Phase Transitions of Random Constraint Satisfaction Problems

Allan Sly, Princeton University

Stony Brook November 2019

Introduction:

random constraint satisfaction problems;

Combinatorics and Theoretical Computer Science

 Constraint satisfaction problem (CSP): is it possible to assign values to a set of variables to satisfy a given set of constraints?- Scheduling your appointments for the day
- System of linear equations.
- Colouring a graph or finding a large independent set.
- Satisfying a Boolean formula.

Combinatorics and Theoretical Computer Science

 Constraint satisfaction problem (CSP): is it possible to assign values to a set of variables to satisfy a given set of constraints?- Scheduling your appointments for the day
- System of linear equations.
- Colouring a graph or finding a large independent set.
- Satisfying a Boolean formula.

Random CSPs

Our focus is to investigate properties when the constraints are chosen randomly.

Combinatorial properties of Random Graphs:

■ Erdős-Rényi Random Graph: $G(n, \alpha / n)$ with n vertices and edges with probability α / n (average degree α).

- Random α-regular graph: Uniformly chosen from α-regular graphs on n vertices.

Combinatorial properties of Random Graphs:

■ Erdős-Rényi Random Graph: $G(n, \alpha / n)$ with n vertices and edges with probability α / n (average degree α).

- Random α-regular graph: Uniformly chosen from α-regular graphs on n vertices.

When is there a proper k-colouring?

K-SAT The random K-SAT problem, a model of a random Boolean formula, is perhaps the canonical random CSP.

K-SAT The random K-SAT problem, a model of a random Boolean formula, is perhaps the canonical random CSP.

Basic Definition:

Variables: $x_{1}, \ldots, x_{n} \in\{$ TRUE, FALSE $\} \equiv\{+,-\}$
Constraints: m clauses taking the OR of k variables uniformly chosen from $\left\{+x_{1},-x_{1}, \ldots,+x_{n},-x_{n}\right\}$.

K-SAT The random K-SAT problem, a model of a random Boolean formula, is perhaps the canonical random CSP.

Basic Definition:

Variables: $x_{1}, \ldots, x_{n} \in\{$ TRUE, FALSE $\} \equiv\{+,-\}$
Constraints: m clauses taking the OR of k variables uniformly chosen from $\left\{+x_{1},-x_{1}, \ldots,+x_{n},-x_{n}\right\}$.

Example: A 3-SAT formula with 4 clauses:

$$
\begin{aligned}
& \mathscr{G}(\underline{x})=\left(+x_{1} \text { OR }+x_{2} \text { OR }-x_{3}\right) \text { AND } \xlongequal[\left(+x_{3} \text { OR }+x_{4} \text { OR }-x_{5}\right)]{\frac{c l a u s e ~}{\left(-x_{1}\right.} \text { OR }} \\
& \text { AND (} \left.-x_{1} \text { OR }-x_{4} \text { OR }+x_{5} \text {) AND (}+x_{2} \text { OR }-x_{3} \text { OR }+x_{4}\right)
\end{aligned}
$$

K-SAT The random K-SAT problem, a model of a random Boolean formula, is perhaps the canonical random CSP.

Basic Definition:

Variables: $x_{1}, \ldots, x_{n} \in\{$ TRUE, FALSE $\} \equiv\{+,-\}$
Constraints: m clauses taking the OR of k variables uniformly chosen from $\left\{+x_{1},-x_{1}, \ldots,+x_{n},-x_{n}\right\}$.

Example: A 3-SAT formula with 4 clauses:

$$
\begin{aligned}
& \mathscr{G}(\underline{x})=\left(+x_{1} \text { OR }+x_{2} \text { OR }-x_{3}\right) \text { AND } \xlongequal[\left(+x_{3} \text { OR }+x_{4} \text { OR }-x_{5}\right)]{c} \\
& \text { AND (} \left.-x_{1} \text { OR }-x_{4} \text { OR }+x_{5} \text {) AND (}+x_{2} \text { OR }-x_{3} \text { OR }+x_{4}\right)
\end{aligned}
$$

Clause density: The K-SAT model is parameterized the problem by the density of clauses $\alpha=m / n$.

K-SAT The random K-SAT problem, a model of a random Boolean formula, is perhaps the canonical random CSP.

Basic Definition:

Variables: $x_{1}, \ldots, x_{n} \in\{$ TRUE, FALSE $\} \equiv\{+,-\}$
Constraints: m clauses taking the OR of k variables uniformly chosen from $\left\{+x_{1},-x_{1}, \ldots,+x_{n},-x_{n}\right\}$.

Example: A 3-SAT formula with 4 clauses:

$$
\begin{aligned}
& \mathscr{G}(\underline{x})=\left(+x_{1} \text { OR }+x_{2} \text { OR }-x_{3}\right) \text { AND } \xlongequal[\left(+x_{3} \text { OR }+x_{4} \text { OR }-x_{5}\right)]{\text { clause }} \\
& \text { AND (}-x_{1} \text { OR }-x_{4} \text { OR }+x_{5} \text {) AND }\left(+x_{2} \text { OR }-x_{3} \text { OR }+x_{4}\right)
\end{aligned}
$$

Clause density: The K-SAT model is parameterized the problem by the density of clauses $\alpha=m / n$.

Variant NAE-SAT: An assignment \underline{x} is a solution if both \underline{x} and $-\underline{x}$ are satisfying.

Graphical description: We can encode a K-SAT formula as a bipartite hyper-graph:

Graphical description: We can encode a K-SAT formula as a bipartite hyper-graph:
Take a 4-SAT formula with 3 clauses: $\mathscr{G}(\underline{x})=$
$\left(+x_{1}\right.$ OR $+x_{3}$ OR $-x_{5}$ OR $\left.-x_{7}\right)$ AND $\left(-x_{1}\right.$ OR $-x_{2}$ OR $+x_{5}$ OR $\left.+x_{6}\right)$ AND $\left(-x_{3}\right.$ OR $+x_{4}$ OR $-x_{6}$ OR $\left.+x_{7}\right)$

Graphical description: We can encode a K-SAT formula as a bipartite hyper-graph:
Take a 4-SAT formula with 3 clauses: $\mathscr{G}(\underline{x})=$
$\left(+x_{1}\right.$ OR $+x_{3}$ OR $-x_{5}$ OR $\left.-x_{7}\right)$ AND $\left(-x_{1}\right.$ OR $-x_{2}$ OR $+x_{5}$ OR $\left.+x_{6}\right)$
AND $\left(-x_{3}\right.$ OR $+x_{4}$ OR $-x_{6}$ OR $\left.+x_{7}\right)$
We can encode the formula as a bipartite graph $\mathscr{G} \equiv(V, F, E)$:

(4-SAT: each clause has degree 4)

Graphical description: We can encode a K-SAT formula as a bipartite hyper-graph:
Take a 4-SAT formula with 3 clauses: $\mathscr{G}(\underline{x})=$
$\left(+x_{1}\right.$ OR $+x_{3}$ OR $-x_{5}$ OR $\left.-x_{7}\right)$ AND $\left(-x_{1}\right.$ OR $-x_{2}$ OR $+x_{5}$ OR $\left.+x_{6}\right)$
AND $\left(-x_{3}\right.$ OR $+x_{4}$ OR $-x_{6}$ OR $\left.+x_{7}\right)$
We can encode the formula as a bipartite graph $\mathscr{G} \equiv(V, F, E)$:

(4-SAT: each clause has degree 4)
The resulting random graph is locally tree-like, almost no short cycles and it's local distribution can be described completely.

