Cocenter of Hecke algebras

Xuhua He

University of Maryland

Stony Brook, 10/13/2016

Xuhua He (UMD)

Let G be a finite group, e.g. $GL_n(\mathbb{F}_p)$. Number of (ordinary) irr. repr. =number of conjugacy classes. Reformulation:

- LHS=rank of R(G), the Grothendieck group of fin. dim repr.
- RHS=dim of the cocenter C[G] := C[G]/[C[G], C[G]]. Here the cocenter has a standard basis {O}, where O runs over Cl(G).

And a natural duality $Tr: \overline{\mathbb{C}[G]} \to R(G)^*$, $g \mapsto (V \mapsto Tr(g, V))$.

Let G be a finite group, e.g. $GL_n(\mathbb{F}_p)$. Number of (ordinary) irr. repr. =number of conjugacy classes. Reformulation:

- LHS=rank of R(G), the Grothendieck group of fin. dim repr.
- RHS=dim of the cocenter C[G] := C[G]/[C[G], C[G]]. Here the cocenter has a standard basis {𝔅}, where 𝔅 runs over Cl(G).

And a natural duality $Tr: \overline{\mathbb{C}[G]} \to R(G)^*$, $g \mapsto (V \mapsto Tr(g, V))$.

Modular representations: : \sharp irr. repr./ $\overline{\mathbb{F}_{I}} = \sharp$ *I*-regular conjugacy classes.

Let G be a finite group, e.g. $GL_n(\mathbb{F}_p)$. Number of (ordinary) irr. repr. =number of conjugacy classes. Reformulation:

- LHS=rank of R(G), the Grothendieck group of fin. dim repr.

And a natural duality $Tr: \overline{\mathbb{C}[G]} \to R(G)^*$, $g \mapsto (V \mapsto Tr(g, V))$.

Modular representations: : \sharp irr. repr./ $\overline{\mathbb{F}_{I}} = \sharp$ *I*-regular conjugacy classes. $Tr : \overline{\mathbb{F}_{I}[G]} \to R(G)^{*}$ is surjective, but not injective in general. The kernel is spanned by $\{\mathcal{O}\} - \{\mathcal{O}'\}$, where \mathcal{O}' is the *I*-regular conj. class associated to \mathcal{O} .

Let G be a finite group, e.g. $GL_n(\mathbb{F}_p)$. Number of (ordinary) irr. repr. =number of conjugacy classes. Reformulation:

- LHS=rank of R(G), the Grothendieck group of fin. dim repr.

And a natural duality $Tr: \overline{\mathbb{C}[G]} \to R(G)^*$, $g \mapsto (V \mapsto Tr(g, V))$.

Modular representations: : \sharp irr. repr./ $\overline{\mathbb{F}_{I}} = \sharp$ *l*-regular conjugacy classes. $Tr: \overline{\mathbb{F}_{I}[G]} \to R(G)^{*}$ is surjective, but not injective in general. The kernel is spanned by $\{\mathcal{O}\} - \{\mathcal{O}'\}$, where \mathcal{O}' is the *l*-regular conj. class associated to \mathcal{O} .

p-adic groups

- We are interested in "nice" representations that are
 - smooth, i.e., every point in the representation has open stabilizer
 - admissible, i.e., the fixed point of every open compact subgroup is finite dimensional

- We are interested in "nice" representations that are
 - smooth, i.e., every point in the representation has open stabilizer
 - admissible, i.e., the fixed point of every open compact subgroup is finite dimensional
- We do not consider the group algebra, but the Hecke algebra H, the algebra consisting of the $\mathbb{Z}[p^{-1}]$ -valued functions on G that are

- We are interested in "nice" representations that are
 - smooth, i.e., every point in the representation has open stabilizer
 - admissible, i.e., the fixed point of every open compact subgroup is finite dimensional
- We do not consider the group algebra, but the Hecke algebra H, the algebra consisting of the $\mathbb{Z}[p^{-1}]$ -valued functions on G that are
 - locally constant, which corresponds to the smoothness of representations
 - compactly supported, so that the (convolution) product of any two functions in *H* makes sense

- We are interested in "nice" representations that are
 - smooth, i.e., every point in the representation has open stabilizer
 - admissible, i.e., the fixed point of every open compact subgroup is finite dimensional
- We do not consider the group algebra, but the Hecke algebra H, the algebra consisting of the $\mathbb{Z}[p^{-1}]$ -valued functions on G that are
 - locally constant, which corresponds to the smoothness of representations
 - compactly supported, so that the (convolution) product of any two functions in *H* makes sense

 Ordinary and modular representations/alg. closed field of char. ≠ p: Smooth, admissible repr of G(F) ↔ repr of H of finite length.

