
Cocenter of Hecke algebras

Xuhua He

University of Maryland

Stony Brook, 10/13/2016

Xuhua He (UMD) Hecke algebras Stony Brook 1 / 18



Representation Theory 101

Let G be a finite group, e.g. GLn(Fp).
Number of (ordinary) irr. repr. =number of conjugacy classes.

Reformulation:

LHS=rank of R(G), the Grothendieck group of fin. dim repr.

RHS=dim of the cocenter C[G ] ∶= C[G ]/[C[G ],C[G ]]. Here the
cocenter has a standard basis {O}, where O runs over Cl(G).

And a natural duality Tr ∶ C[G ]→ R(G)∗, g ↦ (V ↦ Tr(g ,V )).

Modular representations: : ♯ irr. repr./Fl =♯ l-regular conjugacy classes.

Tr ∶ Fl[G ]→ R(G)∗ is surjective, but not injective in general. The kernel
is spanned by {O} − {O′}, where O′ is the l-regular conj. class associated
to O.
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p-adic groups

Now let G be a p-adic group, e.g. GLn(Qp).

We are interested in “nice” representations that are

smooth, i.e., every point in the representation has open stabilizer
admissible, i.e., the fixed point of every open compact subgroup is
finite dimensional

We do not consider the group algebra, but the Hecke algebra H, the
algebra consisting of the Z[p−1]-valued functions on G that are

locally constant, which corresponds to the smoothness of
representations
compactly supported, so that the (convolution) product of any two
functions in H makes sense
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Cocenter-Representation duality

Ordinary and modular representations/alg. closed field of char. ≠ p:
Smooth, admissible repr of G(F ) ↭ repr of H of finite length.

[Bernstein-Deligne-Kazhdan ’86] for complex representations, the
cocenter H̄ and the representation R(H) are dual to each other.

Our Goal: to understand the cocenter of H, and then use the trace
map Tr ∶ H̄ → R(H)∗ to obtain information on representations of G .

Mod-p repr of G(F ) oo ??? // of pro-p Iwahori-Hecke algebra

The relation is still mysterious. But the right hand side is now

well-understood according to Vignéras and H.-Nie.
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Twisted version

One may also consider the twisted version coming from twisted endoscopy.

Here θ is an automorphism of G and ω is a character of G .
We are interested in

ω-representations of G , i.e. smooth admissible representations π of G
such that πθ = π ○ θ is isomorphism ω ⊗ π.

The twisted cocenter H̄ = H/⟨f − x f ⟩, where f ∈ H, x ,g ∈ G and
x f (g) = ω(x)f (x−1gθ(x)).

The twisted trace map Tr(f ○A, π), where A is a given isomorphism
from ω ⊗ π to πθ.
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Difficulties to understand cocenter

For the group algebra of G , we have

For any conjugacy class O of G , and g ,g ′ ∈ O. The image of g and
g ′ in the cocenter are the same.

The cocenter has a standard basis {[gO]}. Here O runs over all the
conjugacy classes of G and gO is a representative of O.

�

Such a simple and nice description does not apply to the Hecke algebra.
The reason basically comes from the “locally constant” condition. Because
of it, we are not able to separate a single conjugacy class from the others.

�

Another major difficulty is that dim H̄ =∞, which makes the
connection of cocenter with representations complicated. We cannot just
count the numbers as we did for finite groups.
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Newton stratification

Solution: to separate nice (geometric) unions of conjugacy classes.

F a nonarchimedean local field of arbitrary characteristic

F̆ the completion of its maximal unramified extension

σ ∈ Gal(F̆ /F ) the Frobenius map

G = G(F̆ )σ

The σ-twisted conjugacy classes of G(F̆ ) is classified by Kottwitz.
Roughly speaking, a σ-conjugacy class is determined by the Newton point.

E.g. If G = GLn, then the Newton points are (a1,⋯, an) ∈ Qn with

The dominance condition: a1 ⩾ a2 ⩾ ⋯ ⩾ an;

The integrality condition: for any r ∈ Q, r ♯{i ; ai = r} ∈ Z.
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Newton stratification (Cont’)

We then have G(F̆ ) = ⊔ν[bν], the Newton stratification.
For split groups, we define G(ν) = G ∩ [bν]. Then

G = ⊔νG(ν).

