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(1) Poincaré inequalities on the torus T¢



The Poincaré inequality

General setting: 2 C R" bounded and nice enough. Then

/Qf(x)dx:O = /Q]Vf(x)|pdxzCp79/§2|f(x)|pdx.

'If a function has large values, it has to have large growth.’
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Figure : © a disk: the best functions for Dirichlet condition.



Some History

Mean-value theorem
Let Q C R” be convex and f : 2 — R have mean 0.Then

[llLoo (@) < diam(Q)[|V ]| (q)
Theorem (Payne-Weinberger, 1960)
Let Q C R" be convex and f : Q — R have mean 0. Then
1 .
1fll2@) = —diam(Q)[[VF]12(q)
Theorem (Acosta-Duran, 2005)
Let Q C R” be convex and f : Q — R have mean 0. Then

1 .
1l = 5diam(Q)IV )



Some History Il

1 .
1fllix) < 5diam(Q)[[VF]12(q)
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HfHLl(Q) ~ 2 dlam(Q) ~ 2 HVfHLl(Q) ~ 2.

o (Bokowski, Bokowski-Sperner, Cianchi, Dyer-Frieze,
Ferone-Nitsch-Trombetti, Gysin, Kawohl - Fridman, Nitsch,
Santalo, S.-T. Yau, ...)



A sharper form

Theorem (S., 2015)
Let 2 C R" be convex. Then

2
11l 2(0) < @M(Q)va”Ll(Q)

where

= — <
M(Q2) zlenﬂgn|Q|/HX zlldx < diam(Q)

1
M(regular n—simplex) < —=diam(regular n—simplex)

Jn

Interpolation with L*° then gives a universal improvement.



A nice byproduct

Theorem (Dyer-Frieze, 1991)
Let Q C R" be a convex domain and S € Q. Then

HH(OSNQ) > min (|S],|Q\ S|)

2
diam(Q)
and the constant 2 is optimal.
(Fulkersson Prize 1991)



A nice byproduct Il

Theorem (S., 2015)
Let Q be convex and S C €. Then

_ 4 |S||IQ2\ S|
n—1 Q) > Ll Rl
HTOSN) =l g
and the constant 4 is optimal.
Note that
4 |S||12\ S| 2 . 2max (|S|, |2\ S|)
= Q . .
diam  |Q diam ™1 (11920 5)) Q]

-~

Dyer-Frieze >1



Everything is easy on the torus!

Particularly simple on T¢ and p = 2. Then, if f has mean value 0,

2 2
/]Td|Vf(X)| de/Td]f(x)\ dx

and this is the sharp result.

Proof. Convexity!

x) = Z ke~

k0

Vf = Z kaye'™

k0

11722y = D lanl> < Y IkPla < [V FII2 (2
k#£0 k0



Main result

Theorem (S., special case d = 2)

There exist o € T? and ¢, > 0 so that for all functions with mean
value 0
vaHB(T?)H <Vf,Ck> ||L2(T2) Z CaHfH%2(T2)



Main result

Theorem (S., special case d = 2)

There exist o € T? and ¢, > 0 so that for all functions with mean
value 0

||VfHL2(’I[‘2)H (VF, o) [[i2(r2) = CaHfH%z(w)

Clearly a = (1,0) does not work because that would give
vaHL2(11‘2)”8XfHL2(’]1‘2) > COszH%2(T2)

and the function might vary along the y—direction. Clearly
a = (m, n) € Z? does not work either: sin (nx — my).



Non-closed geodesics

||VfHL2(T2)” (VF, ) li2(r2) > Ca”f||%2(’]1‘2)




Bad non-periodic geodesics

(Zm) (1,0.110001...)

where the number, Liouville’s constant, is known to be irrational.

N
fn(x,y) =sin (ION! <Z 1();”! - )/>>7

then
HfNH%z(Tz) = 27'('2 and ||VfN||L2(’]I‘2) S 6 - 10N!
while
& 10N! .
(Y v, @)l 2r2y = 27r2< > 10|> <1072 for N > 3.
n=N+1



Theorem (special case d = 2)
vaHB(T?)H <Vf,04> HLZ(']T2) > CaHfH%Z('ﬂQ)

Characterization (special case d = 2)

a = (a1, az) € T? is admissible if and only if ap/a; has a bounded
continued fraction expansion.

a = (1,v/2) is admissible.
a = (1,e) is not admissible.
a = (1,7) is most likely not admissible.



More results

Theorem

191y | (V5.0 2y 2 callFllEogre



More results

Theorem

IV A 2y |V F, @) 2oy > CallFll e
) (T%)

Theorem (Coifman)

o)

L2(Td) = Callfllizrz)



More results

Theorem

HVf| 12 jl‘d)” (Vf,a) ||L2(1I‘d 2 CaHf||L2(11'2)

Theorem (Coifman)

[{07.0)

Irrationality measure of 7

ey = @l

8 1/8
IVl gyl (V£ (L)) iy > €lFlli2grey-



Further directions

Khintchine
For every § < 1/2, the set of a € T? for which

IV 711223 (VF. @) [r2) > llFllzgaey
has full Lebesgue measure.