[Bernstein-Deligne-Kazhdan '86] for complex representations, the cocenter \overline{H} and the representation R(H) are dual to each other.

 Ordinary and modular representations/alg. closed field of char. ≠ p: Smooth, admissible repr of G(F) ↔ repr of H of finite length.
[Bernstein-Deligne-Kazhdan '86] for complex representations, the cocenter H and the representation R(H) are dual to each other.
Our Goal: to understand the cocenter of H, and then use the trace

map $Tr: \overline{H} \to R(H)^*$ to obtain information on representations of G.

- Ordinary and modular representations/alg. closed field of char. ≠ p: Smooth, admissible repr of G(F) ↔ repr of H of finite length.
 [Bernstein-Deligne-Kazhdan '86] for complex representations, the cocenter H
 and the representation R(H) are dual to each other.
 Our Goal: to understand the cocenter of H, and then use the trace map Tr: H
 → R(H)* to obtain information on representations of G.
- Mod-p repr of G(F) <??? → of pro-p lwahori-Hecke algebra The relation is still mysterious. But the right hand side is now well-understood according to Vignéras and H.-Nie.

- Ordinary and modular representations/alg. closed field of char. ≠ p: Smooth, admissible repr of G(F) ↔ repr of H of finite length.
 [Bernstein-Deligne-Kazhdan '86] for complex representations, the cocenter H
 and the representation R(H) are dual to each other.
 Our Goal: to understand the cocenter of H, and then use the trace map Tr: H
 → R(H)* to obtain information on representations of G.
- Mod-p repr of G(F) <??? of pro-p lwahori-Hecke algebra The relation is still mysterious. But the right hand side is now well-understood according to Vignéras and H.-Nie.

One may also consider the twisted version coming from twisted endoscopy.

Here θ is an automorphism of G and ω is a character of G. We are interested in

- ω -representations of G, i.e. smooth admissible representations π of G such that $\pi^{\theta} = \pi \circ \theta$ is isomorphism $\omega \otimes \pi$.
- The twisted cocenter $\overline{H} = H/\langle f {}^{\times}f \rangle$, where $f \in H, x, g \in G$ and ${}^{\times}f(g) = \omega(x)f(x^{-1}g\theta(x))$.
- The twisted trace map Tr(f ∘ A, π), where A is a given isomorphism from ω ⊗ π to π^θ.

One may also consider the twisted version coming from twisted endoscopy. Here θ is an automorphism of G and ω is a character of G. We are interested in

- ω-representations of G, i.e. smooth admissible representations π of G such that π^θ = π ∘ θ is isomorphism ω ⊗ π.
- The twisted cocenter $\overline{H} = H/\langle f {}^{\times}f \rangle$, where $f \in H, x, g \in G$ and ${}^{\times}f(g) = \omega(x)f(x^{-1}g\theta(x))$.
- The twisted trace map Tr(f ∘ A, π), where A is a given isomorphism from ω ⊗ π to π^θ.

Difficulties to understand cocenter

For the group algebra of G, we have

- For any conjugacy class \mathcal{O} of G, and $g, g' \in \mathcal{O}$. The image of g and g' in the cocenter are the same.
- The cocenter has a standard basis {[g_O]}. Here O runs over all the conjugacy classes of G and g_O is a representative of O.

Such a simple and nice description does not apply to the Hecke algebra. The reason basically comes from the "locally constant" condition. Because of it, we are not able to separate a single conjugacy class from the others.

Difficulties to understand cocenter

For the group algebra of G, we have

- For any conjugacy class \mathcal{O} of G, and $g, g' \in \mathcal{O}$. The image of g and g' in the cocenter are the same.
- The cocenter has a standard basis {[g_O]}. Here O runs over all the conjugacy classes of G and g_O is a representative of O.

