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Geometric Incidences and the 
Polynomial Method

Adam Sheffer

Caltech

Incidences

 𝑃 – a set of 𝑚 points.

 𝐿 – a set of 𝑛 lines. 

 An incidence: 𝑝, ℓ ∈ 𝑃 × 𝐿 such that         
𝑝 ∈ 𝐿.

15
incidences
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Incidences

 Szemerédi and Trotter ’83. The number 
of incidences between any 𝑚 points and 

𝑛 lines is 𝑂 𝑚2/3𝑛2/3 +𝑚 + 𝑛 .

Incidences

 Szemerédi and Trotter ’83. The maximum 
number of incidences between 𝑚 points 

and 𝑛 lines is 𝑂 𝑚2/3𝑛2/3 +𝑚 + 𝑛 .

 Most of the other variants are still open:

◦ Point-circle incidences.

◦ Point-parabola incidences.

◦ Hyperplanes in ℝ𝑑.

◦ Incidences in ℂ𝑑 and 𝔽𝑞
𝑑.

◦ And so on…
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Namedropping

 Incidences have MANY applications. 

 Examples from the last few years:

◦ Guth and Katz used them to solve Erdős’ 
distinct distances problem. 

◦ Brougain and Demeter used them to solve 
restriction problems in harmonic analysis.

◦ Bombieri and Bourgain used                        
them in a recent number                            
theory paper.

◦ Raz, Sharir, and Solymosi used                        
them to study expanding                
polynomials.

More Namedropping

 More applications of incidences:

◦ Many applications in additive combinatorics, 
including Elekes’ Sum-Product bound.

◦ Dvir, Saraf, Wigderson and others use them in 
a family of papers about coding theory.

◦ Farber, Ray, and Smorodinsky used them to 
study minors of totally positive matrices.

◦ Other uses involve extractors, point 
covering problems, range                          
searching algorithms, and more.
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Sumsets

 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 ⊂ ℝ.

 𝐴 + 𝐴 = 𝑎 + 𝑏 | 𝑎, 𝑏 ∈ 𝐴 .

 Can 𝐴 + 𝐴 contain only 𝑂 𝑛 elements?

◦ Yes.

◦ 𝐴 = 1,2,3,… , 𝑛 .

◦ 𝐴 + 𝐴 = 2𝑛 − 1.

◦ Similarly for any arithmetic progression.

Product Sets

 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 ⊂ ℝ.

 𝐴𝐴 = 𝑎 ⋅ 𝑏 | 𝑎, 𝑏 ∈ 𝐴 .

 Can 𝐴𝐴 contain only 𝑂(𝑛) elements?

◦ Yes.

◦ 𝐴 = 2,4,8… , 2𝑛 .

◦ 𝐴𝐴 = 2𝑛 − 1.

◦ Similarly for any geometric progression.
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Sum-Product

 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 ⊂ ℝ.

 𝐴 + 𝐴 = 𝑎 + 𝑏 | 𝑎, 𝑏 ∈ 𝐴 .

 𝐴𝐴 = 𝑎 ⋅ 𝑏 | 𝑎, 𝑏 ∈ 𝐴 .

 Can both 𝐴 + 𝐴 and 𝐴𝐴 be small?

The Sum-Product Conjecture

 Conjecture (Erdős and Szemerédi `83).
For any 𝜀 > 0, every sufficiently large 
set 𝐴 satisfies

max 𝐴 + 𝐴 , 𝐴𝐴 = Ω |𝐴|2−𝜀 .

Paul Erdős Endre Szemerédi
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The Sum-Product Conjecture

 Solymosi `09. 

max 𝐴 + 𝐴 , 𝐴𝐴 = Ω∗ |𝐴|4/3 .

 Konyagin and Shkredov `16.

max 𝐴 + 𝐴 , 𝐴𝐴 = Ω∗ |𝐴|
4
3
+

5
9813 .

