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A metric measure space (X , d , µ) is n-rectifiable if there exists a countable
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n is Borel such
that

1 µ (X\
⋃
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that
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⋃

i fi(Ai )) = 0,

2 lim supr→0+ r−nµ(B(x , r)) < ∞ for µ-a.e. x ∈ X .

Condition (2) ensures that “n − 1-dimensional” spaces are not
n-rectifiable. (For the experts: µ ≪ Hn).

Non-example: Consider (R2, µ) where µ(A) = L1(A ∩ ([0, 1] × {0})). This
satisfies (1) for n = 2, but for every x ∈ [0, 1] × {0} we have

µ(B(x , r))

r2
≥

r

r2
r→0
−−−→ ∞.
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2. Lipschitz graphs. Let f : Rn → R
m be Lipschitz and define

Γ = {(x , f (x)) ∈ R
n+m : x ∈ R

n}.

Let π : Rn+m → R
n be the orthogonal projection and define the measure

µ(A) = Ln(π(A ∩ Γ)), A ⊂ R
n+m.

Then (Rn+m, µ) is n-rectifiable.

3. Subsets and countable unions
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Why do we care?

1. Used in solving some variational problems (Federer-Fleming’s theory of
rectifiable currents for finding minimal surfaces)

2. Singular integrals behave nicely with (strengthened) rectifiable
measures (Calderón, Mattila, Preiss, David, Semmes, Tolsa).

3. Arise from limits of Riemannian manifolds (Cheeger-Colding).

4. Represent low dimensional structure in high dimensional space
(n-rectifiable measures in R

m).
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Rectifiability and density

Theorem (Preiss, 1987)

Let µ be a Radon measure on R
m. Then (Rm, | · |, µ) is n-rectifiable iff

Θn(µ; x) exists and is positive µ-a.e. x ∈ R
m.

The von Koch snowflake (X , d , µ) = (R,
√

| · |,L1) satisfies

lim
r→0+

r−2L1(B(x , r)) = 2, ∀x ∈ X ,

but is not n-rectifiable for any n ∈ N.

Idea: Lipschitz maps f : ([a, b], | · |) → X correspond to 2-Hölder maps on
[a, b] and so are constant. Same then holds for f : (Y , ρ) → X any
Lipchitz path connected space (Y , ρ).
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Lipschitz differentiability spaces (cont.)

Definition

A metric measure space (X , d , µ) is a n-dimensional Lipschitz
differentiability space (LDS) if there is a Lipschitz chart ϕ : X → R

n so
that every Lipschitz function f : X → R is ϕ-differentiable at µ-a.e. x ∈ X .

LDS are precisely the metric measure spaces for which Rademacher’s
theorem holds.

Examples include Euclidean spaces (Rademacher), Carnot groups (Pansu),
doubling spaces with the Poincaré inequality (Cheeger).
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A metric measure space (X , d , µ) is n-rectifiable iff there exists a
countable number of Borel sets Ui ⊂ X with µ(X\
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i Ui) = 0 so that

1 Θn(µ; x) exists and is positive µ-a.e x ∈ X ,

2 Each (Ui , d , µ|Ui
) is an n-dimensional LDS.

Both (1) and (2) are necessary and do not imply one another.

Rectifiability: There exists Lipschitz fi : Ai → X where Ai ⊆ R
n such

that...

Differentiability: There exists Lipschitz ϕi : Ui → R
n where Ui ⊆ X such

that...

Done if ϕi and fi are biLipschitz! (That is fi , ϕi are Lipschitz, injective,
and f −1

i , ϕ−1
i are Lipschitz). But not every Lipschitz function is

biLipschitz. Need more general notion of being biLipschitz.
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BiLipschitz decomposition

Definition

We say Lipschitz f : (X , dX ) → (Y , dY , ν) is biLipschitz decomposable if
there exists a countable number of Borel subsets Ei ⊂ X so that f |Ei

are
biLipschitz and ν(f (X\

⋃

j Ej )) = 0.

Kirchheim (1994) showed each fi : Ai → X is biLipschitz decomposable for
n-rectifiable metric measure spaces.

