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(1) Poincaré inequalities on the torus Td



The Poincaré inequality

General setting: Ω ⊂ Rn bounded and nice enough. Then∫
Ω
f (x)dx = 0 =⇒

∫
Ω
|∇f (x)|pdx ≥ cp,Ω

∫
Ω
|f (x)|pdx .

’If a function has large values, it has to have large growth.’

Figure : Ω a disk: the best functions for Dirichlet condition.



Some History

Mean-value theorem
Let Ω ⊂ Rn be convex and f : Ω→ R have mean 0.Then

‖f ‖L∞(Ω) ≤ diam(Ω)‖∇f ‖L∞(Ω)

Theorem (Payne-Weinberger, 1960)

Let Ω ⊂ Rn be convex and f : Ω→ R have mean 0. Then

‖f ‖L2(Ω) ≤
1

π
diam(Ω)‖∇f ‖L2(Ω)

Theorem (Acosta-Duran, 2005)

Let Ω ⊂ Rn be convex and f : Ω→ R have mean 0. Then

‖f ‖L1(Ω) ≤
1

2
diam(Ω)‖∇f ‖L1(Ω)



Some History II

‖f ‖L1(Ω) ≤
1

2
diam(Ω)‖∇f ‖L1(Ω)
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‖f ‖L1(Ω) ∼ 2 diam(Ω) ∼ 2 ‖∇f ‖L1(Ω) ∼ 2.

� (Bokowski, Bokowski-Sperner, Cianchi, Dyer-Frieze,
Ferone-Nitsch-Trombetti, Gysin, Kawohl - Fridman, Nitsch,
Santalo, S.-T. Yau, . . . )



A sharper form

Theorem (S., 2015)

Let Ω ⊂ Rn be convex. Then

‖f ‖L1(Ω) ≤
2

log 2
M(Ω)‖∇f ‖L1(Ω),

where

M(Ω) = inf
z∈Rn

1

|Ω|

∫
Ω
‖x − z‖dx . diam(Ω)

M(regular n−simplex) .
1√
n

diam(regular n−simplex)

Interpolation with L∞ then gives a universal improvement.



A nice byproduct

Theorem (Dyer-Frieze, 1991)

Let Ω ⊂ Rn be a convex domain and S ⊂ Ω. Then

Hn−1 (∂S ∩ Ω) ≥ 2

diam(Ω)
min (|S |, |Ω \ S |)

and the constant 2 is optimal.

(Fulkersson Prize 1991)

S

Ω



A nice byproduct II

Theorem (S., 2015)

Let Ω be convex and S ⊆ Ω. Then

Hn−1 (∂S ∩ Ω) ≥ 4

diam

|S ||Ω \ S |
|Ω|

and the constant 4 is optimal.

Note that

4

diam

|S ||Ω \ S |
|Ω|

=
2

diam
min (|S |, |Ω \ S |)︸ ︷︷ ︸
Dyer-Frieze

· 2 max (|S |, |Ω \ S |)
|Ω|︸ ︷︷ ︸
≥1

.



Everything is easy on the torus!

Particularly simple on Td and p = 2. Then, if f has mean value 0,∫
Td

|∇f (x)|2dx ≥
∫
Td

|f (x)|2dx

and this is the sharp result.

Proof. Convexity!

f (x) =
∑
k6=0

ake
ik·x

∇f =
∑
k6=0

kake
ik·x

‖f ‖2
L2(T2) =

∑
k 6=0

|ak|2 ≤
∑
k6=0

|k|2|ak|2 ≤ ‖∇f ‖2
L2(T2)



Main result

Theorem (S., special case d = 2)

There exist α ∈ T2 and cα > 0 so that for all functions with mean
value 0

‖∇f ‖L2(T2)‖ 〈∇f , α〉 ‖L2(T2) ≥ cα‖f ‖2
L2(T2)



Main result

Theorem (S., special case d = 2)

There exist α ∈ T2 and cα > 0 so that for all functions with mean
value 0

‖∇f ‖L2(T2)‖ 〈∇f , α〉 ‖L2(T2) ≥ cα‖f ‖2
L2(T2)

Clearly α = (1, 0) does not work because that would give

‖∇f ‖L2(T2)‖∂x f ‖L2(T2) ≥ cα‖f ‖2
L2(T2)

and the function might vary along the y−direction. Clearly
α = (m, n) ∈ Z2 does not work either: sin (nx −my).



Non-closed geodesics

‖∇f ‖L2(T2)‖ 〈∇f , α〉 ‖L2(T2) ≥ cα‖f ‖2
L2(T2)



Bad non-periodic geodesics

α =

(
1,
∞∑
n=1

1

10n!

)
∼ (1, 0.110001 . . . )

where the number, Liouville’s constant, is known to be irrational.

fN(x , y) = sin

(
10N!

(
N∑

n=1

x

10n!
− y

))
,

then

‖fN‖2
L2(T2) = 2π2 and ‖∇fN‖L2(T2) ≤ 6 · 10N!

while

‖〈∇fN , α〉‖L2(T2) =
√

2π2

( ∞∑
n=N+1

10N!