 We will prove an older bound of Elekes.

max 𝐴 + 𝐴 , 𝐴𝐴 = Ω |𝐴|5/4 .

Elekes’s Proof

 𝐴 – a set of 𝑛 real numbers.

𝑃 = 𝑎, 𝑏 | 𝑎 ∈ 𝐴 + 𝐴 𝑏 ∈ 𝐴𝐴
𝐿 = 𝑦 = 𝑐 𝑥 − 𝑑 | 𝑐, 𝑑 ∈ 𝐴
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Elekes’s Proof (2)

 𝐴 – a set of 𝑛 real numbers.

𝑃 = 𝑎, 𝑏 | 𝑎 ∈ 𝐴 + 𝐴 𝑏 ∈ 𝐴𝐴
𝐿 = 𝑦 = 𝑐 𝑥 − 𝑑 | 𝑐, 𝑑 ∈ 𝐴

 By the Szemerédi–Trotter theorem:

𝐼 𝑃, 𝐿 = 𝑂 𝑃 2/3 𝐿 2/3 + 𝑃 + 𝐿

= 𝑂 𝐴 + 𝐴 2/3 𝐴𝐴 2/3𝑛4/3 .

Elekes’s Proof (3)

 𝐴 – a set of 𝑛 real numbers.

𝑃 = 𝑎, 𝑏 | 𝑎 ∈ 𝐴 + 𝐴 𝑏 ∈ 𝐴𝐴
𝐿 = 𝑦 = 𝑐 𝑥 − 𝑑 | 𝑐, 𝑑 ∈ 𝐴

 Every line 𝑦 = 𝑐 𝑥 − 𝑑 contains exactly 
the 𝑛 points of 𝑃 of the form 𝑑 + 𝑎′, 𝑐𝑎′
where 𝑎′ ∈ 𝐴.

𝐼 𝑃, 𝐿 = 𝐴 3 = 𝑛3



12/6/2016

8

Elekes’s Proof (end)

 We obtained the two bounds:

𝐼 𝑃, 𝐿 = 𝑛3,

𝐼 𝑃, 𝐿 = 𝑂 𝐴 + 𝐴 2/3 𝐴𝐴 2/3𝑛4/3 .

 Combining the two implies

𝐴 + 𝐴 𝐴𝐴 = Ω 𝑛5/2 .

The Incidence Graph

 A bipartite graph with a vertex for every 
point and for any “object”. 

 Every incidence yields an edge between 
the corresponding point and “object”. 
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The Incidence Graph: Lines

 Two lines intersect in at most                                
one point.

◦ The incidence graph has no copy of 𝐾2,2.
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The Incidence Graph: Circles

 Three points determine at                      
most one circle.

◦ The incidence graph has no copy of 𝐾3,2.
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Incidence for Algebraic Curves

 Pach and Sharir `92.

◦ 𝑃 – set of 𝑚 points in ℝ2.

◦ Γ – set of 𝑛 constant-degree polynomial 
curves.

◦ No 𝐾𝑠,𝑡 in the incidence graph.

𝐼 𝑃, Γ = 𝑂 𝑚𝑠/(2𝑠−1)𝑛(2𝑠−2)/(2𝑠−1) +𝑚 + 𝑛

Micha 
SharirJános Pach

The Case of ℝ3

 Zahl `13.

◦ 𝑃 – set of 𝑚 points in ℝ3.

◦ 𝑆 – set of 𝑛 constant-degree polynomial 
surfaces in ℝ3.

◦ No 𝐾𝑠,𝑡 in the incidence graph.

◦ Every three surfaces have a zero-dimensional 
intersection.

𝐼 𝑃, 𝑆 = 𝑂 𝑚2𝑠/(3𝑠−1)𝑛(3𝑠−3)/(3𝑠−1) +𝑚 + 𝑛
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The Case of ℝ4

 Basu and Sombra.

