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The question

» Several problems coming from physics and approximation
theory lead to minimizing, with N large

N

Hy(x1, ..., xn) = ZW(X,‘—XJ')—I—NZ V(xi) x; € R d>1
i£j i=1

» interaction potential

w(x) = —log|x| withd =1,2 (log gas)

or w(x) max(0,d —2) <s < d (Riesz)

G

» includes Coulomb: s =d — 2 for d > 3, w(x) = — log|x| for
d=2.
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w(x) = —log|x| withd =1,2 (log gas)

or w(x)= xF max(0,d —2) <s < d (Riesz)
» includes Coulomb: s =d — 2 for d > 3, w(x) = — log|x| for
d=2.

» V confining potential, sufficiently smooth and growing at
infinity



—log ],

Numerical minimization of Hy for w(x) =
=29

V(x) = |x|? (Gueron-Shafrir), N



Motivation 1: Fekete points

» In logarithmic case minimizers are maximizers of

N
[T b =/ [[e 2™
i<j i=1
— weighted Fekete sets (approximation theory) Saff-Totik,
Rakhmanov-Saff-Zhou
» Fekete points on spheres and other closed manifolds
Borodachev-Hardin-Saff, Brauchart-Dragnev-Saff

min  — log |x; — x;
M Z g [xi — xjl

X150y XNE i
Smale's 7th problem originating in computational complexity
theory
» Riesz s-energy
min 1
X1...XyEM Iy ‘X,‘ —Xj’5

#J



Minimal s-energy points on a torus, s =0,1,0.8,2

(from Rob Womersley's webpage) =



Motivation 2: Condensed matter physics

» Vortices in the Ginzburg-Landau model of superconductivity,
in superfluids and Bose-Einstein condensates

» Ohta-Kawasaki model of diblock copolymers
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» Vortices in the Ginzburg-Landau model of superconductivity,
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» Ohta-Kawasaki model of diblock copolymers

Figure: The Meissner effect in superconductors




Patterns




The Ginzburg-Landau model

1 2 2 (1= [9?)?
G0, A) = 5 [ V4P + fourl A= b+ S 5
Q= 2D domain

A=gauge, 1= complex-valued "wave function”

v

v

» vortices = zeroes of 1, with winding number
» hex=intensity of applied field

» = material parameter, taken — 0.

We showed (Sandier-S) that the minimization of G, essentially
leads to a Coulomb interaction between the vortices, acting as
quantized charges, like Hy for d = 2.

Cf. Bethuel-Brezis-Hélein in simplified Ginzburg-Landau functional
(with fixed bounded number of vortices).



Motivation 3: Statistical mechanics

With temperature: Gibbs measure

1 ‘
dPnﬁ(Xl, ce ,XN) = 7 ; engN(lewa)Xm ..odxy Xj € R
n,

Z, g partition function



Motivation 3: Statistical mechanics

With temperature: Gibbs measure

1 £
dP, g(x1, -, xn) = Z0s engN(Xl"“’X’V)dxl .. .dxy
n,

Z, g partition function

» d=1,2, w=—log|x]:

1
dP, g(x1, -+ ,xn) = Zos
n, i<j

8 = 2 ~» determinantal processes

X,'ERd

(H |Xi—Xj|>Be_NTB ~h VO dxy ... dxy



Corresponds to random matrix models (first noticed by Wigner,
Dyson):

» GUE (= law of eigenvalues of Hermitian matrices with
complex Gaussian i.i.d. entries)
< d=1,8=2 V(x)=x2/2.

» GOE (real symmetric matrices with Gaussian i.i.d. entries)
~d=1, =1, V(x)=x%/2.

» Ginibre ensemble (matrices with complex Gaussian i.i.d.

entries)
o d=2 =2, V(x)=|x]

Also connection with “two-component plasma”, XY model,
sine-Gordon model and Kosterlitz-Thouless phase transition.



The leading order to min Hy (or “mean field limit")

» Assume V — oo at oo (faster than log |x| in the log cases).

For (x1,...,xn) minimizing
N
Hy = Z w(x; — xj) + NZ V()
i#j i=1
one has (Choquet)
D B . minHy
WM SN v im e = S

where py/ is the unique minimizer of

&G0 = [ wlx=y)dp()duty) + [ V) du(x).

among probability measures.
» & has a unique minimizer py, among probability measures,

called the equilibrium measure (potential theory) Frostman
30's



» Denote ¥ = Supp(uy). We assume ¥ is compact with C?
boundary and if d > 2 that puy has a density which is
CY98(X), bounded above, and behaves like cdist(x, )* for
some o > 0 near OX.