Main Question:

- Satisfiability Threshold: For which α are there satisfying assignments?

Main Question:

- Satisfiability Threshold: For which α are there satisfying assignments?
Other Question:
- Free Energy: How many solutions are there?

■ Local Statistics: Properties of solutions such as how many clauses are satisfied only once?

- Algorithmic: Can solutions be found efficiently?

The Satisfiability Conjecture. For each $k \geqslant 2$, random k-SAT has a sharp satisfiability threshold $\alpha_{\text {sat }}$.

The Satisfiability Conjecture. For each $k \geqslant 2$, random k-SAT has a sharp satisfiability threshold $\alpha_{\text {sat }}$.

The Satisfiability Conjecture. For each $k \geqslant 2$, random k-SAT has a sharp satisfiability threshold $\alpha_{\text {sat }}$.

The Satisfiability Conjecture. For each $k \geqslant 2$, random k-SAT has a sharp satisfiability threshold $\alpha_{\text {sat }}$.

The Satisfiability Conjecture. For each $k \geqslant 2$, random k-SAT has a sharp satisfiability threshold $\alpha_{\text {sat }}$.

The Satisfiability Conjecture. For each $k \geqslant 2$, random k-SAT has a sharp satisfiability threshold $\alpha_{\text {sat }}$.

The Satisfiability Conjecture. For each $k \geqslant 2$, random k-SAT has a sharp satisfiability threshold $\alpha_{\text {sat }}$.

The Satisfiability Conjecture. For each $k \geqslant 2$, random k-SAT has a sharp satisfiability threshold $\alpha_{\text {sat }}$.

The Satisfiability Conjecture. For each $k \geqslant 2$, random k-SAT has a sharp satisfiability threshold $\alpha_{\text {sat }}$.

The Satisfiability Conjecture. For each $k \geqslant 2$, random k-SAT has a sharp satisfiability threshold $\alpha_{\text {sat }}$.

The Satisfiability Conjecture. For each $k \geqslant 2$, random k-SAT has a sharp satisfiability threshold $\alpha_{\text {sat }}$.

The Satisfiability Conjecture. For each $k \geqslant 2$, random k-SAT has a sharp satisfiability threshold $\alpha_{\text {sat }}$.

- that is, a single critical value $\alpha_{\text {sat }}$ separates SAT UNSAT

The Satisfiability Conjecture. For each $k \geqslant 2$, random k-SAT has a sharp satisfiability threshold $\alpha_{\text {sat }}$.

- that is, a single critical value $\alpha_{\text {sat }}$ separates SAT UNSAT (with high probability in the limit $n \rightarrow \infty$; fixed k)

For general k, Friedgut ('99) proved the transition sharpens around a (possibly non-convergent) threshold sequence $\alpha_{\text {sat }}(n)$
(whereas conjecture requires $\alpha_{\text {sat }}(n) \rightarrow \alpha_{\text {sat }}$ as $n \rightarrow \infty$)

Theoretical Physics

Disordered systems such as spin glasses are models of interacting particles/variables with frustrated interactions. Many random constraint satisfaction problems can be recast as dilute mean-field spin glasses.
increasing constraint density

Theoretical Physics

Disordered systems such as spin glasses are models of interacting particles/variables with frustrated interactions. Many random constraint satisfaction problems can be recast as dilute mean-field spin glasses.
increasing constraint density

One-step Replica Symmetry Breaking Predictions:
Developed to study dense spin-glasses such as the Sherrington-Kirkpatrick model.

■ Replica Symmetry Breaking: Clustering of assignments.
■ Cavity Method: Heuristic for analyzing adding one variable.

First Moment method on $Z \equiv \mid\{$ satisfying assignments of $\mathscr{G}\} \mid$:

First Moment method on $Z \equiv \mid\{$ satisfying assignments of $\mathscr{G}\} \mid$:

$$
\mathbb{E} Z=2^{n}\left(1-1 / 2^{k}\right)^{m}
$$

First Moment method on $Z \equiv \mid\{$ satisfying assignments of $\mathscr{G}\} \mid$:

$$
\mathbb{E} Z=2^{n}\left(1-1 / 2^{k}\right)^{m}=\exp \left\{n\left[\ln 2+\alpha \log \left(1-1 / 2^{k}\right)\right]\right\}
$$

First Moment method on $Z \equiv \mid\{$ satisfying assignments of $\mathscr{G}\} \mid$:
$\mathbb{E} Z=2^{n}\left(1-1 / 2^{k}\right)^{m}=\exp \left\{n\left[\ln 2+\alpha \log \left(1-1 / 2^{k}\right)\right]\right\}$
exponent decreases in α, crosses zero at $\alpha_{1} \approx 2^{k} \ln 2+O(1)$

First Moment method on $Z \equiv \mid\{$ satisfying assignments of $\mathscr{G}\} \mid$:

$$
\begin{aligned}
& \mathbb{E} Z=2^{n}\left(1-1 / 2^{k}\right)^{m}=\exp \left\{n\left[\ln 2+\alpha \log \left(1-1 / 2^{k}\right)\right]\right\} \\
& \text { exponent decreases in } \alpha, \text { crosses zero at } \alpha_{1} \approx 2^{k} \ln 2+O(1)
\end{aligned}
$$

First moment threshold α_{1} separates $\mathbb{E} Z \rightarrow \infty \mid \mathbb{E} Z \rightarrow 0$.

First Moment method on $Z \equiv \mid\{$ satisfying assignments of $\mathscr{G}\} \mid:$

$$
\begin{aligned}
& \mathbb{E} Z=2^{n}\left(1-1 / 2^{k}\right)^{m}=\exp \left\{n\left[\ln 2+\alpha \log \left(1-1 / 2^{k}\right)\right]\right\} \\
& \text { exponent decreases in } \alpha, \text { crosses zero at } \alpha_{1} \approx 2^{k} \ln 2+O(1)
\end{aligned}
$$

First moment threshold α_{1} separates $\mathbb{E} Z \rightarrow \infty \mid \mathbb{E} Z \rightarrow 0$. $\alpha_{1} \neq \alpha_{\text {sat }}$: At least ϵn unconstrained variables so $Z>0 \Rightarrow Z \geqslant 2^{\epsilon n}$.

First Moment method on $Z \equiv \mid\{$ satisfying assignments of $\mathscr{G}\} \mid:$

$$
\begin{aligned}
& \mathbb{E} Z=2^{n}\left(1-1 / 2^{k}\right)^{m}=\exp \left\{n\left[\ln 2+\alpha \log \left(1-1 / 2^{k}\right)\right]\right\} \\
& \text { exponent decreases in } \alpha, \text { crosses zero at } \alpha_{1} \approx 2^{k} \ln 2+O(1)
\end{aligned}
$$

First moment threshold α_{1} separates $\mathbb{E} Z \rightarrow \infty \mid \mathbb{E} Z \rightarrow 0$.
$\alpha_{1} \neq \alpha_{\text {sat }}$: At least ϵn unconstrained variables so
$Z>0 \Rightarrow Z \geqslant 2^{\epsilon n}$.

