition sharpens around
a (possibly non-convergent) threshold sequence asat(n)
(whereas conjecture requires aisat(n) — Qsat as 1 — )
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constraint satisfaction problems can be recast as dilute mean-field
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increasing constraint density

One-step Replica Symmetry Breaking Predictions:
Developed to study dense spin-glasses such as the
Sherrington-Kirkpatrick model.

m Replica Symmetry Breaking: Clustering of assignments.

m Cavity Method: Heuristic for analyzing adding one variable.



CSPs: First moment threshold; non-concentration (8/23)
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First Moment method on Z = |{satisfying assignments of 4}|:

EZ = 2"(1 —1/25™ = exp{n[In2 + alog(1 — 1/2%)|}

exponent decreases in «, crosses zero at a1 ~ 2€In2 + O(1)

First moment threshold «; separates EZ — oo ‘EZ — 0.

1 # (sar: At least en unconstrained variables so
Z>0= 27 =2

Second Moment method:

(EZ)?
E[Z?]

To be useful, requires always E[Z?] =< (EZ)?2. Fails, for all o > 0.

P[Z > 0] >

For random colourings and NAE-SAT, second moment method
succeeds up to ap = agt — O(1).



Some physics perspective:
condensation and replica symmetry breaking
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Spin glasses are marked by a prevalence of frustrated interactions
— e.g. Sherrington Kirkpatrick spin-glass ('75): sample (gj;);-;,
standard N(0, 1) then use them to define

P(x) =~ %exp {\%Zg,-jxi@-}, x € {+1,-1}"

i<j

Some remarkable predictions proved for dense graphs
— e.g. for the SK spin-glass
Guerra '03, Talagrand '06: Parisi formula (conjecture: Parisi '79, '80)
Panchenko '11: Parisi ultrametricity (conjecture: Parisi '79, '80)

and for optimization on complete graphs with random edge weights:
Aldous '00: random assignment (conjecture: Mézard—Parisi '85, '86, '87)
Frieze '02, Wastlund '10: TSP (conjecture: Mézard—Parisi 86, Krauth—Mézard '89)

More recently a set of predictions for sparse random systems

emerged : Krzakata—Montanari—Ricci- Tersenghi—Semerjian—Zdeborova '07,
Montanari—Ricci- Tersenghi—Semerjian '08
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well-connected clustered condensed UNSAT
@
Olcond Qlsat

KMRSZ '07, MRS '08
The solution space SOL starts out as a well-connected cluster.

After aust, SOL decomposes into exponentially clusters
—Clustering Achlioptas, Coja-Oghlan '10

After cvcond, SOL is dominated by a few large clusters
After as,t, no solutions w.h.p.

RSB: The one step replica symmetry breaking (1RSB) heuristic roughly
says there is no extra structure at the cluster level and decay of
correlation.
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Cluster Model: We represent clusters as a new spin system on
V(D).
m Start from x € {+, -}V and explore the cluster C.

m If a spin can be flipped between + and - without violating any
clauses it is set to f.

m lterate until done.

m Each variable is mapped to a value from {+, -, f}.

This resulting configuration on {+, -, £}V(®) is our definition of a
cluster. It is a spin system satisfying the following conditions:

m f are not forced by any clause.
m + and - variables must be forced by at least one clause.

m No violated clause.

We call this the cluster model. Let €2, be the number of
{+, -, f}V(% configurations. Locally rigid resulting in no clustering.
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Cavity Method: Adding a new vertex v (or clause).

@

If we know the joint distribution of o, we can:

Calculate the law of o,

Evaluate the change in the partition function from Z,;1/Z,.
Write log Z, = Y 4 log Zi/Zi_;.

The Replica Symmetric heuristic assumes that o, are independent
drawn from some law p.

The 1-RSB heuristic assumes this for the cluster model.
Self-consistency: The law of ¢, should also be drawn from p
which means y1 must satisfy a fixed point equation,
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Explicit formula (k > 3) Let & = space of probability measures
on [0,1]. Define the distributional recursion R, : & — 2,

_ 1-—mn
Rou(B) = ma(d) |1 [ = T B dp(n;)
z gz(;’d_) J {n fo - © }H uin

ek (ko /2)d" + A & J - N
with 7. (d) = %, m=n(dn = H <1 - HW)

{—0

We show (R,,)" 11/2 — Lo

Distributional equation for the chance of being + in a random cluster.

Define

o) = Sra@) [1n (10 =00 ) [T ) [ L e ()
d ) J iJ
~ak=1) [in (1= ) [Tdua(m) [Ta0r)

Jj=1

Expected change in log Q, to log,41.

