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Incidences

e P —a set of m points.
e [ —aset of nlines.

* Anincidence: (p,¥) € P X L such that
p € L.
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Incidences

* Szemerédi and Trotter '83. The number
of incidences between any m points and

n linesis 0(m?/3n%/3 + m + n).

Incidences

* Szemerédi and Trotter '83. The maximum
number of incidences between m points

and n lines is 0(m2/3nz/3 +m + n)

* Most of the other variants are still open:
° Point-circle incidences.
> Point-parabola incidences.

]
o

o
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Namedropping

¢ Incidences have MANY applications.
e Examples from the last few years:

o GQuth and Katz used them to solve Erddés’
distinct distances problem.

° Brougain and Demeter used them to solve
restriction problems in harmonic analysis.

° Bombieri and Bourgain used
them in a recent number
theory paper.

° Raz, Sharir, and Solymosi used
them to study expanding
polynomials.

More Namedropping

* More applications of incidences:

° Many applications in additive combinatorics,
including Elekes’ Sum-Product bound.

o Dvir, Saraf, Wigderson and others use them in
a family of papers about coding theory.

° Farber, Ray, and Smorodinsky used them to
study minors of totally positive matrices.

> Other uses involve extractors, point
covering problems, range
searching algorithms, and more.
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Sumsets

«A={aya,,..,a,} CR.
eA+A={a+b|abeEA}

» Can A + A contain only 0(n) elements?

o
o
o

o

Product Sets

e A={a4ay,..,a,} CR.
eAA={a-b|abcE A}

» Can AA contain only O(n) elements?

o
o
]

o
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Sum-Product

«A={aya,,..,a,} CR.
cA+A={a+b]|abeA}l
ceAA={a-b|a,beEA}

e Can both A + A and AA be small?

The Sum-Product Conjecture

» Conjecture (Erdds and Szemerédi "83).
For any € > 0, every sufficiently large
set A satisfies

max{|A + A|,|AA|} = Q(|A|*>7%).

Paul Erdés Endre Szemerédi
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The Sum-Product Conjecture

e Solymosi "09.
max{|A + A, |AA]} = Q*(|A]*/?).

e Konyagin and Shkredov "16.
4, 5
max{|4 + 41,1441} = o* ([ *5533).

* We will prove an older bound of Elekes.
max{|A + A|, |AA|} = Q(|A]>/4).

Elekes’s Proof

e A —aset of n real numbers.

P={(a,b)| a€eA+A beAA}
L={y=c(x—d) | c,dEeA}
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Elekes’s Proof (2)

e A —aset of n real numbers.

P={(a,b)|aeA+A beAA}
L={y=c(x—d) | c,deA}

* By the Szemerédi-Trotter theorem:
I1(P,L) = O(IPI*|LI*/® + |P| + |LI)
= 0(|A + AI?/3|AA|1*3n*/3).

Elekes’s Proof (3)

e A —aset of n real numbers.

P={(a,b)| a€eA+A beAA}
L={y=c(x—d) | c,dEeA}

e Every line y = ¢(x — d) contains exactly
the n points of P of the form (d + a’, ca’)
where a’ € A.

I(P,L) =|A]® =n3
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Elekes’s Proof (end)

e \We obtained the two bounds:
I1(P,L) = n3,
I(P,L) = 0(|A + A|*/3|AA|*/3n*/3).

e Combining the two implies

|A + A||AA| = Q(n5/2).

The Incidence Graph

* A bipartite graph with a vertex for every
point and for any “object”.

» Every incidence yields an edge between
the corresponding point and “object”.

a
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The Incidence Graph: Lines

e Two lines intersect in at most P4
one point.

> The incidence graph has no copy of K ,.
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The Incidence Graph: Circles
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Incidence for Algebraic Curves

e Pach and Sharir "92.
> P —set of m points in R?.
o I' — set of n constant-degree polynomial
curves.

> No K;; in the incidence graph.

I(P,T) = 0(ms/@s—Dp(25-2)/@s-1) 4 1 ¢ )

Janos Pach

The Case of R3

e Zahl "13.
> P —set of m points in R3.
° § —set of n constant-degree polynomial
surfaces in R3.