Second Moment method:

$$
\mathbb{P}[Z>0] \geqslant \frac{(\mathbb{E} Z)^{2}}{\mathbb{E}\left[Z^{2}\right]}
$$

First Moment method on $Z \equiv \mid\{$ satisfying assignments of $\mathscr{G}\} \mid:$

$$
\begin{aligned}
& \mathbb{E} Z=2^{n}\left(1-1 / 2^{k}\right)^{m}=\exp \left\{n\left[\ln 2+\alpha \log \left(1-1 / 2^{k}\right)\right]\right\} \\
& \text { exponent decreases in } \alpha, \text { crosses zero at } \alpha_{1} \approx 2^{k} \ln 2+O(1)
\end{aligned}
$$

First moment threshold α_{1} separates $\mathbb{E} Z \rightarrow \infty \mid \mathbb{E} Z \rightarrow 0$.
$\alpha_{1} \neq \alpha_{\text {sat }}$: At least ϵn unconstrained variables so
$Z>0 \Rightarrow Z \geqslant 2^{\epsilon n}$.

Second Moment method:

$$
\mathbb{P}[Z>0] \geqslant \frac{(\mathbb{E} Z)^{2}}{\mathbb{E}\left[Z^{2}\right]}
$$

To be useful, requires always $\mathbb{E}\left[Z^{2}\right]=(\mathbb{E} Z)^{2}$. Fails, for all $\alpha>0$.

First Moment method on $Z \equiv \mid\{$ satisfying assignments of $\mathscr{G}\} \mid:$

$$
\begin{aligned}
& \mathbb{E} Z=2^{n}\left(1-1 / 2^{k}\right)^{m}=\exp \left\{n\left[\ln 2+\alpha \log \left(1-1 / 2^{k}\right)\right]\right\} \\
& \text { exponent decreases in } \alpha, \text { crosses zero at } \alpha_{1} \approx 2^{k} \ln 2+O(1)
\end{aligned}
$$

First moment threshold α_{1} separates $\mathbb{E} Z \rightarrow \infty \mid \mathbb{E} Z \rightarrow 0$.
$\alpha_{1} \neq \alpha_{\text {sat }}$: At least ϵn unconstrained variables so
$Z>0 \Rightarrow Z \geqslant 2^{\epsilon n}$.

Second Moment method:

$$
\mathbb{P}[Z>0] \geqslant \frac{(\mathbb{E} Z)^{2}}{\mathbb{E}\left[Z^{2}\right]}
$$

To be useful, requires always $\mathbb{E}\left[Z^{2}\right]=(\mathbb{E} Z)^{2}$. Fails, for all $\alpha>0$.
For random colourings and NAE-SAT, second moment method succeeds up to $\alpha_{2}=\alpha_{\text {sat }}-O(1)$.

Some physics perspective: condensation and replica symmetry breaking

Spin glasses are marked by a prevalence of frustrated interactions - e.g. Sherrington Kirkpatrick spin-glass ('75): sample $\left(g_{i j}\right)_{i<j}$, standard $N(0,1)$ then use them to define

Spin glasses are marked by a prevalence of frustrated interactions — e.g. Sherrington Kirkpatrick spin-glass ('75): sample $\left(g_{i j}\right)_{i<j}$, standard $N(0,1)$ then use them to define

$$
\mathbb{P}(\underline{x}) \cong \frac{1}{Z} \exp \left\{\frac{\beta}{\sqrt{n}} \sum_{i<j} g_{i j} x_{i} x_{j}\right\}, \quad \underline{x} \in\{+1,-1\}^{n}
$$

Spin glasses are marked by a prevalence of frustrated interactions - e.g. Sherrington Kirkpatrick spin-glass ('75): sample $\left(g_{i j}\right)_{i<j}$, standard $N(0,1)$ then use them to define

$$
\mathbb{P}(\underline{x}) \cong \frac{1}{Z} \exp \left\{\frac{\beta}{\sqrt{n}} \sum_{i<j} g_{i j} x_{i} x_{j}\right\}, \quad \underline{x} \in\{+1,-1\}^{n}
$$

Some remarkable predictions proved for dense graphs

- e.g. for the SK spin-glass

Guerra '03, Talagrand '06: Parisi formula (conjecture: Parisi '79, '80)
Panchenko '11: Parisi ultrametricity (conjecture: Parisi '79, '80)
and for optimization on complete graphs with random edge weights:
Aldous '00: random assignment (conjecture: Mézard-Parisi '85, '86, '87)
Frieze '02, Wästlund '10: TSP (conjecture: Mézard-Parisi '86, Krauth-Mézard '89)

Spin glasses are marked by a prevalence of frustrated interactions - e.g. Sherrington Kirkpatrick spin-glass ('75): sample $\left(g_{i j}\right)_{i<j}$, standard $N(0,1)$ then use them to define

$$
\mathbb{P}(\underline{x}) \cong \frac{1}{Z} \exp \left\{\frac{\beta}{\sqrt{n}} \sum_{i<j} g_{i j} x_{i} x_{j}\right\}, \quad \underline{x} \in\{+1,-1\}^{n}
$$

Some remarkable predictions proved for dense graphs

- e.g. for the SK spin-glass

Guerra '03, Talagrand '06: Parisi formula (conjecture: Parisi '79, '80)
Panchenko '11: Parisi ultrametricity (conjecture: Parisi '79, '80) and for optimization on complete graphs with random edge weights:

Aldous '00: random assignment (conjecture: Mézard-Parisi '85, '86, '87)
Frieze '02, Wästlund '10: TSP (conjecture: Mézard-Parisi '86, Krauth-Mézard '89)

More recently a set of predictions for sparse random systems emerged:

Krzạkała-Montanari-Ricci-Tersenghi-Semerjian-Zdeborová '07, Montanari-Ricci-Tersenghi-Semerjian '08

Phase Diagram

Two solutions are connected if they differ by one bit.

Phase Diagram

well-connected

KMRSZ '07, MRS '08
The solution space SOL starts out as a well-connected cluster.

Phase Diagram

KMRSZ '07, MRS '08
The solution space SOL starts out as a well-connected cluster.
After $\alpha_{\text {clust }}$, SOL decomposes into exponentially clusters

Phase Diagram

KMRSZ '07, MRS '08
The solution space SOL starts out as a well-connected cluster.
After $\alpha_{\text {clust }}$, SOL decomposes into exponentially clusters -Clustering Achlioptas, Coja-Oghlan '10

After $\alpha_{\text {cond }}$, SOL is dominated by a few large clusters

Phase Diagram

The solution space SOL starts out as a well-connected cluster.
After $\alpha_{\text {clust }}$, SOL decomposes into exponentially clusters -Clustering Achlioptas, Coja-Oghlan '10

After $\alpha_{\text {cond }}$, SOL is dominated by a few large clusters
After $\alpha_{\text {sat }}$, no solutions w.h.p.