Such a simple and nice description does not apply to the Hecke algebra. The reason basically comes from the "locally constant" condition. Because of it, we are not able to separate a single conjugacy class from the others.

Another major difficulty is that dim $\overline{H} = \infty$, which makes the connection of cocenter with representations complicated. We cannot just count the numbers as we did for finite groups.

Difficulties to understand cocenter

For the group algebra of G, we have

- For any conjugacy class \mathcal{O} of G, and $g, g' \in \mathcal{O}$. The image of g and g' in the cocenter are the same.
- The cocenter has a standard basis {[g_O]}. Here O runs over all the conjugacy classes of G and g_O is a representative of O.

Such a simple and nice description does not apply to the Hecke algebra. The reason basically comes from the "locally constant" condition. Because of it, we are not able to separate a single conjugacy class from the others.

Another major difficulty is that dim $\overline{H} = \infty$, which makes the connection of cocenter with representations complicated. We cannot just count the numbers as we did for finite groups.

- F a nonarchimedean local field of arbitrary characteristic
- \breve{F} the completion of its maximal unramified extension
- $\sigma \in Gal(\breve{F}/F)$ the Frobenius map
- $G = G(\breve{F})^{\sigma}$

- F a nonarchimedean local field of arbitrary characteristic
- \check{F} the completion of its maximal unramified extension
- $\sigma \in Gal(\breve{F}/F)$ the Frobenius map
- $G = G(\breve{F})^{\sigma}$

The σ -twisted conjugacy classes of $G(\breve{F})$ is classified by Kottwitz. Roughly speaking, a σ -conjugacy class is determined by the Newton point.

- F a nonarchimedean local field of arbitrary characteristic
- \check{F} the completion of its maximal unramified extension
- $\sigma \in Gal(\breve{F}/F)$ the Frobenius map

•
$$G = G(\breve{F})^{\sigma}$$

The σ -twisted conjugacy classes of $G(\breve{F})$ is classified by Kottwitz. Roughly speaking, a σ -conjugacy class is determined by the Newton point.

E.g. If $G = GL_n$, then the Newton points are $(a_1, \dots, a_n) \in \mathbb{Q}^n$ with

- The dominance condition: $a_1 \ge a_2 \ge \cdots \ge a_n$;
- The integrality condition: for any $r \in \mathbb{Q}$, $r \not| \{i; a_i = r\} \in \mathbb{Z}$.

- F a nonarchimedean local field of arbitrary characteristic
- \check{F} the completion of its maximal unramified extension
- $\sigma \in Gal(\breve{F}/F)$ the Frobenius map

•
$$G = G(\breve{F})^{\sigma}$$

The σ -twisted conjugacy classes of $G(\breve{F})$ is classified by Kottwitz.

Roughly speaking, a $\sigma\text{-conjugacy class}$ is determined by the Newton point.

E.g. If $G = GL_n$, then the Newton points are $(a_1, \dots, a_n) \in \mathbb{Q}^n$ with

- The dominance condition: $a_1 \ge a_2 \ge \cdots \ge a_n$;
- The integrality condition: for any $r \in \mathbb{Q}$, $r \not| \{i; a_i = r\} \in \mathbb{Z}$.

We then have $G(\breve{F}) = \bigsqcup_{\nu} [b_{\nu}]$, the Newton stratification. For split groups, we define $G(\nu) = G \cap [b_{\nu}]$. Then

 $G=\sqcup_\nu G(\nu).$

S It also works for quasi-split groups under some modification, but not for non quasi-split groups as the special vertex of buildings over F and over \breve{F} do not match.

We then have $G(\breve{F}) = \bigsqcup_{\nu} [b_{\nu}]$, the Newton stratification. For split groups, we define $G(\nu) = G \cap [b_{\nu}]$. Then

 $G=\sqcup_\nu G(\nu).$

S It also works for quasi-split groups under some modification, but not for non quasi-split groups as the special vertex of buildings over F and over \breve{F} do not match.

© However, I have a different (but more complicated) definition using combinatorics of Iwahori-Weyl groups that works in the general case. I skip the details.

We then have $G(\breve{F}) = \bigsqcup_{\nu} [b_{\nu}]$, the Newton stratification. For split groups, we define $G(\nu) = G \cap [b_{\nu}]$. Then

 $G=\sqcup_\nu G(\nu).$

S It also works for quasi-split groups under some modification, but not for non quasi-split groups as the special vertex of buildings over F and over \breve{F} do not match.