10n!

)
� 10−2·N! for N ≥ 3.



Theorem (special case d = 2)

‖∇f ‖L2(T2)‖ 〈∇f , α〉 ‖L2(T2) ≥ cα‖f ‖2
L2(T2)

Characterization (special case d = 2)

α = (α1, α2) ∈ T2 is admissible if and only if α2/α1 has a bounded
continued fraction expansion.

α = (1,
√

2) is admissible.
α = (1, e) is not admissible.
α = (1, π) is most likely not admissible.



More results

Theorem

‖∇f ‖d−1
L2(Td )

‖ 〈∇f , α〉 ‖L2(Td ) ≥ cα‖f ‖dL2(T2)



More results

Theorem

‖∇f ‖d−1
L2(Td )

‖ 〈∇f , α〉 ‖L2(Td ) ≥ cα‖f ‖dL2(T2)

Theorem (Coifman)∥∥∥〈Dd f , α
〉∥∥∥

L2(Td )
≥ cα‖f ‖L2(T2)



More results

Theorem

‖∇f ‖d−1
L2(Td )

‖ 〈∇f , α〉 ‖L2(Td ) ≥ cα‖f ‖dL2(T2)

Theorem (Coifman)∥∥∥〈Dd f , α
〉∥∥∥

L2(Td )
≥ cα‖f ‖L2(T2)

Irrationality measure of π

‖∇f ‖7/8
L2(T2)

‖ 〈∇f , (1, π)〉 ‖1/8
L2(T2)

≥ c‖f ‖L2(T2).



Further directions

Khintchine
For every δ < 1/2, the set of α ∈ T2 for which

‖∇f ‖1−δ
L2(T2)

‖ 〈∇f , α〉 ‖δL2(T2) ≥ c‖f ‖L2(T2)

has full Lebesgue measure.

The general problem

General question: nice geometry, smooth vector field Y on that
geometry

‖∇f ‖1−δ
L2 ‖ 〈∇f ,Y 〉 ‖δL2 ≥ c‖f ‖L2



Further directions

S2 Hairy ball theorem. A continuous vector field on an
even-dimensional sphere vanishes somehwere.
S3 Seifert conjecture (false). Every nonsingular, continuous
vector field on the 3-sphere has a closed orbit.

Very daring conjecture. Td is the best geometry (i.e. smallest δ).



Further directions (in progress)



The Stony Brook slides

Question. Closed manifold.
Is there a geodesic γ(t) that explores the space up to ε−accuracy
using the minimal possible length?



The Stony Brook slides

Question. Closed manifold.

Is there a geodesic γ(t) that explores the space up to ε−accuracy
using the minimal possible length?

Length until every ε−box has been visited once &
1

ε
.



The Stony Brook slides
Question. Closed manifold.

If, uniformly in ε,

Length until every ε−box has been visited once .
1

ε
,

then the manifold is ’essentially’ a torus with flat metric? Can it
be inferred that the geodesic flow is not mixing in the strongest
possible sense?



(2) Number Theory in the Hardy-Littlewood maximal function



One version of the statement

Theorem
Let f ∈ C 1/2+ be periodic. If, for all x ∈ R,∫ x+1

x−1
f (z)dz = f (x − 1) + f (x + 1),

then

f (x) = a + b sin (cx + d) for some a, b, c, d ∈ R.

Why? Is it trivial? Also: why even think about this?



Lax (2007)



Hardy-Littlewood maximal function

Definition.
Let f : R→ R+. We set

(Mf )(x) := sup
r>0

1

2r

∫ x+r

x−r
f (z)dz .

−1 −0.5 0 0.5 1



The computational question
How is the maximal function being computed?

Definition.
Given a function f : R→ R+, the smallest optimal radius
rf : R→ R is

rf (x) = inf

{
r > 0 :

1

2r

∫ x+r

x−r
f (z)dz = (Mf )(x)

}
.



Simple functions are trigonometric

Theorem
Let f ∈ C 1/2+ be periodic. If∣∣∣∣∣

(⋃
x∈R
{rf (x)}

)
∪

(⋃
x∈R
{r−f (x)}

)∣∣∣∣∣ ≤ 2,

then

f (x) = a + b sin (cx + d) for some a, b, c, d ∈ R.



Periodic solutions of a DDE are trigonometric

Theorem (equivalent)

Let α > 0 be fixed and let f ∈ C 1(R,R) be a solution of the delay
differential equation

f ′(x + α)− 1

α
f (x + α) = −f ′(x − α)− 1

α
f (x − α).

If f is periodic, then

f (x) = a + b sin (cx + d) for some a, b, c, d ∈ R.
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Proof

After a standard application of Fourier series:

Theorem (again equivalent)

Let (α,m, n) ∈ R× N× N. If

tanαm = αm

tanαn = αn,

then α = 0 or m = n.



Proof II
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We need that any two elements in the set

{x ∈ R>0 : x = tan x} = {4.49.., 7.72.., 10.90.., 14.06.., ...}

are linearly independent over Q.