Phase Diagram

The solution space SOL starts out as a well-connected cluster.
After $\alpha_{\text {clust }}$, SOL decomposes into exponentially clusters -Clustering Achlioptas, Coja-Oghlan '10

After $\alpha_{\text {cond }}$, SOL is dominated by a few large clusters
After $\alpha_{\text {sat }}$, no solutions w.h.p.
RSB: The one step replica symmetry breaking (1RSB) heuristic roughly says there is no extra structure at the cluster level and decay of correlation.

Cluster Model: We represent clusters as a new spin system on $V(\mathscr{G})$.

Cluster Model: We represent clusters as a new spin system on $V(\mathscr{G})$.

- Start from $\underline{x} \in\{+,-\}^{V(\mathscr{G})}$ and explore the cluster \mathcal{C}.

Cluster Model: We represent clusters as a new spin system on $V(\mathscr{G})$.

- Start from $\underline{x} \in\{+,-\}^{V(\mathscr{G})}$ and explore the cluster \mathcal{C}.
- If a spin can be flipped between + and - without violating any clauses it is set to f.
- Iterate until done.

Cluster Model: We represent clusters as a new spin system on $V(\mathscr{G})$.

- Start from $\underline{x} \in\{+,-\}^{V(\mathscr{G})}$ and explore the cluster \mathcal{C}.
- If a spin can be flipped between + and - without violating any clauses it is set to f.
- Iterate until done.
- Each variable is mapped to a value from $\{+,-, f\}$.

Cluster Model: We represent clusters as a new spin system on $V(\mathscr{G})$.

- Start from $\underline{x} \in\{+,-\}^{V(\mathscr{G})}$ and explore the cluster \mathcal{C}.
- If a spin can be flipped between + and - without violating any clauses it is set to f.
- Iterate until done.
- Each variable is mapped to a value from $\{+,-, f\}$.

This resulting configuration on $\{+,-, f\}^{V(\mathscr{G})}$ is our definition of a cluster. It is a spin system satisfying the following conditions:

- f are not forced by any clause.

■ + and - variables must be forced by at least one clause.
■ No violated clause.

Cluster Model: We represent clusters as a new spin system on $V(\mathscr{G})$.

- Start from $\underline{x} \in\{+,-\}^{V(\mathscr{G})}$ and explore the cluster \mathcal{C}.
- If a spin can be flipped between + and - without violating any clauses it is set to f.
- Iterate until done.
- Each variable is mapped to a value from $\{+,-, f\}$.

This resulting configuration on $\{+,-, f\}^{V(\mathscr{G})}$ is our definition of a cluster. It is a spin system satisfying the following conditions:

- f are not forced by any clause.

■ + and - variables must be forced by at least one clause.
■ No violated clause.

We call this the cluster model. Let Ω_{n} be the number of $\{+,-, f\}^{V(\mathscr{G})}$ configurations. Locally rigid resulting in no clustering.

Cavity Method: Adding a new vertex v (or clause).

Cavity Method: Adding a new vertex v (or clause).

Cavity Method: Adding a new vertex v (or clause).

If we know the joint distribution of $\sigma_{u_{i}}$ we can:
1 Calculate the law of σ_{v}
2 Evaluate the change in the partition function from Z_{n+1} / Z_{n}.
Write $\log Z_{n}=\sum_{i=1}^{n} \log Z_{i} / Z_{i-1}$.

Cavity Method: Adding a new vertex v (or clause).

If we know the joint distribution of $\sigma_{u_{i}}$ we can:
1 Calculate the law of σ_{v}
2 Evaluate the change in the partition function from Z_{n+1} / Z_{n}.
Write $\log Z_{n}=\sum_{i=1}^{n} \log Z_{i} / Z_{i-1}$.
The Replica Symmetric heuristic assumes that $\sigma_{u_{i}}$ are independent drawn from some law μ.

Cavity Method: Adding a new vertex v (or clause).

If we know the joint distribution of $\sigma_{u_{i}}$ we can:
1 Calculate the law of σ_{v}
2 Evaluate the change in the partition function from Z_{n+1} / Z_{n}.
Write $\log Z_{n}=\sum_{i=1}^{n} \log Z_{i} / Z_{i-1}$.
The Replica Symmetric heuristic assumes that $\sigma_{u_{i}}$ are independent drawn from some law μ.
The 1-RSB heuristic assumes this for the cluster model.

Cavity Method: Adding a new vertex v (or clause).

If we know the joint distribution of $\sigma_{u_{i}}$ we can:
1 Calculate the law of σ_{v}
2 Evaluate the change in the partition function from Z_{n+1} / Z_{n}.
Write $\log Z_{n}=\sum_{i=1}^{n} \log Z_{i} / Z_{i-1}$.
The Replica Symmetric heuristic assumes that $\sigma_{u_{i}}$ are independent drawn from some law μ.
The 1-RSB heuristic assumes this for the cluster model. Self-consistency: The law of σ_{v} should also be drawn from μ which means μ must satisfy a fixed point equation.

Explicit formula $(k \geqslant 3)$

Explicit formula $(k \geqslant 3)$ Let $\mathscr{P} \equiv$ space of probability measures on $[0,1]$. Define the distributional recursion $\boldsymbol{R}_{\alpha}: \mathscr{P} \rightarrow \mathscr{P}$,

$$
\begin{gathered}
\boldsymbol{R}_{\alpha} \mu(B) \equiv \sum_{\underline{d} \equiv\left(d^{+}, d^{-}\right)} \pi_{\alpha}(\underline{d}) \int \mathbf{1}\left\{\frac{\left(1-\Pi^{-}\right) \Pi^{+}}{\Pi^{+}+\Pi^{-}-\Pi^{+} \Pi^{-}} \in B\right\} \prod_{i, j} d \mu\left(\eta_{i j}^{ \pm}\right) \\
\text {with } \pi_{\alpha}(\underline{d}) \equiv \frac{e^{-k \alpha}(k \alpha / 2)^{d^{+}+d^{-}}}{\left(d^{+}\right)!\left(d^{-}\right)!}, \Pi^{ \pm} \equiv \Pi^{ \pm}(\underline{d}, \underline{\eta}) \equiv \prod_{i=1}^{d^{ \pm}}\left(1-\prod_{j=1}^{k-1} \eta_{i j}^{ \pm}\right)
\end{gathered}
$$

We show $\left(\boldsymbol{R}_{\alpha}\right)^{\ell} \mathbf{1}_{1 / 2} \xrightarrow{\ell \rightarrow \infty} \mu_{\alpha}$.
Distributional equation for the chance of being +in a random cluster.