◦ 𝑃 – set of 𝑚 points in ℝ4.

◦ 𝑆 – set of 𝑛 constant-degree polynomial 
hyper-surfaces in ℝ4.

◦ No 𝐾𝑠,𝑡 in the incidence graph.

◦ Every four surfaces have a zero-dimensional 
intersection.

𝐼 𝑃, 𝑆 = 𝑂 𝑚3𝑠/(4𝑠−1)𝑛(4𝑠−4)/(4𝑠−1) +𝑚 + 𝑛

Find the Pattern

 ℝ2:

 ℝ3:

 ℝ4:

𝐼 𝑃, 𝑆 = 𝑂 𝑚𝑠/(2𝑠−1)𝑛(2𝑠−2)/(2𝑠−1) +𝑚 + 𝑛

𝐼 𝑃, 𝑆 = 𝑂 𝑚2𝑠/(3𝑠−1)𝑛(3𝑠−3)/(3𝑠−1) +𝑚 + 𝑛

𝐼 𝑃, 𝑆 = 𝑂 𝑚3𝑠/(4𝑠−1)𝑛(4𝑠−4)/(4𝑠−1) +𝑚 + 𝑛
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General Result

Fox, Pach, Suk, S’, and Zahl:

 𝑃 – set of 𝑚 points in ℝ𝑑.

 𝑉 – set of 𝑛 constant-degree varieties in 
ℝ𝑑.

 No 𝐾𝑠,𝑡 in the incidence graph.

 Any 𝜀 > 0.

𝐼 𝑃, 𝑉 = 𝑂 𝑚 𝑑−1 𝑠/ 𝑑𝑠−1 +𝜀𝑛𝑑(𝑠−1)/(𝑑𝑠−1) +𝑚 + 𝑛

Lower Bounds

 Theorem (S’ 16). 

◦ Matching lower bounds for up to an extra 𝜀 in 
the exponent for hypersurfaces in ℝ𝑑, where 
𝑑 ≥ 4.

◦ Works for many types of varieties but tight 
only for no 𝐾2,𝑡.

 Almost the first time that an incidence 
problem is nearly settled.

 Proof combines Fourier transform, basic 
number theory, and probability.
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Szemerédi-Trotter: Proof Sketch

 Consider 𝑚 points and 𝑛 lines in ℝ2.

◦ The incidence graph contains no 𝐾2,2.

◦ A bipartite graph with vertex sets of size 𝑚
and 𝑛 and no 𝐾2,2 contains 𝑂 𝑚 𝑛 + 𝑛
edges.

◦ So 𝑂 𝑚 𝑛 + 𝑛 incidences.

◦ Worse than the Szemerédi-Trotter  

𝑂 𝑚2/3𝑛2/3 +𝑚 + 𝑛 .

◦ We hardly used any geometry!

The Polynomial Method

 The polynomial method: Collections of 
objects that exhibit extremal behavior 
often have hidden algebraic structure. 

◦ Once this algebraic structure has been found, 
it can be exploited to gain a better 
understanding of the original problem. 
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Polynomial Partitioning

 𝑃 – a set of 𝑚 points in ℝ𝑑. 

 A polynomial 𝑓 ∈ ℝ[𝑥, 𝑦] is an                  
𝑟-partitioning polynomial for 𝑃 if no 
connected component of ℝ𝑑\𝒁 𝑓
contains more than 𝑚/𝑟𝑑 points of 𝑃.

Polynomial Partitioning Theorem

 Theorem (Guth and Katz `10). For every  
𝑟 > 1 and every set of points in ℝ𝑑, there 
exists an 𝑟-partitioning polynomial of 
degree 𝑂(𝑟).

Larry Guth Nets Katz
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Incidences in the Cells

 We apply the weak bound 𝑂(𝑚 𝑛 + 𝑛)
separately in each cell:

෍

𝑗

𝑂 𝑚𝑗 𝑛𝑗 + 𝑛 = 𝑂
𝑚

𝑟2
෍

𝑗

𝑛𝑗 +෍

𝑗

𝑛𝑖 .

