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The question

I Several problems coming from physics and approximation
theory lead to minimizing, with N large

HN(x1, . . . , xN) =
∑
i 6=j

w(xi−xj)+N
N∑
i=1

V (xi ) xi ∈ Rd , d ≥ 1

I interaction potential

w(x) = − log |x | with d = 1, 2 (log gas)

or w(x) =
1

|x |s
max(0, d − 2) ≤ s < d (Riesz)

I includes Coulomb: s = d − 2 for d ≥ 3, w(x) = − log |x | for
d = 2.

I V confining potential, sufficiently smooth and growing at
infinity
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Numerical minimization of HN for w(x) = − log |x |,
V (x) = |x |2 (Gueron-Shafrir), N = 29



Motivation 1: Fekete points

I In logarithmic case minimizers are maximizers of∏
i<j

|xi − xj |
N∏
i=1

e−N
V
2

(xi )

→ weighted Fekete sets (approximation theory) Saff-Totik,
Rakhmanov-Saff-Zhou

I Fekete points on spheres and other closed manifolds
Borodachev-Hardin-Saff, Brauchart-Dragnev-Saff

min
x1,...,xN∈M

−
∑
i 6=j

log |xi − xj |

Smale’s 7th problem originating in computational complexity
theory

I Riesz s-energy

min
x1...xN∈M

∑
i 6=j

1

|xi − xj |s



Minimal s-energy points on a torus, s = 0, 1, 0.8, 2
(from Rob Womersley’s webpage)



Motivation 2: Condensed matter physics

I Vortices in the Ginzburg-Landau model of superconductivity,
in superfluids and Bose-Einstein condensates

I Ohta-Kawasaki model of diblock copolymers

Figure: The Meissner effect in superconductors
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Patterns

Figure: Abrikosov lattices in superconductors
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Figure: Simulation of the Ohta-Kawasaki energy



The Ginzburg-Landau model

Gε(ψ,A) =
1

2

ˆ
Ω
|∇Aψ|2 + |curlA− hex|2 +

(1− |ψ|2)2

2ε2

I Ω= 2D domain

I A=gauge, ψ= complex-valued “wave function”

I vortices = zeroes of ψ, with winding number

I hex=intensity of applied field

I ε= material parameter, taken → 0.

We showed (Sandier-S) that the minimization of Gε essentially
leads to a Coulomb interaction between the vortices, acting as
quantized charges, like HN for d = 2.
Cf. Bethuel-Brezis-Hélein in simplified Ginzburg-Landau functional
(with fixed bounded number of vortices).



Motivation 3: Statistical mechanics

With temperature: Gibbs measure

dPn,β(x1, · · · , xN) =
1

Zn,β
e−

β
2
HN(x1,...,xN)dx1 . . . dxN xi ∈ Rd

Zn,β partition function

I d = 1, 2, w = − log |x |:

dPn,β(x1, · · · , xN) =
1

Zn,β

(∏
i<j

|xi−xj |
)β

e−
Nβ

2

∑N
i=1 V (xi )dx1 . . . dxN

β = 2 determinantal processes
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Corresponds to random matrix models (first noticed by Wigner,
Dyson):

I GUE (= law of eigenvalues of Hermitian matrices with
complex Gaussian i.i.d. entries)
↔ d = 1, β = 2, V (x) = x2/2.

I GOE (real symmetric matrices with Gaussian i.i.d. entries)
↔ d = 1, β = 1, V (x) = x2/2.

I Ginibre ensemble (matrices with complex Gaussian i.i.d.
entries)
↔ d = 2, β = 2, V (x) = |x |2.

Also connection with “two-component plasma”, XY model,
sine-Gordon model and Kosterlitz-Thouless phase transition.



The leading order to minHN (or “mean field limit”)
I Assume V →∞ at ∞ (faster than log |x | in the log cases).

For (x1, . . . , xN) minimizing

HN =
∑
i 6=j

w(xi − xj) + N
N∑
i=1

V (xi )

one has (Choquet)

lim
N→∞

∑N
i=1 δxi
N

= µV lim
N→∞

min HN

N2
= E(µV )

where µV is the unique minimizer of

E(µ) =

ˆ
Rd×Rd

w(x − y) dµ(x) dµ(y) +

ˆ
Rd

V (x) dµ(x).

among probability measures.
I E has a unique minimizer µV among probability measures,

called the equilibrium measure (potential theory) Frostman
30’s



I Denote Σ = Supp(µV ). We assume Σ is compact with C 1

boundary and if d ≥ 2 that µV has a density which is
C 0,β(Σ), bounded above, and behaves like c dist(x ,Σ)α for
some α ≥ 0 near ∂Σ.