Explicit formula $(k \geqslant 3)$ Let $\mathscr{P} \equiv$ space of probability measures on $[0,1]$. Define the distributional recursion $\boldsymbol{R}_{\alpha}: \mathscr{P} \rightarrow \mathscr{P}$,

$$
\begin{gathered}
\boldsymbol{R}_{\alpha} \mu(B) \equiv \sum_{\underline{d} \equiv\left(d^{+}, d^{-}\right)} \pi_{\alpha}(\underline{d}) \int \mathbf{1}\left\{\frac{\left(1-\Pi^{-}\right) \Pi^{+}}{\Pi^{+}+\Pi^{-}-\Pi^{+} \Pi^{-}} \in B\right\} \prod_{i, j} d \mu\left(\eta_{i j}^{ \pm}\right) \\
\text {with } \pi_{\alpha}(\underline{d}) \equiv \frac{e^{-k \alpha}(k \alpha / 2)^{d^{+}+d^{-}}}{\left(d^{+}\right)!\left(d^{-}\right)!}, \Pi^{ \pm} \equiv \Pi^{ \pm}(\underline{d}, \underline{\eta}) \equiv \prod_{i=1}^{d^{ \pm}}\left(1-\prod_{j=1}^{k-1} \eta_{i j}^{ \pm}\right)
\end{gathered}
$$

We show $\left(\boldsymbol{R}_{\alpha}\right)^{\ell} \mathbf{1}_{1 / 2} \xrightarrow{\ell \rightarrow \infty} \mu_{\alpha}$.
Distributional equation for the chance of being +in a random cluster.
Define

$$
\begin{array}{r}
\Phi(\alpha)=\sum_{\underline{d}} \pi_{\alpha}(\underline{d}) \int \ln \left(\Pi^{+}+\Pi^{-}-\Pi^{+} \Pi^{-}\right) \prod_{j} d \mu_{\alpha}\left(\eta_{j}\right) \prod_{i, j} d \mu_{\alpha}\left(\eta_{i j}^{ \pm}\right) \\
-\alpha(k-1) \int \ln \left(1-\prod_{j=1}^{k} \eta_{j}\right) \prod_{j} d \mu_{\alpha}\left(\eta_{j}\right) \prod_{i, j} d \mu_{\alpha}\left(\eta_{i j}^{ \pm}\right)
\end{array}
$$

Expected change in $\log \Omega_{n}$ to $\log \Omega_{n+1}$.

Explicit formula $(k \geqslant 3)$ Let $\mathscr{P} \equiv$ space of probability measures on $[0,1]$. Define the distributional recursion $\boldsymbol{R}_{\alpha}: \mathscr{P} \rightarrow \mathscr{P}$,

$$
\begin{gathered}
\boldsymbol{R}_{\alpha} \mu(B) \equiv \sum_{\underline{d} \equiv\left(d^{+}, d^{-}\right)} \pi_{\alpha}(\underline{d}) \int \mathbf{1}\left\{\frac{\left(1-\Pi^{-}\right) \Pi^{+}}{\Pi^{+}+\Pi^{-}-\Pi^{+} \Pi^{-}} \in B\right\} \prod_{i, j} d \mu\left(\eta_{i j}^{ \pm}\right) \\
\text {with } \pi_{\alpha}(\underline{d}) \equiv \frac{e^{-k \alpha}(k \alpha / 2)^{d^{+}+d^{-}}}{\left(d^{+}\right)!\left(d^{-}\right)!}, \Pi^{ \pm} \equiv \Pi^{ \pm}(\underline{d}, \underline{\eta}) \equiv \prod_{i=1}^{d^{ \pm}}\left(1-\prod_{j=1}^{k-1} \eta_{i j}^{ \pm}\right)
\end{gathered}
$$

We show $\left(\boldsymbol{R}_{\alpha}\right)^{\ell} \mathbf{1}_{1 / 2} \xrightarrow{\ell \rightarrow \infty} \mu_{\alpha}$.
Distributional equation for the chance of being +in a random cluster.
Define

$$
\begin{array}{r}
\Phi(\alpha)=\sum_{\underline{d}} \pi_{\alpha}(\underline{d}) \int \ln \left(\Pi^{+}+\Pi^{-}-\Pi^{+} \Pi^{-}\right) \prod_{j} d \mu_{\alpha}\left(\eta_{j}\right) \prod_{i, j} d \mu_{\alpha}\left(\eta_{i j}^{ \pm}\right) \\
-\alpha(k-1) \int \ln \left(1-\prod_{j=1}^{k} \eta_{j}\right) \prod_{j} d \mu_{\alpha}\left(\eta_{j}\right) \prod_{i, j} d \mu_{\alpha}\left(\eta_{i j}^{ \pm}\right)
\end{array}
$$

Expected change in $\log \Omega_{n}$ to $\log \Omega_{n+1}$.
Then the 1 RSB prediction $\alpha_{\text {sat }} \approx 2^{k} \ln 2-(1+\ln 2) / 2$ is the root of $\Phi(\alpha)=0$.

Previous Bounds: Satisfiability conjecture is known in special case $k=2$, with $\alpha_{\text {sat }}=1$

```
Goerdt '92, '96, Chvátal-Reed '92, de la Vega '92
```

Previous Bounds: Satisfiability conjecture is known in special case $k=2$, with $\alpha_{\text {sat }}=1$
Goerdt '92, '96, Chvátal-Reed '92, de la Vega '92

Bounds for $k \geqslant 3$:

$$
\left(\epsilon_{k} \rightarrow 0 \text { as } k \rightarrow \infty\right)
$$

Previous Bounds: Satisfiability conjecture is known in special case $k=2$, with $\alpha_{\text {sat }}=1$

```
Goerdt '92, '96, Chvátal-Reed '92, de la Vega '92
```

Bounds for $k \geqslant 3$:

$$
\left(\epsilon_{k} \rightarrow 0 \text { as } k \rightarrow \infty\right)
$$

	bound on threshold	gap	
$\alpha_{\text {sat }} \leqslant$	$2^{k} \ln 2-(\ln 2) / 2+\epsilon_{k}$	$O(1)$	trivial

Previous Bounds: Satisfiability conjecture is known in special case $k=2$, with $\alpha_{\text {sat }}=1$

```
Goerdt '92, '96, Chvátal-Reed '92, de la Vega '92
```

Bounds for $k \geqslant 3$:

$$
\left(\epsilon_{k} \rightarrow 0 \text { as } k \rightarrow \infty\right)
$$

	bound on threshold	gap	
$\alpha_{\text {sat }} \leqslant$	$2^{k} \ln 2-(\ln 2) / 2+\epsilon_{k}$	$O(1)$	trivial
	$2^{k} \ln 2-(1+\ln 2) / 2+\epsilon_{k}$	ϵ_{k}	Kirousis et al. '98

Previous Bounds: Satisfiability conjecture is known in special case $k=2$, with $\alpha_{\text {sat }}=1$

Goerdt '92, '96, Chvátal-Reed '92, de la Vega '92
Bounds for $k \geqslant 3$:

$$
\left(\epsilon_{k} \rightarrow 0 \text { as } k \rightarrow \infty\right)
$$

	bound on threshold	gap	
$\alpha_{\text {sat }} \leqslant$	$2^{k} \ln 2-(\ln 2) / 2+\epsilon_{k}$	$O(1)$	trivial
	$2^{k} \ln 2-(1+\ln 2) / 2+\epsilon_{k}$	ϵ_{k}	Kirousis et al. '98
$\alpha_{\text {sat }} \geqslant$	algorithmic) $1.817 \cdot 2^{k} / k$ $2^{k} \ln 2$	Frieze-Suen '96	
	(algorithmic) $2^{k}(\ln k) / k$	$2^{k} \ln 2$	Coja-Oghlan '10