 By setting 𝑟 = 𝑚2/3/𝑛1/3, we obtain 

𝑂 𝑚2/3𝑛2/3 +𝑚 + 𝑛 incidences.

Still not done…

 What is still missing in the proof?

◦ Counting incidences with points on the 
partition.
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Recap: Incidences via Partitioning

 Obtain a weaker incidence bound. 

◦ Using a standard combinatorial trick. 

 Partition the space into cells.

◦ Using polynomial partitioning.

 “Amplify” the weaker bound by applying 
it in every cell.

 Bound the number of                      
incidences on the                              
partition itself.

A Problem

 When using polynomial partitioning in ℝ𝑑

with 𝑑 ≥ 3, how do we handle incidences 
on the partition?

◦ Already in ℝ3 we might get a complicated 
surface with many curves fully contained in it.
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The Plan

 𝑆1 – our partition in ℝ𝑑.

 Still need to deal with incidences on the 
(𝑑 − 1)-dimensional variety 𝑆1.

 𝑆2 – a second partition. 

◦ 𝑟-partitioning of the points of 𝑃 ∩ 𝑆1 but does 
not fully contain any components of 𝑆1.

The Plan

 𝑆1 – our partition in ℝ𝑑.

 𝑆2 – a second partition. 

◦ 𝑟-partitioning of the points of 𝑃 ∩ 𝑆1 but does 
not fully contain any components of 𝑆1.

 Still need to deal with incidences on the 
(𝑑 − 2)-dimensional variety 𝑆1 ∩ 𝑆2.
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The Plan

 𝑆1 – our partition in ℝ𝑑.

 𝑆2 – a second partition. 

◦ Partitions the points of 𝑃 ∩ 𝑆1 but does not 
fully contain 𝑆1.

 𝑆3 – a third partition. 

◦ 𝑟-partitioning of the points of 𝑃 ∩ 𝑆1 ∩ 𝑆2 but 
does not fully contain any components of      
𝑆1 ∩ 𝑆2.

 … 

Multiple Partitions

 After 𝑗 partitionings, it remains to deal 
with points on a 𝑑 − 𝑗 -dimensional 
variety.
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Multiple Partitions

 After 𝑗 partitionings, it remains to deal 
with points on a 𝑑 − 𝑗 -dimensional 
variety.

 Problem. Given an irreducible                  
𝑑 − 𝑗 -dimensional variety 𝑉𝑗, find a 

polynomial 𝑓𝑗+1 so that:

◦ 𝑓𝑗+1 is an 𝑟-partitioning for 𝑃 ∩ 𝑉𝑗.

◦ 𝑓𝑗+1 does not vanish identically on 𝑉𝑗.

◦ The degree of 𝑓𝑗+1 is not too large.

?
?
?

Polynomial Partitioning Theorem

 Theorem (Guth and Katz `10). For every  
𝑟 > 1 and every set of points in ℝ𝑑, there 
exists an 𝑟-partitioning polynomial of 
degree 𝑂(𝑟).

Larry Guth Nets Katz
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Bisecting Hyperplanes

 A hyperplane ℎ bisects a finite set 𝐴 if 
each of the open half-spaces defined by ℎ
contains at most |𝐴|/2 points of 𝐴.

Finding a Polynomial Partition

 𝑚 = 19 points and 𝑟 = 3.

 Goal. Every cell should contain at most 
𝑚

𝑟2
=

19

9
= 2 points.
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Finding a Polynomial Partition

 Step 1. Bisect the set into two sets, each 

with at most 
19

2
= 9 points. 

Finding a Polynomial Partition

 Step 2. Bisect each of the two sets into 

two subsets, each with at most 
19

4
= 4

points. 
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Finding a Polynomial Partition

 Step 3. Bisect each of the four sets into 

two subsets, each with at most 
19

8
= 2

points. 