/ It also works for quasi-split groups under some modification, but not
for non quasi-split groups as the special vertex of buildings over F and
over F̆ do not match.

, However, I have a different (but more complicated) definition using
combinatorics of Iwahori-Weyl groups that works in the general case. I
skip the details.

Note that each G(ν) is stable under the conjugation action of G and is
thus a union of conjugacy classes of G . Is it a nice union that we are
looking for?
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Newton decomposition

A key feature of the Newton strata is that they are all admissible.

Theorem

The Newton stratum G(ν) is open and for any compact subset X of G ,
there exists an open compact subgroup K of G such that G(ν) ∩X is
stable under the left/right multiplication by K .

The admissibility of Newton strata guarantees that the Newton strata
works well with the “locally constant” condition of Hecke algebra.

Theorem

We have the Newton decompositions

H = ⊕νH(ν), H̄ = ⊕νH̄(ν).

Here Hν ⊂ H consisting of functions supported in Gν and H̄ν is its image in
the cocenter H̄.
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Newton decomposition at a given level

�

Note that for a given open compact subgroup K , there is no Newton
decomposition at the Hecke algebra level:

H(G ,K) ≠ ⊕νH(G ,K ;ν).

But quite amazingly, the cocenter of H(G ,K) (for “good” K ) does have
Newton decomposition.

Theorem

Let In be the n-th congruent subgroup of the Iwahori subgroup I . Then

H̄(G , In) = ⊕νH̄(G , In;ν).
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Iwahori-Matsumoto presentation

The proof is based on the establishment of the Iwahori-Matsumoto
presentation of cocenter.

A quick review of history:

Bruhat decomposition G = ⊔w∈W̃ IwI , where W̃ is the Iwahori-Weyl
group;

The original Iwahori-Matsumoto presentation (IHES, 1965) is for the
affine Hecke algebra H(G , I ): H(G , I ) has a basis {Tw} for w ∈ W̃ ;

For the cocenter of affine Hecke algebra, the I-M presentation is
established in H.-Nie. (Compos. Math) in 2014.

Theorem

The cocenter H̄(G , I ) has a basis {TO}, where O runs over conjugacy
classes of W̃ and TO is the image of Tw in the cocenter for any Minimal
length representative w ∈ O.

Xuhua He (UMD) Hecke algebras Stony Brook 11 / 18



Iwahori-Matsumoto presentation

The proof is based on the establishment of the Iwahori-Matsumoto
presentation of cocenter.

A quick review of history:

Bruhat decomposition G = ⊔w∈W̃ IwI , where W̃ is the Iwahori-Weyl
group;

The original Iwahori-Matsumoto presentation (IHES, 1965) is for the
affine Hecke algebra H(G , I ): H(G , I ) has a basis {Tw} for w ∈ W̃ ;

For the cocenter of affine Hecke algebra, the I-M presentation is
established in H.-Nie. (Compos. Math) in 2014.

Theorem

The cocenter H̄(G , I ) has a basis {TO}, where O runs over conjugacy
classes of W̃ and TO is the image of Tw in the cocenter for any Minimal
length representative w ∈ O.

Xuhua He (UMD) Hecke algebras Stony Brook 11 / 18



Iwahori-Matsumoto presentation (Cont’)

Let W̃min be the set of elements in W̃ that are of minimal length in their
conjugacy class. Now we have

Theorem

(1) For any n,
H̄(G , In) = ∑

w∈W̃min

H̄(G , In)w ,

where H̄(G , In)w is the image in the cocenter of In-biinvariant functions
supported in IwI .
(2) For any n and Newton point ν, we have

H̄(G , In;ν) = ∑
w∈W̃min,νw=ν

H̄(G , In)w .

As a consequence, we have the Newton decomposition for the cocenter of
H(G , In).
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Application: Howe’s conjecture

As we mentioned before, one major difficulty is that dim H̄ =∞. We need
some finiteness results.