Previous Bounds: Satisfiability conjecture is known in special case $k=2$, with $\alpha_{\text {sat }}=1$

Goerdt '92, '96, Chvátal-Reed '92, de la Vega '92
Bounds for $k \geqslant 3$:
$\left(\epsilon_{k} \rightarrow 0\right.$ as $\left.k \rightarrow \infty\right)$

	bound on threshold	gap	
$\alpha_{\text {sat }} \leqslant$	$2^{k} \ln 2-(\ln 2) / 2+\epsilon_{k}$	$O(1)$	trivial
	$2^{k} \ln 2-(1+\ln 2) / 2+\epsilon_{k}$	ϵ_{k}	Kirousis et al. '98
$\alpha_{\text {sat }} \geqslant$	$\left(\right.$ algorithmic) $1.817 \cdot 2^{k} / k$	$2^{k} \ln 2$	Frieze-Suen '96
	$\left(\right.$ algorithmic) $2^{k}(\ln k) / k$	$2^{k} \ln 2$	Coja-Oghlan '10
	$2^{k-1} \ln 2-O(1)$	$2^{k-1} \ln 2$	Achlioptas-Moore '02
	$2^{k} \ln 2-O(k)$	$O(k)$	Achlioptas-Peres '03
	$2^{k} \ln 2-3(\ln 2) / 2-\epsilon_{k}$	$O(1)$	Coja-Oghlan-
	$2^{k} \ln 2-(1+\ln 2) / 2-\epsilon_{k}$	ϵ_{k}	-Panagiotou '13, '14

Previous Bounds: Satisfiability conjecture is known in special case $k=2$, with $\alpha_{\text {sat }}=1$

Goerdt '92, '96, Chvátal-Reed '92, de la Vega '92
Bounds for $k \geqslant 3$:
$\left(\epsilon_{k} \rightarrow 0\right.$ as $\left.k \rightarrow \infty\right)$

	bound on threshold	gap	
$\alpha_{\text {sat }} \leqslant$	$2^{k} \ln 2-(\ln 2) / 2+\epsilon_{k}$	$O(1)$	trivial
	$2^{k} \ln 2-(1+\ln 2) / 2+\epsilon_{k}$	ϵ_{k}	Kirousis et al. '98
$\alpha_{\text {sat }} \geqslant$	(algorithmic) $1.817 \cdot 2^{k} / k$	$2^{k} \ln 2$	Frieze-Suen '96
	(algorithmic) $2^{k}(\ln k) / k$	$2^{k} \ln 2$	Coja-Oghlan '10
	$2^{k-1} \ln 2-O(1)$	$2^{k-1} \ln 2$	Achlioptas-Moore '02
	$2^{k} \ln 2-O(k)$	$O(k)$	Achlioptas-Peres '03
	$2^{k} \ln 2-3(\ln 2) / 2-\epsilon_{k}$	$O(1)$	Coja-Oghlan-
	$2^{k} \ln 2-(1+\ln 2) / 2-\epsilon_{k}$	ϵ_{k}	-Panagiotou '13, '14
$\alpha_{\text {sat }}=$	$\alpha_{\star}\left(k \geqslant k_{0}\right)$	$0\left(k \geqslant k_{0}\right)$	exact threshold

Theorem.(Ding, S., Sun) For $k \geqslant k_{0}$ (absolute constant), random k-SAT has a sharp satisfiability threshold, with explicit value $\alpha_{\text {sat }}=\alpha_{\star}$ matching the one-step replica symmetry breaking prediction of Mertens-Mézard-Zecchina '06.

Beyond the Satisfiability Threshold

Condensation

Complexity function $\Sigma \equiv \Sigma_{\alpha}(s)$ such that:

$$
\mathbb{E} Z=\sum \underbrace{(\text { cluster size })}_{\exp \{n s\}} \times \underbrace{\mathbb{E}[\text { number of clusters of that size }]}_{\exp \{n \Sigma(s)\}}
$$

Condensation

Complexity function $\Sigma \equiv \Sigma_{\alpha}(s)$ such that:

$$
\mathbb{E} Z=\sum \underbrace{(\text { cluster size })}_{\exp \{n s\}} \times \underbrace{\mathbb{E}[\text { number of clusters of that size }]}_{\exp \{n \Sigma(s)\}}
$$

Condensation

Complexity function $\Sigma \equiv \Sigma_{\alpha}(s)$ such that:

$$
\mathbb{E} Z=\sum \underbrace{(\text { cluster size })}_{\exp \{n s\}} \times \underbrace{\mathbb{E}[\text { number of clusters of that size }]}_{\exp \{n \Sigma(s)\}}
$$

$\mathbb{E} Z$ is dominated by s where $\Sigma^{\prime}(s) \equiv-1$ (depending on α).

Condensation

Complexity function $\Sigma \equiv \Sigma_{\alpha}(s)$ such that:

$$
\mathbb{E} Z=\sum \underbrace{(\text { cluster size })}_{\exp \{n s\}} \times \underbrace{\mathbb{E} \text { [number of clusters of that size }]}_{\exp \{n \Sigma(s)\}}
$$

$\mathbb{E} Z$ is dominated by s where $\Sigma^{\prime}(s) \equiv-1$ (depending on α).

Condensation

Complexity function $\Sigma \equiv \Sigma_{\alpha}(s)$ such that:

$$
\mathbb{E} Z=\sum \underbrace{(\text { cluster size })}_{\exp \{n s\}} \times \underbrace{\mathbb{E} \text { [number of clusters of that size }]}_{\exp \{n \Sigma(s)\}}
$$

$\mathbb{E} Z$ is dominated by s where $\Sigma^{\prime}(s) \equiv-1$ (depending on α).

Condensation

Complexity function $\Sigma \equiv \Sigma_{\alpha}(s)$ such that:

$$
\mathbb{E} Z=\sum \underbrace{(\text { cluster size })}_{\exp \{n s\}} \times \underbrace{\mathbb{E} \text { [number of clusters of that size }]}_{\exp \{n \Sigma(s)\}}
$$

$\mathbb{E} Z$ is dominated by s where $\Sigma^{\prime}(s) \equiv-1$ (depending on α).

Condensation

Complexity function $\Sigma \equiv \Sigma_{\alpha}(s)$ such that:

$$
\mathbb{E} Z=\sum \underbrace{(\text { cluster size })}_{\exp \{n s\}} \times \underbrace{\mathbb{E} \text { [number of clusters of that size }]}_{\exp \{n \Sigma(s)\}}
$$

$\mathbb{E} Z$ is dominated by s where $\Sigma^{\prime}(s) \equiv-1$ (depending on α).

Condensation

Complexity function $\Sigma \equiv \Sigma_{\alpha}(s)$ such that:

$$
\mathbb{E} Z=\sum \underbrace{(\text { cluster size })}_{\exp \{n s\}} \times \underbrace{\mathbb{E}[\text { number of clusters of that size }]}_{\exp \{n \Sigma(s)\}}
$$

$\mathbb{E} Z$ is dominated by s where $\Sigma^{\prime}(s) \equiv-1$ (depending on α).