I Example: V (x) = |x |2, Coulomb case, then µV = 1
cd
1B1

(circle law).

I Example d = 1, w = − log |x |, V (x) = x2 then
µV = 1

2π

√
4− x21|x |<2 (semi-circle law)



A 2D log gas for V (x) = |x |2

Figure: β = 400 and β = 5



Leading order LDP

Theorem

The push-forward of Pn,β by (x1, . . . , xN) 7→ 1
N

∑N
i=1 δxi satisfies a

Large Deviation Principle at speed N2 and good rate function

β

2
(E − E(µV )).

In other words

Pn,β

(
1

N

N∑
i=1

δxi ∈ A

)
' e−βN

2(infA E−min E)).

 the Gibbs measure concentrates near µV
Petz-Hiai, Ben Arous - Guionnet, Ben Arous - Zeitouni,
Chafai-Gozlan-Zitt...



Questions

Fluctuations

In what sense does 1
N

∑N
i=1 δxi ≈ µV ?

I At small scales (O(1)→ O(N−1/d+ε))?

I Deviations bounds?

I Central limit theorem?

Microscopic behavior

Zoom into the system by N1/d → infinite point configuration.

I What does it look like? What quantities can describe the
point configurations?

I How does the picture depend on β? On V ?



Blow-up procedure

I blow-up the configurations at scale (µV (x)N)1/d

I define interaction energy W for infinite configurations of
points in whole space

I the total energy is the integral or average of W over all
blow-up centers in Σ.



The energy method: expanding the Hamiltonian

Explicit splitting formula

∑
i 6=j

w(xi − xj) =

¨
4c

w(x − y)(
∑
i

δxi )(x)(
∑
i

δxi )(y)

=

ˆ
w∗(NµV )(NµV )+

ˆ
w∗(

∑
i

δxi−NµV )(
∑
i

δxi−NµV )+ cross terms

I compute the energy via the potential

hN = w ∗

(∑
i

δxi − NµV

)



The renormalized energy

Sandier-S, Rougerie-S, Petrache-S
At the limit N →∞ and after blow-up, in Coulomb cases

−∆h = C − 1 C =
∑
p∈C

δp

W(C) := lim inf
R→∞

1

Rd

ˆ
KR

|∇h|2

Roughly

W(C) ' lim inf
R→∞

1

Rd

[¨
KR×KR\4

w(x − y) (dC(x)− dx) (dC(y)− dy)

]

Borodin-S, Leblé



Main result on the energy

I Given a configuration (x1, . . . , xN), we examine the blow-up
point configurations {(µV (x)N)1/d(xi − x)} and their infinite
limits C. Averaging near the blow-up center x yields a “point
process” Px = probability law on infinite point configurations.
P = “tagged point process”, probability on Σ× configs. The
limits will all be stationary. We define

W(P) :=

ˆ
Σ

ˆ
W(C)dPx(C)dx

I The main result is

HN(x1, . . . , xN) ∼ N2E(µV )−N

d
log N + N1+s/dW(P)

Sandier-S, Rougerie-S, Petrache-S
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I Consequently, if (x1, . . . , xN) is a minimizer of HN , after
blow-up at scale (µV (x)N)1/d around a point x ∈ Σ, for a.e.
x ∈ Σ, the limiting infinite configuration as N →∞ minimizes
W + next order expansion of the minimal energy.

I For minimizers, points are separated by C
(N‖µV ‖∞)1/d and there

is uniform distribution of points and energy (rigidity result)
Petrache-S, Rota Nodari-S

I Let (ψε,Aε) minimize the Ginzburg-Landau energy Gε. In the
suitable regime of (ε, hex), after blow-up at scale

√
hex near x

in the sample, the limit as ε→ 0 of the point vortices is an
infinite point configuration which for a.e. x , minimizes W
Sandier-S

I Similar result for the “Ohta-Kawasaki model” of diblock
copolymers Goldman-Muratov-S.



Partial minimization results

I In dimension d = 1, the minimum of W over all possible
configurations is achieved for the lattice Z (“clock
distribution”).