» Example: V/(x) = |x|?, Coulomb case, then s = Cid]l,g1
(circle law).

» Example d =1, w = —log|x|, V(x) = x? then
1ty = 5=/4 = x?1 > (semi-circle law)



A 2D log gas for V(x) = |x|?

Figure: 3 =400 and =5



Leading order LDP

Theorem
The push-forward of P, 3 by (x1,...,xn) — % Z,N:l Jy, satisfies a
Large Deviation Principle at speed N? and good rate function

B

5(5—5(Mv))'

In other words

N
1 _ .
Pnp (N E 0x; € A) ~ e BN*(infa€—min&))

i=1

~» the Gibbs measure concentrates near uy
Petz-Hiai, Ben Arous - Guionnet, Ben Arous - Zeitouni,
Chafai-Gozlan-Zitt...



Questions

Fluctuations

In what sense does % Z,N:l Ox; & py?
» At small scales (O(1) — O(N~1/9+2))?
» Deviations bounds?

» Central limit theorem?

Microscopic behavior

Zoom into the system by N/9 — infinite point configuration.

» What does it look like? What quantities can describe the
point configurations?

» How does the picture depend on 57 On V?



Blow-up procedure

» blow-up the configurations at scale (p/(x)N)Y9

» define interaction energy W for infinite configurations of
points in whole space

» the total energy is the integral or average of W over all
blow-up centers in .



The energy method: expanding the Hamiltonian

Explicit splitting formula

w(x — 95 )(x)(Q_ 0x)(¥)
Dot 9) = ] vt N
1£) 1
:/W*(Nuv (Npy) /W* g Ox. —Npv)( E dx;—Npy)+ cross term

» compute the energy via the potential

hy = w % (Z(Sxi — N,uv>



The renormalized energy

Sandier-S, Rougerie-S, Petrache-S
At the limit N — oo and after blow-up, in Coulomb cases

—Ah=C-1 C=) 6

peC

o1
W(C) = I!in)lQOfRd/K |V h|?
R

Roughly

R—o0

NP |
W(C) ~ lim |nfﬁ [//KRxKR\A w(x — y) (dC(x) — dx) (dC(y) — dy)

Borodin-S, Leblé



Main result on the energy

» Given a configuration (xi,...,xy), we examine the blow-up
point configurations {(uy(x)N)Y9(x; — x)} and their infinite
limits C. Averaging near the blow-up center x yields a “point
process’ P* = probability law on infinite point configurations.
P = “tagged point process”, probability on ¥ x configs. The
limits will all be stationary. We define

W(P) = /z / W(C)dP*(C)dx



Main result on the energy

» Given a configuration (x1,...,xn), we examine the blow-up
point configurations {(uy(x)N)Y9(x; — x)} and their infinite
limits C. Averaging near the blow-up center x yields a “point
process’ P* = probability law on infinite point configurations.
P = “tagged point process”, probability on ¥ x configs. The
limits will all be stationary. We define

W(P) = /z / W(C)dP*(C)dx

» The main result is
N .
Hn(xa o) ~ N2E(uy)— log N + NI4T (P)

Sandier-S, Rougerie-S, Petrache-S



Consequently, if (x1,...,xy) is @ minimizer of Hy, after
blow-up at scale (y(x)N)Y/¢ around a point x € X, for a.e.
x € X, the limiting infinite configuration as N — oo minimizes
W + next order expansion of the minimal energy.

For minimizers, points are separated by E and there

c
o L : (Wllpy lloc )"
is uniform distribution of points and energy (rigidity result)

Petrache-S, Rota Nodari-S

Let (¢, A-) minimize the Ginzburg-Landau energy G.. In the
suitable regime of (g, hey), after blow-up at scale \/hex near x
in the sample, the limit as € — 0 of the point vortices is an
infinite point configuration which for a.e. x, minimizes W
Sandier-S

Similar result for the “Ohta-Kawasaki model” of diblock
copolymers Goldman-Muratov-S.



Partial minimization results

» In dimension d = 1, the minimum of W over all possible
configurations is achieved for the lattice Z (“clock
distribution”).



Partial minimization results

» In dimension d = 1, the minimum of W over all possible
configurations is achieved for the lattice Z (“clock
distribution”).

» In dimension d = 2, the minimum of W over perfect lattice
configurations (Bravais lattices) with fixed volume is achieved
uniquely, modulo rotations, by the triangular lattice (modulo
rotations).