The general problem
General question: nice geometry, smooth vector field Y on that

geometry
IV IV Y) 152 = cllfll



Further directions

S? Hairy ball theorem. A continuous vector field on an
even-dimensional sphere vanishes somehwere.

S® Seifert conjecture (false). Every nonsingular, continuous
vector field on the 3-sphere has a closed orbit.

Very daring conjecture. T is the best geometry (i.e. smallest §).



Further directions (in progress)




The Stony Brook slides

Question. Closed manifold.
Is there a geodesic y(t) that explores the space up to e—accuracy
using the minimal possible length?



The Stony Brook slides

Question. Closed manifold.

Is there a geodesic ~y(t) that explores the space up to e—accuracy
using the minimal possible length?




The Stony Brook slides

Question. Closed manifold.

|
|
!
!
[
|
|

If, uniformly in ¢,
: . 1
Length until every e—box has been visited once < —,
€
then the manifold is 'essentially’ a torus with flat metric? Can it

be inferred that the geodesic flow is not mixing in the strongest
possible sense?



(2) Number Theory in the Hardy-Littlewood maximal function



One version of the statement

Theorem
Let f € CY/2t be periodic. If, for all x € R,

x+1
/ F(2)dz = F(x — 1) + F(x + 1),
x—1

then

f(x) = a+ bsin(cx + d) for some a, b, c,d € R.

Why? Is it trivial? Also: why even think about this?



Lax (2007)

A CURIOUS FUNCTIONAL EQUATION

By

PETER D. LAX

For Israel Gohberg, outstanding analyst, with affection and admiration.

™ L [ 1way =1

Theorem 3. A solution f of (7) which is infinitely differentiable at x = 0 is of
the form f(z) = ¢+ maz.



Hardy-Littlewood maximal function

Definition.
Let f: R — R;. We set

1 X+r
(MF)(x) :=sup — f(z)dz.

r>0 2r xX—r




The computational question
How is the maximal function being computed?

Definition.
Given a function f : R — R, the smallest optimal radius
rr:R—Ris

re(x) = inf {r >0 % /XX+ F(z)dz = (Mf)(x)} |



Simple functions are trigonometric

Theorem
Let f € C1/2F be periodic. If

(U {rf(X)}> U (U {r—f(X)}>

x€ER x€R

<2

)

then

f(x) = a+ bsin(cx + d) for some a, b, c,d € R.



Periodic solutions of a DDE are trigonometric

Theorem (equivalent)

Let a > 0 be fixed and let f € C1(R,R) be a solution of the delay
differential equation

1 1
flix+a)— =f(x+a)=—Ff(x—a)— =f(x —a).
Q@ Q@
If f is periodic, then

f(x) = a+ bsin(cx + d) for some a, b,c,d € R.




Proof

After a standard application of Fourier series:

Theorem (again equivalent)
Let (a,m,n) e R x N x N. If

tanam = am

tanan = an,

thenaa =0 or m=n.



Proof Il

—20[

We need that any two elements in the set
{x € Ryp: x =tanx} = {4.49..,7.72..,10.90.., 14.06.., ...}

are linearly independent over QQ.



Proof Il

Use multiple angle formulas.

tana = «

tan 3a = 3«

3 tan3 ((tan@)? — 3)tana a? -3
~~ ~~ 3(tana)? =1 ~~ 3a?-1
2nd eq trig identity 1st eq

Yields very complicated polynomials very quickly.

It would be exceedingly nice if we wouldn't have to deal with
polynomials.




Proof IV - the miracle

Corollary of the Lindemann-Weierstrass theorem.

tan(nonzero algebraic number) is transcendental.

If tanf =27 then B is transcendental (or § = 0)‘




Proof V

tanam = am

tanan = an

implies
ntanam — mtanan = 0.

Rewriting these as polynomials of tan o, we get

pm(tan a) pn(tan «)

0=ntanam— mtanan=n -m
gm(tana) gn(tan )

and therefore after multiplication with gn,(tan «)gn(tan «)

0 = nqgp(tan a)pm(tan a) — mgm(tan a)ps(tan o).



Proof VI

0 = ngn(tan a)pm(tan @) — mgm(tan a)pp(tan ).

This means that tan « is algebraic. Algebraic numbers form a field
(closed under sums, products and division). Since

pn(tan «)

t =
an na gn(tana)’

tan na is algebraic (and, little extra work, not 0). However, by
assumption,
tan na = n«o

and therefore
tan tanna = tanna
~—— ~——

algebraic  algebraic

This means the tangent sends a nonzero algebraic number to an
algebraic number. Contradiction. [



(3) Slepian’s miracle and integral operators



Coauthors

Lillian Pierce =
Rima Alaifari (Colloquium Roy Lederman
tomorrow!)