© However, I have a different (but more complicated) definition using combinatorics of Iwahori-Weyl groups that works in the general case. I skip the details.

Note that each $G(\nu)$ is stable under the conjugation action of G and is thus a union of conjugacy classes of G. Is it a nice union that we are looking for?

We then have $G(\breve{F}) = \bigsqcup_{\nu} [b_{\nu}]$, the Newton stratification. For split groups, we define $G(\nu) = G \cap [b_{\nu}]$. Then

 $G=\sqcup_{\nu}G(\nu).$

S It also works for quasi-split groups under some modification, but not for non quasi-split groups as the special vertex of buildings over F and over \breve{F} do not match.

© However, I have a different (but more complicated) definition using combinatorics of Iwahori-Weyl groups that works in the general case. I skip the details.

Note that each $G(\nu)$ is stable under the conjugation action of G and is thus a union of conjugacy classes of G. Is it a nice union that we are looking for?

Newton decomposition

A key feature of the Newton strata is that they are all admissible.

Theorem

The Newton stratum $G(\nu)$ is open and for any compact subset X of G, there exists an open compact subgroup K of G such that $G(\nu) \cap X$ is stable under the left/right multiplication by K.

The admissibility of Newton strata guarantees that the Newton strata works well with the "locally constant" condition of Hecke algebra.

Theorem

We have the Newton decompositions

$$H = \oplus_{\nu} H(\nu), \qquad \overline{H} = \oplus_{\nu} \overline{H}(\nu).$$

Here $H_{\nu} \subset H$ consisting of functions supported in G_{ν} and \bar{H}_{ν} is its image in the cocenter \bar{H} .

Xuhua He (UMD)

Newton decomposition

A key feature of the Newton strata is that they are all admissible.

Theorem

The Newton stratum $G(\nu)$ is open and for any compact subset X of G, there exists an open compact subgroup K of G such that $G(\nu) \cap X$ is stable under the left/right multiplication by K.

The admissibility of Newton strata guarantees that the Newton strata works well with the "locally constant" condition of Hecke algebra.

Theorem

We have the Newton decompositions

$$H = \oplus_{\nu} H(\nu), \qquad \overline{H} = \oplus_{\nu} \overline{H}(\nu).$$

Here $H_{\nu} \subset H$ consisting of functions supported in G_{ν} and \overline{H}_{ν} is its image in the cocenter \overline{H} .

Xuhua He (UMD)

Newton decomposition at a given level

Note that for a given open compact subgroup K, there is no Newton decomposition at the Hecke algebra level:

$$H(G,K) \neq \oplus_{\nu} H(G,K;\nu).$$

But quite amazingly, the cocenter of H(G, K) (for "good" K) does have Newton decomposition.

Theorem

Let I_n be the n-th congruent subgroup of the Iwahori subgroup I. Then

$$\bar{H}(G, I_n) = \oplus_{\nu} \bar{H}(G, I_n; \nu).$$

Note that for a given open compact subgroup K, there is no Newton decomposition at the Hecke algebra level:

$$H(G,K) \neq \oplus_{\nu} H(G,K;\nu).$$

But quite amazingly, the cocenter of H(G, K) (for "good" K) does have Newton decomposition.

Theorem

Let I_n be the n-th congruent subgroup of the Iwahori subgroup I. Then

$$\bar{H}(G,I_n)=\oplus_{\nu}\bar{H}(G,I_n;\nu).$$

Iwahori-Matsumoto presentation

The proof is based on the establishment of the Iwahori-Matsumoto presentation of cocenter.

A quick review of history:

- Bruhat decomposition $G = \bigsqcup_{w \in \tilde{W}} IwI$, where \tilde{W} is the Iwahori-Weyl group;
- The original Iwahori-Matsumoto presentation (IHES, 1965) is for the affine Hecke algebra H(G, I): H(G, I) has a basis {T_w} for w ∈ W̃;
- For the cocenter of affine Hecke algebra, the I-M presentation is established in H.-Nie. (Compos. Math) in 2014.