R2e © o o o
e o o o o
e o 0o o o o
e o o o o
e o o o o o
e o o o o



The proof relies on

Theorem (Cassels, Rankin, Ennola, Diananda, 50's)

For s > 2, the Epstein zeta function of a lattice A\ in R?:

()= 3 =

penvioy P

is uniquely minimized among lattices of volume one, by the
triangular lattice (modulo rotations).



The proof relies on
Theorem (Cassels, Rankin, Ennola, Diananda, 50's)
For s > 2, the Epstein zeta function of a lattice \ in R?:

1
G)= > 1F

peA\{0}

is uniquely minimized among lattices of volume one, by the
triangular lattice (modulo rotations).

There is no corresponding result in higher dimension except for
dimensions 8 and 24 (Eg and Leech lattices)

In dimension 3, does the BCC (body centered cubic) lattice play
this role?




Conjecture

In dimension 2, the triangular lattice is a global minimizer of W.

» this conjecture was made in the context of vortices in the GL
model, which form triangular Abrikosov lattices

» Bétermin-Sandier show that this conjecture is equivalent to a
conjecture of Brauchart-Hardin-Saff on the order n term in
the expansion of the minimal logarithmic energy on S2.



Large deviations principle

1 BN—F
dPpg(x1, -+, xn) = e 2N AN oW gy dxy x € RY

» insert next-order expansion of Hy and combine it with an
estimate for the volume in phase-space occupied by a
neighborhood of a given limiting tagged point process P



Theorem (Leblé-S, '15)

We have a Large Deviation Principle at speed N with good rate
function B(Fpg — inf Fp), ie.

Png(P) ~ exp (=8N (F5(P) — inf F3))

~ the Gibbs measure concentrates on minimizers of Fg.

Here,
Fp(P) =

1 1 ;
EW(P) I 5/Zent[P |M] dx,

ent[P|M] := Rlim KAl
— 00 R

Ent (Pk.|Mk,) specific relative entropy

and 1 is the Poisson point process of intensity 1.



Interpretation

» Three regimes
» 3> 1 crystallization expected
» [ < 1 entropy dominates ~~ Poisson process
» [ o 1 intermediate, no crystallization expected
» In 1D log case the limiting process is “sine-/3" (Valko-Virag)
and must minimize 3W + %ent(~\|’|), same for the Ginibre
point process in 2D log case g = 2.

» The cristallization result is complete in 1D (uses uniqueness
result of Leblé).

» In 2D log case: local version of the result at any mesoscale
Leblé

» Generalization to the 2D "two component plasma”
Leblé-S-Zeitouni



A CLT for fluctuations of the 2D Coulomb Gas

Theorem (Leblé-S)

Assume d =2, w = —log, 8 > 0 arbitrary, and the previous
assumptions on regularity of iy and OX. Let f € C2*(R?). The
law of N

Zf(XI)N/ZdeV

i=1

converges as N — oo to a Gaussian distribution with

1 1
mean = % B_Z /Af Ts+log AV)*) var= 2775/2|sz’2

where f== harmonic extension of f outside ¥.
~ Z i—1 0x; — Ny converges to the Gaussian Free Field.
The result can be localized with f supported on any mesoscale
N~ 3
o< 5



Previous results

» 2D log case
» Rider-Virag same result for 3 =2, V(x) = |x|?
» Ameur-Hedenmalm-Makarov same result for 5 =2, V € C*
and analyticity in case the support of f intersects 0L
» suboptimal bounds (in N¢, but with quantified error in
probability), including at mesoscale, on || vazl 0, — Npy ||
Sandier-S, Leblé, Bauerschmidt-Bourgade-Nikkula-Yau
» simultaneous result by Bauerschmidt-Bourgade-Nikkula-Yau
for f € CX(X)
» 1D log case
» Johansson 1-cut, V polynomial
» Borot-Guionnet, Shcherbina 1-cut and V/, ¢ locally analytic,

multi-cut and V analytic
» universality in V of local statistics Bourgade-Erdds-Yau



Questions

» Crystallization: identify minimizers of W or of other
interesting interaction energies

» Crystallization: understand rate of decay of p»
» Universality in V of local statistics, as in 1D
» Extend the CLT to higher dimensions and Riesz cases

» Prove more results on the two-component case: CLT?
Kosterlitz-Thouless phase transition?



THANK YOU FOR YOUR ATTENTION!