Then the 1RSB prediction a,: ~ 25102 — (1 +1n2)/2 is the root
of ®(a) = 0.
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Theorem.(Ding, S., Sun) For k > ko (absolute constant),
random k-SAT has a sharp satisfiability threshold, with explicit

value asat = «v,. matching the one-step replica symmetry breaking
prediction of Mertens—Mézard—Zecchina '06.




Beyond the Satisfiability Threshold
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Condensation and non-concentration
Clust. Cond. UNSAT

v

A in typical picture,
mass is dominated by
few clusters of this size

The 1-RSB prediction:
m Satisfiability Threshold
Ot = sup{a : sup X(s) = 0}

m Condensation Threshold and free energy

Qlcond = SUP {a 1sups + Z(S) = sup s+ Z(S)}
s s:2(s)=0

o= HIme Llog Z = sup{s + X(s) : £(s) > 0} = sup{s : X(s) > 0}



Results beyond the condensation threshold:



Results beyond the condensation threshold:

Condensation Threshold:
Random k-Colourings G(n,p) large k
[Bapst, Coja-Oghlan, Hetterich, Rassmann, Vilenchik]

Regular k-NAESAT large k [S', Sun, Zhang]
Condensation Regime Free Energy:

Regular k-NAESAT large k [S', Sun, Zhang]
Satisfiability Threshold:

Regular NAESAT large k [Ding, S’, Sun]
Maximum Independent Set d-Regular, large d [Ding, S’, Sun]
Regular SAT, large k [Coja-Oghlan, Panagiotou]

Random k-SAT, large k [Ding, S’, Sun]
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Free Energy Weight clusters by (their size)*
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EZ = Zs exp{n[l-s+X(s)]}, maximized at ¥'(s) = —1.
E|Q| = Zs exp{n[0-s + X(s)]}, maximized at ¥'(s) = 0
EZ, = Zs exp{n|\-s+ X(s)]}, maximized at ¥'(s) = —\

1 - .
In fact, ;logEZ, is the Legendre transformation of ¥(s).

The moments of Z, may be computed by adding local weights to
the free variables in the {+,—, £} configurations.
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We divide the subgraph of £'s into a forest of O(1)-size trees such
that assigning values to one tree does not affect the others.
Every edge encodes the ‘f-tree’ it resides in.
= re{+ -}V & g e {f-trees}F )

We can use BP algorithm write the number of solutions on trees as
a product of weights.

Define weight functions V. W, W, accordingly s.t. for each

g€ {f—trees}E(g)
HW Ty H\U aéa H W av)
e=(av)
= H # of ways of assigning f's. in tree T)
x

= (size of cluster)

Then we can define
7\ = Zg w (o).



Optimization

We can write

Y90y W)
#9



Optimization

We can write

Y90y W)
#9

Then partitioning ¢ according to its empirical distribution v,

EZ, =

EZ/\[V] — W\Uv)ml)wa/\anﬁwe/\dnﬂ
dnv
= exp{n|X(v) + As(v)]+o(n)}
=exp{n®,(v)+o(n)}



Optimization
We can write

Y0 W(@)
e

Then partitioning ¢ according to its empirical distribution v,

EZ, =

EZ/\[V] — W\Uv)ml)wa/\anﬁwe/\dnﬂ
dnv
= exp{n|X(v) + As(v)]+o(n)}
=exp{n®,(v)+o(n)}

Can find optimal v* by finding fixed points of the Belief
Propagation equations (e.g. Dembo—Montanari-Sun ‘13.)



Optimization

We can write

Y90y W)
#9

Then partitioning ¢ according to its empirical distribution v,

EZ, =

EZ/\[V] — W\Uv)ml)wa/\anﬁwe/\dnﬂ
dnv
= exp{n|X(v) + As(v)]+o(n)}
=exp{n®,(v)+o(n)}

Can find optimal v* by finding fixed points of the Belief
Propagation equations (e.g. Dembo—Montanari-Sun ‘13.)

For regular NAE-SAT and k > ko, the limit ®(«) exists for
Qeond < @ < Qisat, given by an explicit formula matching the 1-RSB
prediction from statistical physics. S., Sun, Zhang '16



New Results

Theorem (Nam, S., Sohn 19+) For k > ko (absolute constant),
random regular k-NAESAT, WHP the largest and second largest
clusters both have a constant fraction of the set total solutions.
Two uniformly chosen solutions have normalized hamming distance
concentrated on two points.

m Requires estimating the partition function up to multiplicative
O(1) factor.

m States space of free trees is unbounded.
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Future Directions and open problems:
Small k7
Extension to random graph coloring?

Other aspects of the 1RSB phase diagram?

Models at finite temperature?



Thanks!
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