Discrete Ham Sandwich Theorem

 Theorem. Any 𝑑 finite sets in ℝ𝑑 can be 
simultaneously bisected by a hyperplane. 

(Proved by using the Borsuk–Ulam theorem).
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Using Discrete Ham Sandwich

 In ℝ𝑑, we can perform ~ log2 𝑑
partitioning steps by using the discrete 
ham sandwich theorem.

 Then what? 

Point sets 𝑃1, …𝑃𝑘 ⊂ ℝ𝑑.

Proof Outline
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The Veronese Map

 Veronese map 𝜈𝐷: ℝ
𝑑 → ℝ𝑚 is defined as

𝜈𝐷 𝑥1, … , 𝑥𝑑 = 𝑥1
𝑢1𝑥2

𝑢2 ⋯𝑥𝑑
𝑢𝑑

𝑢∈𝑈𝐷

where
𝑈𝐷 = 𝑖1, … , 𝑖𝑑 | 1 ≤ 𝑖1 +⋯+ 𝑖𝑑 ≤ 𝐷 .

 Consider the map 𝜈2: ℝ
2 → ℝ5:

𝜈2 𝑥1, 𝑥2 = 𝑥1
2, 𝑥2

2, 𝑥1𝑥2, 𝑥1, 𝑥2 .

Veronese Map + Ham Sandwich

 If we need to bisect 𝑘 sets, we choose 𝐷
such that the number 𝑚𝐷 of monomials 
of degree ≤ 𝐷 is at least 𝑘.

◦ Every point set 𝑃𝑖 is mapped to a point set 
𝑃𝑖
′ in ℝ𝑚𝐷 .

◦ Ham sandwich theorem: there exists a 
hyperplane ℎ ⊂ ℝ𝑚𝐷 that bisects each 𝑃𝑖

′.

+
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Point sets 𝑃1, …𝑃𝑘 ⊂ ℝ𝑑.

Point sets 𝑃1
′, … ,𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Hyperplane ℎ bisects 𝑃1
′, … ,𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Ham sandwich in ℝ𝑚𝐷

Proof Outline

𝜈𝐷: ℝ
𝑑 → ℝ𝑚𝐷

Point sets 𝑃1, …𝑃𝑘 ⊂ ℝ𝑑.

Point sets 𝑃1
′, … ,𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Hyperplane ℎ bisects 𝑃1
′, … ,𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Ham sandwich in ℝ𝑚𝐷

Proof Outline

A variety 𝑍 𝑓 of degree ≤ 𝐷 in ℝ𝑑.

𝜈𝐷
−1: ℝ𝑚𝐷 → ℝ𝑑

𝜈𝐷: ℝ
𝑑 → ℝ𝑚𝐷
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Point sets 𝑃1, …𝑃𝑘 ⊂ ℝ𝑑.

𝜈𝐷: ℝ
𝑑 → ℝ𝑚𝐷

Point sets 𝑃1
′, … ,𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Hyperplane ℎ bisects 𝑃1
′, … ,𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Ham sandwich in ℝ𝑚𝐷

The variety 𝑍 𝑓 of degree ≤ 𝐷
bisects 𝑃1, …𝑃𝑘 ⊂ ℝ𝑑.

𝜈𝐷
−1: ℝ𝑚𝐷 → ℝ𝑑

Proof Outline

Recall: Multiple Partitions

 Problem. Given an irreducible                  
𝑑 − 𝑗 -dimensional variety 𝑉𝑗 in ℝ𝑑, find 

a polynomial 𝑓𝑗+1 so that:

◦ 𝑓𝑗+1 is an 𝑟-partitioning for 𝑃 ∩ 𝑉𝑗.

◦ 𝑓𝑗+1 does not vanish identically on 𝑉𝑗.