The problem

If f e C([0,1]) and we know the Hilbert transform

() = [ 2 ay

RX—Y

on [2,3], how much do we know about f?




Complex analysis: Hf is holomorphic, cannot vanish identically
on an interval and is thus injective . ..

~ N\
0 \/ 1

Figure : A function f on [0, 1] with [|Hf |7 5, ~ 1077[|f|7;

(12.3) ([0.1])

Any form of stability requires

”HfHL2 ([2,3]) --some control--- >0



Theorem (Alaifari, Pierce, S.)

There exists a constant ¢ > 0 such that

11z
|HF [ 1210.5 > cexp ( = EON £ ..

¢ ||f||L2[0 1]
/N /\
0 \/ —" ]

Figure : A function f on [0, 1] with ||Hf||,_2([2 3 ~ 107 7Hf||,_2

(fo,1))



Theorem (Lederman, S.)
There exists ¢ > 0 such that for all real-valued f € H}[-1,1]

1 ”fXHLZ[,L]_]

LN fell 21 T2 1y 1
/ [F(€)IPde > c ey o / |F(x)?dx.
-1 ¢ ||fHL2[—1,1] -1

-1\//\ /;\ /\\//1
VARV

Figure : A function f on [—1, 1] with ||}"Tf||fz[_171] ~ 10*18||f||f2([_171]).




A complete mystery in N



Ulam (1964)

One can consider a rule for
growth of patterns — in one
dimension it would be merely
a rule for obtaining successive
integers. [...] In both cases
simple questions that come to
mind about the properties of
a sequence of integers thus
obtained are notoriously hard
to answer.

1,2 3,4, 6,8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53...



Ulam sequence

Start with 1,2. The next
element is the smallest integer
that can be uniquely written
as the sum of two distinct
earlier terms.

1,2 3, 4,6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53...



1,2, 3, 4,6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53...

The sequence grows at most exponentially. Nothing else is known.
[additive combinatorics works well with Fourier analysis]

Fourier series detect correlation with linear phases, let's look at

N N
Re E eI = E cos (apx)
n=1 n=1



Figure : N =5






Figure : N =100



Peak roughly at (thanks to data provided by Dan Strottman!)
o~ 25714474 ...

and of strength

N N

RZ elanx — Zcos (anx) ~ —0.79N.

n=1 n=1
Indeed, we have (empirically, up to 1011)

cos (aap) <0 for all numbers except {2,3,47,69} .



Indeed, we have ( at least up to 10'1)
cos (aap) <0 for all numbers except  {2,3,47,69} .
This means that the cos (aap,) terms have to line up.

The relevant set is (aa, mod 27r)nN:1.



The limiting distribution




.-" Jordan Ellenberg (JSEllenberg - 18 Dez.
8N Why is there a spike in the Fourier

transform of the Ulam sequence?!?
arxiv.org/abs/1507.00267

r’ Jl Kevin O'Bryant
; §| November 4 at 12:14pm - Jersey City, NJ - @

This is one of the most bizarre discoveries (still unexplained) in my area of
math in recent years.

cpsc.yale.edu

CPSC. YALE.EDU



Fast computation (Donald Knuth)

30. That index and link mechanism is somewhat tricky, so I'd better have a subroutine to check that it
isn’t messed up.

#define flag #80000000 /* flag temporarily placed into the nezt fields */

#define panic(m)

fprintf (stderr,"0Oops,,"0"s!,(h="0"d, r="0"d,_ j="0"d, x="0"d)\n", m, h,r, j, x);
return;

{Subroutines 10) +=
void sanity (void)

register int h, j, neatj, x, y, r, lastr;
ullng u, lastu;

PhD thesis (Daniel Ross, in progress)

The Ulam sequence and related phenomena

Daniel Ross

Contents

1 Introduction 2

A T3 Bl



Timothy Gowers 6

My initial reaction, after having read nothing but the
definition (which alone merits a +1 for this post), was to
think that the density ought to be similar to that of the
squares. The rough reason: if you have significantly greater
than that density, then there should be lots of numbers
expressible as a sum of two (distinct) terms of your
sequence in at least two ways.

But | was assuming that the sequence would be fairly
random, and the rest of your post makes it clear that that is
very much not the case. Now that it occurs to me that the
odd numbers have the property that no member of the
sequence can be written as a sum of two earlier members
of the sequence, | see that my heuristic argument basically
misses the point completely.

What a weirdly interesting problem.

+1



Figure : Initial values (1, 3)



2 3 4

Figure : Initial values (1,4)



2 3 4

Figure : Initial values (2, 3)



THANK YOU!