We showed that each chart ϕi : Ui → R
n is biLipschitz decomposable

when 0 < Θn(µ; x) < ∞ µ-a.e. (Actually, we needed µ(Ui\
⋃

j Ej) = 0).
This heavily uses the fact that ϕi are differentiability charts.
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(

x + x ′, y + y ′, z + z ′ +
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2
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)

.
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3 Left translation is isometry,

4 d(δλ(x), δλ(y)) = λd(x , y) for all x , y ∈ H, λ > 0,

5 Left translation is measure-preserving,

6 L(δλ(A)) = λ4L(A). In particular L(B(x , r)) = cr4.

Almost Euclidean, except that it is nonabelian. Group metric spaces
satisfying (1-4) are called Carnot groups.
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Heisenberg rectifiability

Definition

A metric measure space (X , d , µ) is H-rectifiable if there exists a
countable family of Lipschitz maps {fi : Ai → X}∞i=1 where Ai ⊂ H is
Borel such that

1 µ (X\
⋃

i fi(Ai )) = 0,

2 lim supr→0+ r−4µ(B(x , r)) < ∞ for µ-a.e. x ∈ X .

What geometric properties do these spaces have? Are the fi ’s biLipschitz
decomposable? (The fi ’s are biLipschitz decomposable for n-rectifiable
spaces by Kirchheim).
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BiLipschitz decomposition (redux)

Theorem (Pauls, Meyerson, L.)

Lipschitz maps f : A → H where A ⊆ H are biLipschitz decomposable. In
fact, for each δ > 0 there exists M(δ) > 0 with the following property. For
every 1-Lipschitz f : B(0, 1) → H, there is a Borel decomposition
B(0, 1) = Z ∪ E1 ∪ ... ∪ EM where M < M(δ) so that f |Ei

are biLipschitz
and

L(f (Z )) < δ.

What about Lipschitz maps f : H → X where X is a metric measure
space?
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Recall (X , d , µ) is Ahlfors s-regular if there exist C > 1 so that

1

C
r s ≤ µ(B(x , r)) ≤ Cr s , ∀x ∈ X , r < diam(X ).

Thus, (H,L) is 4-regular.

Theorem (Le Donne-L.-Rajala)

There exists a 4-regular metric space (X , d , µ) and a Lipschitz surjection
f : H → X for which f |A is not biLipschitz for any Borel A ⊆ H of positive
measure.
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Theorem (Le Donne-L.-Rajala)

There exists a 4-regular metric space (X , d , µ) and a Lipschitz surjection
f : H → X for which f |A is not biLipschitz for any Borel A ⊆ H of positive
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Theorem (Le Donne-L.-Rajala)
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BiLipschitz nondecomposition (cont.)

Theorem (Le Donne-L.-Rajala)

There exists a 4-regular metric space (X , d , µ) and a Lipschitz surjection
f : H → X for which f |A is not biLipschitz for any Borel A ⊆ H of positive
measure.

Recall that N(0, 0, z) = |z |1/2. As Z (H) = {(0, 0, z) : z ∈ R}, we see H is
foliated by (R,

√

| · |). Triangle inequality for
√

| · | is usually very
generous.

We then manually push together vertically separated points q1, q2 at many
locations and scales in a careful way to collapse the metric but not the
measure.
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Open problems

1. Mattila proved for any Borel E ⊆ R
m that (Rm,Hn|E ) is n-rectifiable iff

Θn(Hn|E ; x) = 2n for Hn|E -a.e. x ∈ R
m. Does this hold when (X , d ,Hn)

is a n-rectifiable metric measure space?

2. The Heisenberg group is an example of a Carnot group, which are
nonabelian versions of Euclidean spaces. Is there a Preiss theorem for
H-rectifiability in (G , µ) when G and H are Carnot groups?

3. What “nice” Ahlfors n-regular spaces X (besides Rn) have biLipschitz
decomposition for all Lipschitz maps f : X → (Y ,Hn) into arbitrary
metric spaces?



Thank you!