> No K ; in the incidence graph.

° Every three surfaces have a zero-dimensional
intersection.

I(P, S) — 0(mZS/(Ss—1)n(3s—3)/(3s—1) +m+ n)

12/6/2016
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The Case of R*

e Basu and Sombra.
> P —set of m points in R*.
> § —set of n constant-degree polynomial
hyper-surfaces in R*.
> No K, in the incidence graph.
o Every four surfaces have a zero-dimensional
intersection.

I(P,S) — 0(mSS/(4s—l)n(4s—4)/(4s—1) +m+ n)

YYUUUUHUT

Find the Pattern AN
AN AN
. R2: AT

NN

I(P,S) — 0(ms/(ZS—l)n(Zs—Z)/(Zs—l) +m+ n)
s R3:

I(P,S) = 0(mZS/(SS—l)n(35—3)/(3s—1) +m+ n)
o R*:

I(P,S) — 0(mSS/(4s—1)n(4s—4)/(4s—1) +m+ n)

11
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General Result

Fox, Pach, Suk, S’, and Zahl:
o P —set of m points in R<.
» I/ — set of n constant-degree varieties in
R<.
* No K ¢ in the incidence graph.
e Any € > 0.
I(P,V) = 0(m(d—l)S/(ds—l)+snd(s—1)/(ds—1) +m+ n)

Lower Bounds

* Theorem (S’ 16).

° Matching lower bounds for up to an extra € in
the exponent for hypersurfaces in R¢, where
d = 4.

o Works for many types of varieties but tight
only forno K5 ;.

e Almost the first time that an incidence
problem is nearly settled.

e Proof combines Fourier transform, basic
number theory, and probability.

12
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Szemerédi-Trotter: Proof Sketch

» Consider m points and n lines in R?.
° The incidence graph contains no Kj ;.

> A bipartite graph with vertex sets of size m
and n and no K , contains O(m+/n + n)
edges.

> So O(m+/n + n) incidences.

o Worse than the Szemerédi-Trotter
0(m?53n?/3 + m +n).

o

ae—

The Polynomial Method

e The polynomial method: Collections of
objects that exhibit extremal behavior
often have hidden algebraic structure.

o Once this algebraic structure has been found,
it can be exploited to gain a better
understanding of the original problem.

13
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Polynomial Partitioning

* P —a set of m points in R%.

» A polynomial f € R[x,y] is an
r-partitioning polynomial for P if no
connected component of R\ Z(f)
contains more than m/r% points of P.

I

Polynomial Partitioning Theorem

* Theorem (Guth and Katz "10). For every
r > 1 and every set of points in R%, there
exists an r-partitioning polynomial of
degree O (7).

14



Incidences in the Cells

» We apply the weak bound 0 (m+/n + n)
separately in each cell:

m
> 0 (my fi; +n) = o<r—22¢ﬁj+zni).
J J J

» By setting r = m?/3 /n'/3, we obtain

0(m?/3n?3 + m + n) }
] S

Still not done...

* What is still missing in the proof?

Nyl
1<
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Recap: Incidences via Partitioning

* Obtain a weaker incidence bound.
> Using a standard combinatorial trick.

e Partition the space into cells.
> Using polynomial partitioning.

o “Amplify” the weaker bound by applying
it in every cell.

e Bound the number of
incidences on the
partition itself.

| -
R

A Problem

» When using polynomial partitioning in R%
with d = 3, how do we handle incidences
on the partition?

> Already in R3 we might get a complicated
surface with many curves fully contained in it.

16
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The Plan

« S, —our partition in R%.
¢ Still need to deal with incidences on the

(d — 1)-dimensional variety S;.

* S, —asecond partition.

° r-partitioning of the points of P N §; but does
not fully contain any components of S;.

The Plan
* S, — our partition in R%,

* 5, —asecond partition.

° r-partitioning of the points of P N S; but does
not fully contain any components of S;.

¢ Still need to deal with incidences on the
(d — 2)-dimensional variety S; N S,.

17
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The Plan

« S, —our partition in R%.