Theorem

The cocenter $\overline{H}(G, I)$ has a basis $\{T_{\mathcal{O}}\}$, where \mathcal{O} runs over conjugacy classes of \widetilde{W} and $T_{\mathcal{O}}$ is the image of T_w in the cocenter for any Minimal length representative $w \in \mathcal{O}$.

Iwahori-Matsumoto presentation

The proof is based on the establishment of the Iwahori-Matsumoto presentation of cocenter.

A quick review of history:

- Bruhat decomposition $G = \bigsqcup_{w \in \tilde{W}} IwI$, where \tilde{W} is the Iwahori-Weyl group;
- The original Iwahori-Matsumoto presentation (IHES, 1965) is for the affine Hecke algebra H(G, I): H(G, I) has a basis {T_w} for w ∈ W̃;
- For the cocenter of affine Hecke algebra, the I-M presentation is established in H.-Nie. (Compos. Math) in 2014.

Theorem

The cocenter $\overline{H}(G, I)$ has a basis $\{T_{\mathcal{O}}\}$, where \mathcal{O} runs over conjugacy classes of \widetilde{W} and $T_{\mathcal{O}}$ is the image of T_w in the cocenter for any Minimal length representative $w \in \mathcal{O}$.

Iwahori-Matsumoto presentation (Cont')

Let \tilde{W}_{\min} be the set of elements in \tilde{W} that are of minimal length in their conjugacy class. Now we have

Theorem

(1) For any n,

$$\bar{H}(G,I_n) = \sum_{w \in \tilde{W}_{\min}} \bar{H}(G,I_n)_w,$$

where $\overline{H}(G, I_n)_w$ is the image in the cocenter of I_n -biinvariant functions supported in IwI. (2) For any n and Newton point ν , we have

$$\bar{H}(G, I_n; \nu) = \sum_{w \in \tilde{W}_{\min}, \nu_w = \nu} \bar{H}(G, I_n)_w.$$

As a consequence, we have the Newton decomposition for the cocenter of $H(G, I_n)$.

Xuhua He (UMD)

Iwahori-Matsumoto presentation (Cont')

Let \tilde{W}_{\min} be the set of elements in \tilde{W} that are of minimal length in their conjugacy class. Now we have

Theorem

(1) For any n,

$$\bar{H}(G,I_n) = \sum_{w \in \tilde{W}_{\min}} \bar{H}(G,I_n)_w,$$

where $\overline{H}(G, I_n)_w$ is the image in the cocenter of I_n -biinvariant functions supported in IwI. (2) For any n and Newton point ν , we have

$$\bar{H}(G, I_n; \nu) = \sum_{w \in \tilde{W}_{\min}, \nu_w = \nu} \bar{H}(G, I_n)_w.$$

As a consequence, we have the Newton decomposition for the cocenter of $H(G, I_n)$.

Xuhua He (UMD)

As we mentioned before, one major difficulty is that dim $\overline{H} = \infty$. We need some finiteness results.

Conjecture (Howe)

Let X be a compact subset of G and J(X) be the set of invariant distributions supported in $G \cdot X$. Then for any open compact subgroup K of G,

 $\dim J(X)\mid_{H(G,K)} < \infty.$

As we mentioned before, one major difficulty is that dim $\overline{H} = \infty$. We need some finiteness results.

Conjecture (Howe)

Let X be a compact subset of G and J(X) be the set of invariant distributions supported in $G \cdot X$. Then for any open compact subgroup K of G,

 $\dim J(X)\mid_{H(G,K)} < \infty.$

It is conjectured by Howe in 1973, proved by Clozel (Ann. Math) in 1989 for char(F) = 0 and by Barbasch-Moy (JAMS) in 2000.

The twisted version (for twisted endoscopy), is a new result.

As we mentioned before, one major difficulty is that dim $\overline{H} = \infty$. We need some finiteness results.

Conjecture (Howe)

Let X be a compact subset of G and J(X) be the set of invariant distributions supported in $G \cdot X$. Then for any open compact subgroup K of G,

 $\dim J(X)\mid_{H(G,K)} < \infty.$

It is conjectured by Howe in 1973, proved by Clozel (Ann. Math) in 1989 for char(F) = 0 and by Barbasch-Moy (JAMS) in 2000.

The twisted version (for twisted endoscopy), is a new result.