Condensation

Complexity function $\Sigma \equiv \Sigma_{\alpha}(s)$ such that:

$$
\mathbb{E} Z=\sum \underbrace{(\text { cluster size })}_{\exp \{n s\}} \times \underbrace{\mathbb{E} \text { [number of clusters of that size }]}_{\exp \{n \Sigma(s)\}}
$$

$\mathbb{E} Z$ is dominated by s where $\Sigma^{\prime}(s) \equiv-1$ (depending on α).

Condensation

Complexity function $\Sigma \equiv \Sigma_{\alpha}(s)$ such that:

$$
\mathbb{E} Z=\sum \underbrace{(\text { cluster size })}_{\exp \{n s\}} \times \underbrace{\mathbb{E} \text { [number of clusters of that size }]}_{\exp \{n \Sigma(s)\}}
$$

$\mathbb{E} Z$ is dominated by s where $\Sigma^{\prime}(s) \equiv-1$ (depending on α).

Condensation and non-concentration

The 1-RSB prediction:

- Satisfiability Threshold

$$
\alpha_{\text {sat }}=\sup \left\{\alpha: \sup _{s} \Sigma(s) \geqslant 0\right\}
$$

- Condensation Threshold and free energy

$$
\begin{aligned}
\alpha_{\text {cond }} & =\sup \left\{\alpha: \sup _{s} s+\Sigma(s)=\sup _{s: \Sigma(s) \geqslant 0} s+\Sigma(s)\right\} \\
\Phi & =\lim _{n \rightarrow \infty} \frac{1}{n} \log Z=\sup \{s+\Sigma(s): \Sigma(s)>0\}=\sup \{s: \Sigma(s)>0\}
\end{aligned}
$$

Results beyond the condensation threshold:

```
Results beyond the condensation threshold:
Condensation Threshold:
Random k-Colourings G(n,p) large k
    [Bapst, Coja-Oghlan, Hetterich, Rassmann, Vilenchik]
Regular k-NAESAT large k
    [S', Sun, Zhang]
    Condensation Regime Free Energy:
Regular k-NAESAT large k
    [S', Sun, Zhang]
Satisfiability Threshold:
Regular NAESAT large k [Ding, S', Sun]
Maximum Independent Set d-Regular, large d
Regular SAT, large k
Random k-SAT, large k
[Coja-Oghlan, Panagiotou]
    [Ding, S', Sun]
```


Free Energy

$$
\mathbb{E} Z=\sum_{s} \exp \{n[1 \cdot s+\Sigma(s)]\}
$$ maximized at $\Sigma^{\prime}(s)=-1$.

Free Energy

$$
\begin{aligned}
\mathbb{E} Z & =\sum_{s} \exp \{n[1 \cdot s+\Sigma(s)]\} \\
\mathbb{E}|\Omega| & =\sum_{s} \exp \{n[0 \cdot s+\Sigma(s)]\}
\end{aligned}
$$

maximized at $\Sigma^{\prime}(s)=-1$.
maximized at $\Sigma^{\prime}(s)=0$.

Free Energy

$$
\begin{aligned}
\mathbb{E} Z & =\sum_{s} \exp \{n[1 \cdot s+\Sigma(s)]\} \\
\mathbb{E}|\Omega| & =\sum_{s} \exp \{n[0 \cdot s+\Sigma(s)]\}
\end{aligned}
$$

maximized at $\Sigma^{\prime}(s)=-1$.
maximized at $\Sigma^{\prime}(s)=0$.

Free Energy Weight clusters by (their size) ${ }^{\lambda}$

$$
\begin{aligned}
\mathbb{E} Z & =\sum_{s} \exp \{n[1 \cdot s+\Sigma(s)]\} \\
\mathbb{E}|\Omega| & =\sum_{s} \exp \{n[0 \cdot s+\Sigma(s)]\} \\
\mathbb{E} Z_{\lambda} & \equiv \sum_{s} \exp \{n[\lambda \cdot s+\Sigma(s)]\}
\end{aligned}
$$

maximized at $\Sigma^{\prime}(s)=-1$. maximized at $\Sigma^{\prime}(s)=0$. maximized at $\Sigma^{\prime}(s)=-\lambda$

Free Energy Weight clusters by (their size) ${ }^{\lambda}$

$\mathbb{E} Z=\sum_{s} \exp \{n[1 \cdot s+\Sigma(s)]\}$,
$\mathbb{E}|\Omega|=\sum_{s} \exp \{n[0 \cdot s+\Sigma(s)]\}$,
$\mathbb{E} Z_{\lambda} \equiv \sum_{s} \exp \{n[\lambda \cdot s+\Sigma(s)]\}$,
maximized at $\Sigma^{\prime}(s)=-1$. maximized at $\Sigma^{\prime}(s)=0$.
maximized at $\Sigma^{\prime}(s)=-\lambda$

In fact, $\frac{1}{n} \log \mathbb{E} Z_{\lambda}$ is the Legendre transformation of $\Sigma(s)$.

Free Energy Weight clusters by (their size) ${ }^{\lambda}$

$\mathbb{E} Z=\sum_{s} \exp \{n[1 \cdot s+\Sigma(s)]\}$,
$\mathbb{E}|\Omega|=\sum_{s} \exp \{n[0 \cdot s+\Sigma(s)]\}$,
$\mathbb{E} Z_{\lambda} \equiv \sum_{s} \exp \{n[\lambda \cdot s+\Sigma(s)]\}$,
maximized at $\Sigma^{\prime}(s)=-1$. maximized at $\Sigma^{\prime}(s)=0$.
maximized at $\Sigma^{\prime}(s)=-\lambda$

In fact, $\frac{1}{n} \log \mathbb{E} Z_{\lambda}$ is the Legendre transformation of $\Sigma(s)$.
The moments of Z_{λ} may be computed by adding local weights to the free variables in the $\{+,-, f\}$ configurations.

Counting solutions within a cluster
We divide the subgraph of f 's into a forest of $O(1)$-size trees such that assigning values to one tree does not affect the others.

Counting solutions within a cluster
We divide the subgraph of f 's into a forest of $O(1)$-size trees such that assigning values to one tree does not affect the others.
Every edge encodes the ' f -tree' it resides in.

$$
\Rightarrow \underline{\tau} \in\{+,-, \mathrm{f}\}^{V(\mathscr{G})} \leftrightarrow \underline{\sigma} \in\{\text { f-trees }\}^{E(\mathscr{G})}
$$

Counting solutions within a cluster
We divide the subgraph of f 's into a forest of $O(1)$-size trees such that assigning values to one tree does not affect the others.
Every edge encodes the ' f -tree' it resides in.

$$
\Rightarrow \underline{\tau} \in\{+,-, \mathrm{f}\}^{V(\mathscr{G})} \leftrightarrow \underline{\sigma} \in\{\text { f-trees }\}^{E(\mathscr{G})}
$$

We can use BP algorithm write the number of solutions on trees as a product of weights.