I In dimension d = 2, the minimum of W over perfect lattice
configurations (Bravais lattices) with fixed volume is achieved
uniquely, modulo rotations, by the triangular lattice (modulo
rotations).
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The proof relies on

Theorem (Cassels, Rankin, Ennola, Diananda, 50’s)

For s > 2, the Epstein zeta function of a lattice Λ in R2:

ζ(s) =
∑

p∈Λ\{0}

1

|p|s

is uniquely minimized among lattices of volume one, by the
triangular lattice (modulo rotations).

There is no corresponding result in higher dimension except for
dimensions 8 and 24 (E8 and Leech lattices)
In dimension 3, does the BCC (body centered cubic) lattice play
this role?
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Conjecture

In dimension 2, the triangular lattice is a global minimizer of W.

I this conjecture was made in the context of vortices in the GL
model, which form triangular Abrikosov lattices

I Bétermin-Sandier show that this conjecture is equivalent to a
conjecture of Brauchart-Hardin-Saff on the order n term in
the expansion of the minimal logarithmic energy on S2.



Large deviations principle

Recall

dPn,β(x1, · · · , xN) =
1

Zn,β
e−

β
2
N−

s
d HN(x1,...,xN)dx1 . . . dxN xi ∈ Rd

I insert next-order expansion of HN and combine it with an
estimate for the volume in phase-space occupied by a
neighborhood of a given limiting tagged point process P



Theorem (Leblé-S, ’15)

We have a Large Deviation Principle at speed N with good rate
function β(Fβ − inf Fβ), i.e.

Pn,β(P) ' exp (−βN (Fβ(P)− inf Fβ))

 the Gibbs measure concentrates on minimizers of Fβ.
Here,

Fβ(P) :=
1

2
W(P) +

1

β

ˆ
Σ

ent[Px |Π] dx ,

ent[P|Π] := lim
R→∞

1

|KR |
Ent (PKR

|ΠKR
) specific relative entropy

and Π is the Poisson point process of intensity 1.



Interpretation

I Three regimes
I β � 1 crystallization expected
I β � 1 entropy dominates  Poisson process
I β ∝ 1 intermediate, no crystallization expected

I In 1D log case the limiting process is “sine-β” (Valko-Virag)
and must minimize 1

2W + 1
β ent(·|Π), same for the Ginibre

point process in 2D log case β = 2.

I The cristallization result is complete in 1D (uses uniqueness
result of Leblé).

I In 2D log case: local version of the result at any mesoscale
Leblé

I Generalization to the 2D ”two component plasma”
Leblé-S-Zeitouni



A CLT for fluctuations of the 2D Coulomb Gas

Theorem (Leblé-S)

Assume d = 2, w = − log, β > 0 arbitrary, and the previous
assumptions on regularity of µV and ∂Σ. Let f ∈ C 3,1

c (R2). The
law of

N∑
i=1

f (xi )− N

ˆ
Σ

f dµV

converges as N →∞ to a Gaussian distribution with

mean =
1

2π
(

1

β
−1

4
)

ˆ
∆f (1Σ+log ∆V )Σ) var=

1

2πβ

ˆ
Σ
|∇f Σ|2

where f Σ= harmonic extension of f outside Σ.
 
∑N

i=1 δxi − NµV converges to the Gaussian Free Field.
The result can be localized with f supported on any mesoscale
N−α, α < 1

2 .



Previous results

I 2D log case
I Rider-Virag same result for β = 2, V (x) = |x |2
I Ameur-Hedenmalm-Makarov same result for β = 2, V ∈ C∞

and analyticity in case the support of f intersects ∂Σ
I suboptimal bounds (in Nε, but with quantified error in

probability), including at mesoscale, on ‖
∑N

i=1 δxi − NµV ‖
Sandier-S, Leblé, Bauerschmidt-Bourgade-Nikkula-Yau

I simultaneous result by Bauerschmidt-Bourgade-Nikkula-Yau
for f ∈ C 4

c (Σ)

I 1D log case
I Johansson 1-cut, V polynomial
I Borot-Guionnet, Shcherbina 1-cut and V , ξ locally analytic,

multi-cut and V analytic
I universality in V of local statistics Bourgade-Erdös-Yau



Questions

I Crystallization: identify minimizers of W or of other
interesting interaction energies

I Crystallization: understand rate of decay of ρ2

I Universality in V of local statistics, as in 1D

I Extend the CLT to higher dimensions and Riesz cases

I Prove more results on the two-component case: CLT?
Kosterlitz-Thouless phase transition?



THANK YOU FOR YOUR ATTENTION!