◦ The degree of 𝑓𝑗+1 is not too large.

?
?
?
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The Quotient Ring

 ℝ 𝑥1, … , 𝑥𝑑 ≤𝐷 – the set of polynomials 
in 𝑥1, … , 𝑥𝑑 of degree ≤ 𝐷.

 𝐼 = 𝑰 𝑉𝑗 – the ideal of polynomials that 

vanish on 𝑉𝑗.

 𝐼≤𝐷 – the set of polynomials in 𝐼 of   
degree ≤ 𝐷. 

𝑅 = ℝ 𝑥1, … , 𝑥𝑑 ≤𝐷/𝐼≤𝐷

 We consider only polynomials in 𝑅.

What We Already Know

 Problem. Given an irreducible                  
𝑑 − 𝑗 -dimensional variety 𝑉𝑗, find a 

polynomial 𝑓𝑗+1 so that:

◦ 𝑓𝑗+1 is an 𝑟-partitioning for 𝑃 ∩ 𝑉𝑗.

◦ 𝑓𝑗+1 does not vanish identically on 𝑉𝑗.

◦ The degree of 𝑓𝑗+1 is not too large.



?

?
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Quotient Ring + “Veronese” Map

𝑅 = ℝ 𝑥1, … , 𝑥𝑑 ≤𝐷/𝐼≤𝐷

 𝑅 is a vector space of dimension 𝑚𝐷.

 To bisect 𝑃1, … , 𝑃𝑘 ⊂ 𝑉𝑖: 

◦ Choose 𝐷 such that 𝑚𝐷 ≥ 𝑘.

◦ 𝑏1, … , 𝑏𝑚𝐷
– a basis for 𝑅.

 Map 𝜈𝐷
𝑅: ℝ𝑑 → ℝ𝑚𝐷 is defined as

𝜈𝐷
𝑅 𝑥1, … , 𝑥𝑑 = 𝑏1 𝑥 ,… , 𝑏𝑚𝐷

𝑥

Point sets 𝑃1, …𝑃𝑘 ⊂ 𝑉𝑗 ⊂ ℝ𝑑.

𝜈𝐷
𝑅: ℝ𝑑 → ℝ𝑚𝐷

Point sets 𝑃1
′, …𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Hyperplane ℎ bisects 𝑃1
′, …𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Ham sandwich in ℝ𝑚𝐷

The variety 𝑍 𝑓 of degree ≤ 𝐷
bisects 𝑃1, …𝑃𝑘 ⊂ 𝑉.

𝜈𝐷
𝑅 −1: ℝ𝑚𝐷 → ℝ𝑑

Proof Outline
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What We Already Know

 Problem. Given an irreducible                  
𝑑 − 𝑗 -dimensional variety 𝑉𝑗, find a 

polynomial 𝑓𝑗+1 so that:

◦ 𝑓𝑗+1 is an 𝑟-partitioning for 𝑃 ∩ 𝑉𝑗.

◦ 𝑓𝑗+1 does not vanish identically on 𝑉𝑗.

◦ The degree of 𝑓𝑗+1 is not too large.



?



The Hilbert Function

𝒁(𝑥25𝑦12 + 5𝑥19𝑦8 + 3.5𝑥18𝑦11

+ 39𝑥11𝑦 + 𝑥9𝑦20 + 3𝑥5𝑦26
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The Hilbert Function (really!)

 An ideal 𝐼 = 𝑰 𝑉𝑗 ⊂ ℝ 𝑥1, … 𝑥𝑑 .

 Hilbert function of ideal 𝐼:

ℎ𝐼 𝐷 = dim ℝ 𝑥1, … 𝑥𝑑 ≤𝐷/𝐼≤𝐷

 That is: 𝒎𝑫 = 𝒉𝑰 𝑫 ! 

 From properties of the Hilbert function: 
To get to a 𝑘-dim space, we need 

𝐷 ≈
𝑘

deg 𝐼

1/𝑒

.