* S, —asecond partition.

° Partitions the points of P N §; but does not
fully contain §;.

* S3 —a third partition.
° r-partitioning of the points of P N §; N S, but

does not fully contain any components of
S1NS,.

Multiple Partitions

e After j partitionings, it remains to deal
with points on a (d — j)-dimensional
variety.

18
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Multiple Partitions

e After j partitionings, it remains to deal
with points on a (d — j)-dimensional
variety.

* Problem. Given an irreducible
(d — j)-dimensional variety V}, find a
polynomial fj,4 so that:
7° fj41 is an r-partitioning for P N V;.
7° fj+1 does not vanish identically on V;.
?° The degree of f; 41 is not too large.

Polynomial Partitioning Theorem

* Theorem (Guth and Katz "10). For every
r > 1 and every set of points in R%, there
exists an r-partitioning polynomial of
degree O (7).

Larry Guth Nets Katz

19
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Bisecting Hyperplanes

» A hyperplane h bisects a finite set A if
each of the open half-spaces defined by h
contains at most ||A]|/2] points of A.

Finding a Polynomial Partition

em = 19 pointsand r = 3.
* Goal. Every cell should contain at most

LEZJ = l? = 2 points.
[

20
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Finding a Polynomial Partition

* Step 1. Bisect the set into two sets, each

. 19 .
with at most l;J = 9 points.

Finding a Polynomial Partition

* Step 2. Bisect each of the two sets into

two subsets, each with at most I%J =4

points.
[ ] o [
o ® [ ]
_.\./
] 1 [
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Finding a Polynomial Partition

* Step 3. Bisect each of the four sets into
. 19

two subsets, each with at most l?] =2

points.

Discrete Ham Sandwich Theorem

« Theorem. Any d finite sets in RY can be
simultaneously bisected by a hyperplane.

(Proved by using the Borsuk—Ulam theorem).

22
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Using Discrete Ham Sandwich

o In R4, we can perform ~ log, d
partitioning steps by using the discrete
ham sandwich theorem.

e Then what?

Proof Qutline

Point sets Py, ... P, € RY.

|

23



The Veronese Map e

* Veronese map vp: R% —» R™ is defined as

u;_u u
VD(xll ---;xd) = (xllxzz “.xdd)uEUD

where
UD = {(ill ,ld)l 1 < il + -+ id < D}

s Consider the map v,: R? - R®:

Vo (xq,X2) = (x12; xzz; X1X2, X1, X2).

Veronese Map + Ham Sandwich

* |f we need to bisect k sets, we choose D
such that the number m of monomials
of degree < D is at least k.

> Every point set P; is mapped to a point set
P/in R™p,

o Ham sandwich theorem: there exists a
hyperplane h ¢ R™P that bisects each P;.

e -

12/6/2016
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Proof Qutline

Point sets P, ... P, € RY,
vp: R4 —» R™D l
Point sets P, ...,P, € R™D,

Ham sandwich in R™p l

Hyperplane h bisects Py, ...,P;, € R™P,

Proof Qutline

Point sets Py, ... P, € RY.

vp: R% - R™D l

Point sets Pj, ...,P, € R™D,

Ham sandwich in R™p

Hyperplane h bisects Pj, ...,P,, € R™D,

vp i R™P — R?
\4
A variety Z(f) of degree < D in R4,

25



Proof Qutline

Point sets P, ... P, € RY,

vp: R4 —» R™D l

Point sets P, ...,P, € R™D,

Ham sandwich in R™D

Hyperplane h bisects Py, ...,P;, € R™P,

vpliR™> - R?
Y
The variety Z(f) of degree < D

bisects Py, ... P, € R4,

Recall: Multiple Partitions

* Problem. Given an irreducible
(d — j)-dimensional variety V; in R?, find
a polynomial f;,4 so that:
7o fj+1 is an r-partitioning for P N V.
7 © fi+1 does not vanish identically on V;.
7 > The degree of f;+1 is not too large.