Counting solutions within a cluster
We divide the subgraph of f 's into a forest of $O(1)$-size trees such that assigning values to one tree does not affect the others.
Every edge encodes the ' f -tree' it resides in.

$$
\Rightarrow \underline{\tau} \in\{+,-, \mathrm{f}\}^{V(\mathscr{G})} \leftrightarrow \underline{\sigma} \in\{\text { f-trees }\}^{E(\mathscr{G})}
$$

We can use BP algorithm write the number of solutions on trees as a product of weights.

Define weight functions $\Psi_{v}, \Psi_{a}, \Psi_{e}$ accordingly s.t. for each $\underline{\sigma} \in\{\text { f-trees }\}^{E(\mathscr{G})}$

$$
\begin{aligned}
w(\underline{\sigma}) & \equiv \prod_{v} \Psi_{v}\left(\underline{\sigma}_{\delta v}\right) \prod_{a} \Psi_{a}\left(\underline{\sigma}_{\delta a}\right) \prod_{e=(a v)} \Psi_{e}\left(\underline{\sigma}_{(a v)}\right) \\
& =\prod_{T}(\# \text { of ways of assigning f's. in tree } T) \\
& =(\text { size of cluster })
\end{aligned}
$$

Counting solutions within a cluster
We divide the subgraph of f 's into a forest of $O(1)$-size trees such that assigning values to one tree does not affect the others.
Every edge encodes the ' f -tree' it resides in.

$$
\Rightarrow \underline{\tau} \in\{+,-, \mathrm{f}\}^{V(\mathscr{G})} \leftrightarrow \underline{\sigma} \in\{\text { f-trees }\}^{E(\mathscr{G})}
$$

We can use BP algorithm write the number of solutions on trees as a product of weights.

Define weight functions $\Psi_{v}, \Psi_{a}, \Psi_{e}$ accordingly s.t. for each $\underline{\sigma} \in\{\text { f-trees }\}^{E(\mathscr{G})}$

$$
\begin{aligned}
w(\underline{\sigma}) & \equiv \prod_{v} \Psi_{v}\left(\underline{\sigma}_{\delta v}\right) \prod_{a} \Psi_{a}\left(\underline{\sigma}_{\delta a}\right) \prod_{e=(a v)} \Psi_{e}\left(\underline{\sigma}_{(a v)}\right) \\
& =\prod_{T}(\# \text { of ways of assigning f's. in tree } T) \\
& =(\text { size of cluster })
\end{aligned}
$$

Then we can define

$$
Z_{\lambda} \equiv \sum_{\underline{\sigma}} w^{\lambda}(\underline{\sigma})
$$

Optimization

We can write

$$
\mathbb{E} Z_{\lambda}=\frac{\sum_{(\mathscr{G}, \underline{\sigma})} w^{\lambda}(\underline{\sigma})}{\# \mathscr{G}}
$$

Optimization

We can write

$$
\mathbb{E} Z_{\lambda}=\frac{\sum_{(\mathscr{G}, \underline{\sigma})} w^{\lambda}(\underline{\sigma})}{\# \mathscr{G}}
$$

Then partitioning $\underline{\sigma}$ according to its empirical distribution ν,

$$
\begin{aligned}
\mathbb{E} Z_{\lambda}[\nu] & =\frac{\binom{n}{n \dot{\nu}}\binom{\alpha n}{\alpha n \hat{\nu}}}{\binom{d n}{d n \bar{\nu}}} \Psi_{v}{ }^{\lambda n \dot{\nu}} \Psi_{a}{ }^{\lambda \alpha n \hat{\nu}} \Psi_{e}{ }^{\lambda d n \bar{\nu}} \\
& \equiv \exp \{n[\Sigma(\nu)+\lambda s(\nu)]+o(n)\} \\
& \equiv \exp \left\{n \Phi_{\lambda}(\nu)+o(n)\right\}
\end{aligned}
$$

Optimization

We can write

$$
\mathbb{E} Z_{\lambda}=\frac{\sum_{(\mathscr{G}, \underline{\sigma})} w^{\lambda}(\underline{\sigma})}{\# \mathscr{G}}
$$

Then partitioning $\underline{\sigma}$ according to its empirical distribution ν,

$$
\begin{aligned}
\mathbb{E} Z_{\lambda}[\nu] & =\frac{\binom{n}{n \dot{\nu}}\binom{\alpha n}{\alpha n \hat{\nu}}}{\binom{d n}{d n \bar{\nu}}} \Psi_{v}{ }^{\lambda n \dot{\nu}} \Psi_{a}{ }^{\lambda \alpha n \hat{\nu}} \Psi_{e}{ }_{e}^{\lambda d n \bar{\nu}} \\
& \equiv \exp \{n[\Sigma(\nu)+\lambda s(\nu)]+o(n)\} \\
& \equiv \exp \left\{n \Phi_{\lambda}(\nu)+o(n)\right\}
\end{aligned}
$$

Can find optimal ν^{\star} by finding fixed points of the Belief Propagation equations (e.g. Dembo-Montanari-Sun '13.)

Optimization

We can write

$$
\mathbb{E} Z_{\lambda}=\frac{\sum_{(\mathscr{G}, \underline{\sigma})} w^{\lambda}(\underline{\sigma})}{\# \mathscr{G}}
$$

Then partitioning $\underline{\sigma}$ according to its empirical distribution ν,

$$
\begin{aligned}
\mathbb{E} Z_{\lambda}[\nu] & =\frac{\binom{n}{n \dot{\nu}}\binom{\alpha n}{\alpha n \hat{\nu}}}{\binom{d n}{d n \bar{\nu}}} \Psi_{v}{ }^{\lambda n \dot{\nu}} \Psi_{a}{ }^{\lambda \alpha n \hat{\nu}} \Psi_{e}{ }_{e}^{\lambda d n \bar{\nu}} \\
& \equiv \exp \{n[\Sigma(\nu)+\lambda s(\nu)]+o(n)\} \\
& \equiv \exp \left\{n \Phi_{\lambda}(\nu)+o(n)\right\}
\end{aligned}
$$

Can find optimal ν^{\star} by finding fixed points of the Belief Propagation equations (e.g. Dembo-Montanari-Sun '13.)
For regular NAE-SAT and $k \geqslant k_{0}$, the limit $\Phi(\alpha)$ exists for $\alpha_{\text {cond }}<\alpha<\alpha_{\text {sat }}$, given by an explicit formula matching the 1-RSB prediction from statistical physics.

New Results

Theorem (Nam, S., Sohn 19+) For $k \geqslant k_{0}$ (absolute constant), random regular $k-N A E S A T$, WHP the largest and second largest clusters both have a constant fraction of the set total solutions. Two uniformly chosen solutions have normalized hamming distance concentrated on two points.

- Requires estimating the partition function up to multiplicative $O(1)$ factor.
- States space of free trees is unbounded.

Future Directions and open problems:

Future Directions and open problems:

Small k ?

Future Directions and open problems:

Small k ?

Extension to random graph coloring?

Future Directions and open problems:

Small k ?

Extension to random graph coloring?
Other aspects of the 1 RSB phase diagram?

Future Directions and open problems:

Small k ?

Extension to random graph coloring?
Other aspects of the 1 RSB phase diagram?

Models at finite temperature?

Thanks!