And That’s It!

 Problem. Given an irreducible                  
𝑑 − 𝑗 -dimensional variety 𝑉𝑗, find a 

polynomial 𝑓𝑗+1 so that:

◦ 𝑓𝑗+1 is an 𝑟-partitioning for 𝑃 ∩ 𝑉𝑗.

◦ 𝑓𝑗+1 does not vanish identically on 𝑉𝑗.

◦ The degree of 𝑓𝑗+1 is not too large.





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Incidences in ℂ2

 Solymosi and Tao `12. The number of 
incidences between 𝑚 points and 𝑛 lines 

in ℂ2 is 𝑂 𝑚2/3+𝜀𝑛2/3 +𝑚 + 𝑛 for 

every  𝜀 > 0.

◦ Holds for other types of curves, but under 
very strict restrictions.

Jozsef Solymosi Terence Tao

Incidences in ℂ2

 S’, Szabo, and Zahl 16. 

◦ 𝑃 – set of 𝑚 points in ℂ2.

◦ Γ – set of 𝑛 constant-degree polynomial 
curves.

◦ No 𝐾𝑠,𝑡 in the incidence graph.

◦ Any 𝜀 > 0.

𝐼 𝑃, Γ

= 𝑂 𝑚𝑠/(2𝑠−1)+𝜀𝑛(2𝑠−2)/(2𝑠−1) +𝑚 + 𝑛
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Incidences in ℂ2

 In ℂ2 this strategy fails. 

◦ The zero set of a polynomial does not divide 
ℂ2 into connected components.

 Think of ℂ2 as ℝ4.

◦ Incidence problem with 2-dim varieties in ℝ4 .

◦ Use polynomial partitioning and bound 
incidences in each cell separately.

◦ But there is a problem!

The Problem

 We are in ℝ4.

◦ The partition is a 3-dim variety 𝑉.

◦ We need to handle the incidences between 
points and 2-dim varieties inside of 𝑉.

 These are special varieties.

◦ They originate from curves in ℂ2.
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The Cauchy-Riemann Equations

 Consider the complex coordinates           
𝑧1 = 𝑥1 + 𝑖𝑦1 and 𝑧2 = 𝑥2 + 𝑖𝑦2.

 For 𝑓 ∈ ℂ[𝑧1, 𝑧2] write 𝑓 = 𝑢 + 𝑖𝑣 where 
𝑢, 𝑣 ∈ ℝ[𝑥1, 𝑦1, 𝑥2, 𝑦2].

 𝑢 and 𝑣 satisfy the Cauchy-Riemann 
equations if
𝜕𝑢

𝜕𝑥𝑘
=

𝜕𝑣

𝜕𝑦𝑘
,

𝜕𝑢

𝜕𝑦𝑘
= −

𝜕𝑣

𝜕𝑥𝑘
, 𝑘 ∈ 1, 2 .

The Problem

 We are in ℝ4.

◦ The partition is a 3-dim variety 𝑉.

◦ We need to handle the incidences between 
points and 2-dim varieties inside of 𝑉.

 By the Cauchy-Riemann equations:

◦ For a generic point 𝑝 ∈ 𝑉, there is a 2-dim 
plane Π such that every 2-dim variety that is 
incident to 𝑝 has Π as its tangent plane at 𝑝.
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Completing the Proof Sketch

 We are in ℝ4.

◦ The partition is a 3-dim variety 𝑉.

◦ For a generic point 𝑝 ∈ 𝑉, there is a 2-dim 
plane Π associated with it.

 Finding a 2-dim variety in 𝑉 that is 
incident to 𝑝 is an initial value problem. 

 The Picard–Lindelöf theorem: There is a 
unique solution to such a problem.

◦ A generic point of 𝑉 is contained in at most 
one 2-dim variety!

A Foliation

 Intuitively, the relevant parts of the 
partition are foliated:
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