12/6/2016
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The Quotient Ring

* R[xq, ..., x4]<p — the set of polynomials
in xq, ..., xg of degree < D.
o] = I(V]) —the ideal of polynomials that
vanish on V;.
e I.p —the set of polynomials in I of
degree < D.
R = R[xy, ..., xql<p/I<p

* We consider only polynomials in R.

What We Already Know

* Problem. Given an irreducible
(d — j)-dimensional variety V}, find a
polynomial fj,4 so that:

7° fj+1 is an r-partitioning for P N V;.

v fj+1 does not vanish identically on V;.

7 The degree of f;,4 is not too large.

27
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Quotient Ring + “Veronese” Map

R = R[Xl, "'!xd]SD/ISD

* R is a vector space of dimension mp.
» To bisect Py, ..., P, C V;:

> Choose D such that mp = k.

° by, ...,me — a basis for R.

o Map vE:R? — R™> s defined as

VB @y, s Xg) = (b1 (2), v by ()

Proof Qutline

Point sets P, ... P, ¢ V; ¢ R%.
vE: R - R™D \L

Point sets P;, ... P, € R™P,

Ham sandwich in R™p

Hyperplane h bisects Pj, ... P, € R™P,

(v L:R™> - R4

The variety Z(f) of degree < D
bisects P;,...P, C V.

28
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What We Already Know

* Problem. Given an irreducible
(d — j)-dimensional variety V;, find a
polynomial fj;4 so that:
v'® fj+1 is an r-partitioning for P N V;.
L fj+1 does not vanish identically on V;.
75 The degree of f;,4 is not too large.

The Hilbert Function

Z(x25y12 4 51998 4 3 551811
+39x 1ty + x%y?0 + 3x°y26

29
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The Hilbert Function (really!)

e Anideal I = I(V;) € R[xy, ... xq].
e Hilbert function of ideal I:
h;(D) = dim(R[xy, ... xq4]<p/I<p)

e That is: mp = hI(D) I

And That’s It!

* Problem. Given an irreducible
(d — j)-dimensional variety V}, find a
polynomial fj,4 so that:
Vg fj+1 is an r-partitioning for P N V.
v ° fj+1 does not vanish identically on V;.
v’ The degree of f;+1 is not too large.

30
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Incidences in C?

» Solymosi and Tao "12. The number of
incidences between m points and n lines
in €% is 0(m?/3+¢n2/3 + m + n) for
every € > 0.

> Holds for other types of curves, but under
very strict restrictions.

LA\

o

Jozsef Solymosi Terence Tao

Incidences in C?

e §’, Szabo, and Zahl 16.
> P —set of m points in C?.

o I' — set of n constant-degree polynomial
curves.

> No K, in the incidence graph.
° Any € > 0.
I(P,T)
— 0(ms/(ZS—1)+en(25—2)/(25—1) +m+ n)
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Incidences in C?

e In C? this strategy fails.

> The zero set of a polynomial does not divide
C? into connected components.

e Think of C? as R*.

o

o

The Problem

o We are in R*.
° The partition is a 3-dim variety V.

o We need to handle the incidences between
points and 2-dim varieties inside of V.

32
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The Cauchy-Riemann Equations

» Consider the complex coordinates
zy = X1 + iy and z, = xy + iy,.

* For f € C[zy, z,] write f = u + iv where
u, v € R[xy, 4, X2, ¥2]-

* u and v satisfy the Cauchy-Riemann

equations if

0u_6v 0u_ v k € (1.2)
axy - Ayi’ Yk - dxy T

The Problem

o We are in R*.
° The partition is a 3-dim variety V.

o We need to handle the incidences between
points and 2-dim varieties inside of V.

* By the Cauchy-Riemann equations:

° For a generic point p € V, there is a 2-dim
plane Il such that every 2-dim variety that is
incident to p has II as its tangent plane at p.

33
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Completing the Proof Sketch

o We are in R*.
° The partition is a 3-dim variety V.

° For a generic point p € V, thereis a 2-dim
plane Il associated with it.

* Finding a 2-dim variety in V that is
incident to p is an initial value problem.

A Foliation

e Intuitively, the relevant parts of the
partition are foliated:

34



T HE
EN (P