Conjecture (Howe)

Let X be a compact subset of G and J(X ) be the set of invariant
distributions supported in G ⋅X . Then for any open compact subgroup K
of G ,

dim J(X ) ∣H(G ,K)<∞.

It is conjectured by Howe in 1973, proved by Clozel (Ann. Math) in 1989
for char(F ) = 0 and by Barbasch-Moy (JAMS) in 2000.

The twisted version (for twisted endoscopy), is a new result.
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Application: Howe’s conjecture (Cont’)

Now we give a short proof of it, for both the original version and the
twisted version, based on the Iwahori-Matsumoto presentation.

Proof.

Any open compact subgroup contains In for some n.

Any compact subset of G is in a finite union of Newton strata G(ν).

By definition, J(Gν) ∣H(G ,In)= H̄(G , In;ν)∗.

∀ν, there are only finitely many w ∈ W̃min associated to it.

∀w , dim H̄(G , In)w ⩽ dimH(G , In)w = ♯(In/IwI /In) is finite.

H̄(G , In;ν) = ∑w∈W̃min,νw=ν H̄(G , In)w is a finite sum of finite
dimensional spaces.
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Induction and restriction functors

We consider the representations of G over an algebraically closed field k of
characteristic ≠ p. Let R(G) be the Grothendieck group (⊗Zk).
How to understand it?

An important family of representations comes from inductions.

Let M be a (standard) proper Levi subgroup of G ;

We have iM ∶ R(M)→ R(G) and rM ∶ R(G)→ R(M).

We should have the induction and restriction functors on the cocenter side.

r̄M ∶ H̄(G)→ H̄(M) is dual to iM and can be written down explicitly.

�

The functor īM ∶ H̄(M)→ H̄(G) is more problematic.

It exists for affine Hecke algebras since H(M, I ∩M)↪ H(G , I ) via
Bernstein-Lusztig presentation. No such presentation in general.
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How to understand it?
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Bernstein-Lusztig presentation for H̄

Recall that each Newton point ν is dominant. Thus its centralizer defines
a standard Levi of G . We then define

H̄(M)+,rig = ∑
Z0
G
(ν)=M

H̄(M;ν).

We DO have a canonical (and explicit) map

īM(ν) ∶ H̄(M;ν) ≅ H̄(G ;ν).

That is enough for us since

H̄(G) =⊕
M

īM(H̄(M)+,rig)

and

Tr(īM(h),V ) = Tr(h, rM(V )) ∀h ∈ H̄(M)+,rig ,V ∈ R(G).
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Trace Paley-Wiener Theorem

Now we describe the image of the map Tr ∶ H̄ → R(G)∗.
[Bernstein-Deligne-Kazhdan]: f ∈ R(G)∗ is good if

1 ∀ M, σ ∈ R(M), ψ ↦ f (iM(ψσ)) is regular on unramified char ψ

2 ∃ open compact subgroup K s.t. f (V ) = 0 if VK = {0}.

Theorem (Trace Paley-Wiener Theorem)

The image of Tr ∶ H̄ → R(G)∗ is the space of good forms.

Bernstein-Deligne-kazhdan (J. Anal Math) 1986: representations/C
Henniart-Lemaire (Asterisque) 2015: complex ω-representations

(Joint with Ciubotaru in progress): ordinary/modular/twisted
representations under a mild assumption on the char(k)
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Rigid cocenter

A crucial part of the trace Paley-Wiener theorem is to reduce to finite
dimensional case:

In [BDK] and [HL], this is obtained by using unitarity, tempered
modules etc. to understand discrete series. Thus only works over C.

We use IM-presentation of cocenter/Howe’s conjecture instead.

Moreover, we have the rigid trace Paley-Wiener theorem:

Theorem

Suppose that G is semisimple. The trace map induces a surjection

Tr ∶ H̄(G)+,rig → R(G)∗rig ,

where R(G)∗rig is the set of good forms that are constant on iM(ψσ)
(w.r.t unramified char ψ).
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