Now we give a short proof of it, for both the original version and the twisted version, based on the Iwahori-Matsumoto presentation.

Proof.

- Any open compact subgroup contains I_n for some n.
- Any compact subset of G is in a finite union of Newton strata $G(\nu)$.
- By definition, $J(G_{\nu})|_{H(G,I_n)} = \overline{H}(G,I_n;\nu)^*$.
- $\forall \nu$, there are only finitely many $w \in \tilde{W}_{\min}$ associated to it.
- $\forall w$, dim $\overline{H}(G, I_n)_w \leq \dim H(G, I_n)_w = \sharp(I_n \setminus IwI/I_n)$ is finite.
- *H*(G, I_n; ν) = Σ_{w∈W̃min,νw=ν} *H*(G, I_n)_w is a finite sum of finite dimensional spaces.

Induction and restriction functors

We consider the representations of G over an algebraically closed field k of characteristic $\neq p$. Let R(G) be the Grothendieck group $(\otimes_{\mathbb{Z}} k)$. How to understand it?

An important family of representations comes from inductions.

- Let *M* be a (standard) proper Levi subgroup of *G*;
- We have $i_M : R(M) \to R(G)$ and $r_M : R(G) \to R(M)$.

Induction and restriction functors

We consider the representations of G over an algebraically closed field k of characteristic $\neq p$. Let R(G) be the Grothendieck group $(\otimes_{\mathbb{Z}} k)$. How to understand it?

An important family of representations comes from inductions.

- Let *M* be a (standard) proper Levi subgroup of *G*;
- We have $i_M : R(M) \to R(G)$ and $r_M : R(G) \to R(M)$.

We should have the induction and restriction functors on the cocenter side.

- $\bar{r}_M : \bar{H}(G) \to \bar{H}(M)$ is dual to i_M and can be written down explicitly.
- The functor $\overline{i}_M : \overline{H}(M) \to \overline{H}(G)$ is more problematic.

It exists for affine Hecke algebras since $H(M, I \cap M) \hookrightarrow H(G, I)$ via Bernstein-Lusztig presentation. No such presentation in general.

Induction and restriction functors

We consider the representations of G over an algebraically closed field k of characteristic $\neq p$. Let R(G) be the Grothendieck group $(\otimes_{\mathbb{Z}} k)$. How to understand it?

An important family of representations comes from inductions.

- Let *M* be a (standard) proper Levi subgroup of *G*;
- We have $i_M : R(M) \to R(G)$ and $r_M : R(G) \to R(M)$.

We should have the induction and restriction functors on the cocenter side.

*r*_M: *H*(*G*) → *H*(*M*) is dual to *i*_M and can be written down explicitly.
The functor *i*_M: *H*(*M*) → *H*(*G*) is more problematic.

It exists for affine Hecke algebras since $H(M, I \cap M) \hookrightarrow H(G, I)$ via Bernstein-Lusztig presentation. No such presentation in general.

Bernstein-Lusztig presentation for H

Recall that each Newton point ν is dominant. Thus its centralizer defines a standard Levi of *G*. We then define

$$\bar{H}(M)_{+,rig} = \sum_{Z^0_G(\nu)=M} \bar{H}(M;\nu).$$

We DO have a canonical (and explicit) map

$$\bar{i}_{M(\nu)}:\bar{H}(M;\nu)\cong\bar{H}(G;\nu).$$

That is enough for us since

$$\bar{H}(G) = \bigoplus_{M} \bar{i}_{M}(\bar{H}(M)_{+,rig})$$

and

$$Tr(\overline{i}_M(h), V) = Tr(h, r_M(V)) \quad \forall h \in \overline{H}(M)_{+, rig}, V \in R(G).$$

Bernstein-Lusztig presentation for H

Recall that each Newton point ν is dominant. Thus its centralizer defines a standard Levi of *G*. We then define

$$\bar{H}(M)_{+,rig} = \sum_{Z_G^0(\nu)=M} \bar{H}(M;\nu).$$

We DO have a canonical (and explicit) map

$$\bar{i}_{M(\nu)}:\bar{H}(M;\nu)\cong\bar{H}(G;\nu).$$

That is enough for us since

$$\bar{H}(G) = \bigoplus_{M} \bar{i}_{M}(\bar{H}(M)_{+,rig})$$

and

$$Tr(\overline{i}_M(h), V) = Tr(h, r_M(V)) \quad \forall h \in \overline{H}(M)_{+, rig}, V \in R(G).$$