Proof III

Use multiple angle formulas.

tanα = α

tan 3α = 3α

3α =︸︷︷︸
2nd eq

tan 3α =︸︷︷︸
trig identity

((tanα)2 − 3) tanα

3(tanα)2 − 1
=︸︷︷︸

1st eq

α2 − 3

3α2 − 1
α

Yields very complicated polynomials very quickly.

It would be exceedingly nice if we wouldn’t have to deal with
polynomials.



Proof IV - the miracle

Corollary of the Lindemann-Weierstrass theorem.

tan(nonzero algebraic number) is transcendental.

If tanβ = β then β is transcendental (or β = 0).



Proof V

tanαm = αm

tanαn = αn

implies
n tanαm −m tanαn = 0.

Rewriting these as polynomials of tanα, we get

0 = n tanαm −m tanαn = n
pm(tanα)

qm(tanα)
−m

pn(tanα)

qn(tanα)

and therefore after multiplication with qm(tanα)qn(tanα)

0 = nqn(tanα)pm(tanα)−mqm(tanα)pn(tanα).



Proof VI

0 = nqn(tanα)pm(tanα)−mqm(tanα)pn(tanα).

This means that tanα is algebraic. Algebraic numbers form a field
(closed under sums, products and division). Since

tan nα =
pn(tanα)

qn(tanα)
,

tan nα is algebraic (and, little extra work, not 0). However, by
assumption,

tan nα = nα

and therefore
tan tan nα︸ ︷︷ ︸

algebraic

= tan nα︸ ︷︷ ︸
algebraic

.

This means the tangent sends a nonzero algebraic number to an
algebraic number. Contradiction.



(3) Slepian’s miracle and integral operators



Coauthors

Rima Alaifari

Lillian Pierce
(Colloquium
tomorrow!)

Roy Lederman



The problem

If f ∈ C∞c ([0, 1]) and we know the Hilbert transform

(Hf )(x) =

∫
R

f (y)

x − y
dy

on [2, 3], how much do we know about f ?

0 1 2 3

f ?
?

Hf



Complex analysis: Hf is holomorphic, cannot vanish identically
on an interval and is thus injective . . .

0 1

Figure : A function f on [0, 1] with ‖Hf ‖2
L2([2,3]) ∼ 10−7‖f ‖2

L2([0,1])

Any form of stability requires

‖Hf ‖2
L2([2,3]) ≥ · · · some control · · · > 0



Theorem (Alaifari, Pierce, S.)

There exists a constant c > 0 such that

‖Hf ‖L2[2,3] ≥ c exp

(
−1

c

‖fx‖L2[0,1]

‖f ‖L2[0,1]

)
‖f ‖L2[0,1].

0 1

Figure : A function f on [0, 1] with ‖Hf ‖2
L2([2,3]) ∼ 10−7‖f ‖2

L2([0,1])



Theorem (Lederman, S.)

There exists c > 0 such that for all real-valued f ∈ H1[−1, 1]

∫ 1

−1
|f̂ (ξ)|2dξ ≥ c

(
1

c

‖fx‖L2[−1,1]

‖f ‖L2[−1,1]

)− 1
c

‖fx‖L2[−1,1]
‖f ‖

L2[−1,1]
∫ 1

−1
|f (x)|2dx .

-1 0 1

Figure : A function f on [−1, 1] with ‖FT f ‖2
L2[−1,1] ∼ 10−18‖f ‖2

L2([−1,1]).



A complete mystery in N



Ulam (1964)

One can consider a rule for
growth of patterns – in one
dimension it would be merely
a rule for obtaining successive
integers. [...] In both cases
simple questions that come to
mind about the properties of
a sequence of integers thus
obtained are notoriously hard
to answer.

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53. . .



Ulam sequence

Start with 1,2. The next
element is the smallest integer
that can be uniquely written
as the sum of two distinct
earlier terms.

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53. . .



1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53. . .

The sequence grows at most exponentially. Nothing else is known.
[additive combinatorics works well with Fourier analysis]

Fourier series detect correlation with linear phases, let’s look at

Re
N∑

n=1

e ianx =
N∑

n=1

cos (anx)
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Figure : N = 5
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Figure : N = 10
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Figure : N = 100
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Peak roughly at (thanks to data provided by Dan Strottman!)

α ∼ 2.5714474 . . .

and of strength

R
N∑

n=1

e ianx =
N∑

n=1

cos (anx) ∼ −0.79N.

Indeed, we have (empirically, up to 1011)

cos (αan) < 0 for all numbers except {2, 3, 47, 69} .
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Indeed, we have ( at least up to 1011)

cos (αan) < 0 for all numbers except {2, 3, 47, 69} .

This means that the cos (αan) terms have to line up.

The relevant set is (αan mod 2π)Nn=1 .



The limiting distribution

0 1 2 3 4 5 6





Fast computation (Donald Knuth)

PhD thesis (Daniel Ross, in progress)





0 1 2 3 4 5 6

Figure : Initial values (1, 3)



0 1 2 3 4 5 6

Figure : Initial values (1, 4)



0 1 2 3 4 5 6

Figure : Initial values (2, 3)



Thank you!