Trace Paley-Wiener Theorem

Now we describe the image of the map $Tr : \overline{H} \to R(G)^*$. [Bernstein-Deligne-Kazhdan]: $f \in R(G)^*$ is good if

- \forall *M*, $\sigma \in R(M)$, $\psi \mapsto f(i_M(\psi \sigma))$ is regular on unramified char ψ
- **②** ∃ open compact subgroup K s.t. f(V) = 0 if $V^K = \{0\}$.

Theorem (Trace Paley-Wiener Theorem)

The image of $Tr: \overline{H} \to R(G)^*$ is the space of good forms.

Trace Paley-Wiener Theorem

Now we describe the image of the map $Tr : \overline{H} \to R(G)^*$. [Bernstein-Deligne-Kazhdan]: $f \in R(G)^*$ is good if

- \forall *M*, $\sigma \in R(M)$, $\psi \mapsto f(i_M(\psi \sigma))$ is regular on unramified char ψ
- **②** ∃ open compact subgroup K s.t. f(V) = 0 if $V^K = \{0\}$.

Theorem (Trace Paley-Wiener Theorem)

The image of $Tr: \overline{H} \to R(G)^*$ is the space of good forms.

- Bernstein-Deligne-kazhdan (J. Anal Math) 1986: representations/ $\mathbb C$
- Henniart-Lemaire (Asterisque) 2015: complex ω -representations
- (Joint with Ciubotaru in progress): ordinary/modular/twisted representations under a mild assumption on the char(k)

Trace Paley-Wiener Theorem

Now we describe the image of the map $Tr : \overline{H} \to R(G)^*$. [Bernstein-Deligne-Kazhdan]: $f \in R(G)^*$ is good if

- \forall *M*, $\sigma \in R(M)$, $\psi \mapsto f(i_M(\psi \sigma))$ is regular on unramified char ψ
- **2** \exists open compact subgroup K s.t. f(V) = 0 if $V^K = \{0\}$.

Theorem (Trace Paley-Wiener Theorem)

The image of $Tr: \overline{H} \to R(G)^*$ is the space of good forms.

- $\bullet\,$ Bernstein-Deligne-kazhdan (J. Anal Math) 1986: representations/ $\mathbb C$
- Henniart-Lemaire (Asterisque) 2015: complex ω -representations
- (Joint with Ciubotaru in progress): ordinary/modular/twisted representations under a mild assumption on the char(k)

Rigid cocenter

A crucial part of the trace Paley-Wiener theorem is to reduce to finite dimensional case:

- In [BDK] and [HL], this is obtained by using unitarity, tempered modules etc. to understand discrete series. Thus only works over C.
- We use IM-presentation of cocenter/Howe's conjecture instead.

Rigid cocenter

A crucial part of the trace Paley-Wiener theorem is to reduce to finite dimensional case:

- In [BDK] and [HL], this is obtained by using unitarity, tempered modules etc. to understand discrete series. Thus only works over C.
- We use IM-presentation of cocenter/Howe's conjecture instead.

Moreover, we have the rigid trace Paley-Wiener theorem:

Theorem

Suppose that G is semisimple. The trace map induces a surjection

$$Tr: \overline{H}(G)_{+,rig} \to R(G)_{rig}^*,$$

where $R(G)_{rig}^*$ is the set of good forms that are constant on $i_M(\psi\sigma)$ (w.r.t unramified char ψ).

Rigid cocenter

A crucial part of the trace Paley-Wiener theorem is to reduce to finite dimensional case:

- In [BDK] and [HL], this is obtained by using unitarity, tempered modules etc. to understand discrete series. Thus only works over \mathbb{C} .
- We use IM-presentation of cocenter/Howe's conjecture instead.

Moreover, we have the rigid trace Paley-Wiener theorem:

Theorem

Suppose that G is semisimple. The trace map induces a surjection

$$Tr: \bar{H}(G)_{+,rig} \to R(G)_{rig}^*,$$

where $R(G)_{rig}^*$ is the set of good forms that are constant on $i_M(\psi\sigma)$ (w.r.t unramified char ψ).