Beyond Euclidean rectifiability

Sean Li

University of Chicago
seanli@math.uchicago.edu

February 2, 2016
Stony Brook University

Rectifiable spaces

Definition

A metric measure space (X, d, μ) is n-rectifiable if there exists a countable family of Lipschitz maps $\left\{f_{i}: A_{i} \rightarrow X\right\}_{i=1}^{\infty}$ where $A_{i} \subset \mathbb{R}^{n}$ is Borel such that
(1) $\mu\left(X \backslash \bigcup_{i} f_{i}\left(A_{i}\right)\right)=0$,
(2) $\lim \sup _{r \rightarrow 0^{+}} r^{-n} \mu(B(x, r))<\infty$ for μ-a.e. $x \in X$.

Rectifiable spaces

Definition

A metric measure space (X, d, μ) is n-rectifiable if there exists a countable family of Lipschitz maps $\left\{f_{i}: A_{i} \rightarrow X\right\}_{i=1}^{\infty}$ where $A_{i} \subset \mathbb{R}^{n}$ is Borel such that
(1) $\mu\left(X \backslash \bigcup_{i} f_{i}\left(A_{i}\right)\right)=0$,
(2) $\lim \sup _{r \rightarrow 0^{+}} r^{-n} \mu(B(x, r))<\infty$ for μ-a.e. $x \in X$.

Condition (2) ensures that " n-1-dimensional" spaces are not n-rectifiable. (For the experts: $\mu \ll \mathcal{H}^{n}$).

Rectifiable spaces

Definition

A metric measure space (X, d, μ) is n-rectifiable if there exists a countable family of Lipschitz maps $\left\{f_{i}: A_{i} \rightarrow X\right\}_{i=1}^{\infty}$ where $A_{i} \subset \mathbb{R}^{n}$ is Borel such that
(1) $\mu\left(X \backslash \bigcup_{i} f_{i}\left(A_{i}\right)\right)=0$,
(2) $\lim \sup _{r \rightarrow 0^{+}} r^{-n} \mu(B(x, r))<\infty$ for μ-a.e. $x \in X$.

Condition (2) ensures that " n-1-dimensional" spaces are not n-rectifiable. (For the experts: $\mu \ll \mathcal{H}^{n}$).

Non-example: Consider $\left(\mathbb{R}^{2}, \mu\right)$ where $\mu(A)=\mathcal{L}^{1}(A \cap([0,1] \times\{0\}))$. This satisfies (1) for $n=2$, but for every $x \in[0,1] \times\{0\}$ we have

$$
\frac{\mu(B(x, r))}{r^{2}} \geq \frac{r}{r^{2}} \xrightarrow{r \rightarrow 0} \infty .
$$

Examples

1. Rectifiable curves in metric spaces with the length measure are 1-rectifiable.

Examples

1. Rectifiable curves in metric spaces with the length measure are 1-rectifiable.
2. Lipschitz graphs. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be Lipschitz and define

$$
\Gamma=\left\{(x, f(x)) \in \mathbb{R}^{n+m}: x \in \mathbb{R}^{n}\right\}
$$

Examples

1. Rectifiable curves in metric spaces with the length measure are 1-rectifiable.
2. Lipschitz graphs. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be Lipschitz and define

$$
\Gamma=\left\{(x, f(x)) \in \mathbb{R}^{n+m}: x \in \mathbb{R}^{n}\right\}
$$

Let $\pi: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$ be the orthogonal projection and define the measure

$$
\mu(A)=\mathcal{L}^{n}(\pi(A \cap \Gamma)), \quad A \subset \mathbb{R}^{n+m}
$$

Examples

1. Rectifiable curves in metric spaces with the length measure are 1-rectifiable.
2. Lipschitz graphs. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be Lipschitz and define

$$
\Gamma=\left\{(x, f(x)) \in \mathbb{R}^{n+m}: x \in \mathbb{R}^{n}\right\}
$$

Let $\pi: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$ be the orthogonal projection and define the measure

$$
\mu(A)=\mathcal{L}^{n}(\pi(A \cap \Gamma)), \quad A \subset \mathbb{R}^{n+m}
$$

Then $\left(\mathbb{R}^{n+m}, \mu\right)$ is n-rectifiable.

Examples

1. Rectifiable curves in metric spaces with the length measure are 1-rectifiable.
2. Lipschitz graphs. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be Lipschitz and define

$$
\Gamma=\left\{(x, f(x)) \in \mathbb{R}^{n+m}: x \in \mathbb{R}^{n}\right\}
$$

Let $\pi: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$ be the orthogonal projection and define the measure

$$
\mu(A)=\mathcal{L}^{n}(\pi(A \cap \Gamma)), \quad A \subset \mathbb{R}^{n+m}
$$

Then $\left(\mathbb{R}^{n+m}, \mu\right)$ is n-rectifiable.
3. Subsets and countable unions

Why do we care?

Why do we care?

1. Used in solving some variational problems (Federer-Fleming's theory of rectifiable currents for finding minimal surfaces)

Why do we care?

1. Used in solving some variational problems (Federer-Fleming's theory of rectifiable currents for finding minimal surfaces)
2. Singular integrals behave nicely with (strengthened) rectifiable measures (Calderón, Mattila, Preiss, David, Semmes, Tolsa).

Why do we care?

1. Used in solving some variational problems (Federer-Fleming's theory of rectifiable currents for finding minimal surfaces)
2. Singular integrals behave nicely with (strengthened) rectifiable measures (Calderón, Mattila, Preiss, David, Semmes, Tolsa).
3. Arise from limits of Riemannian manifolds (Cheeger-Colding).

Why do we care?

1. Used in solving some variational problems (Federer-Fleming's theory of rectifiable currents for finding minimal surfaces)
2. Singular integrals behave nicely with (strengthened) rectifiable measures (Calderón, Mattila, Preiss, David, Semmes, Tolsa).
3. Arise from limits of Riemannian manifolds (Cheeger-Colding).
4. Represent low dimensional structure in high dimensional space (n-rectifiable measures in \mathbb{R}^{m}).

Rectifiability and density

Question: How can we tell if a space is n-rectifiable?

Rectifiability and density

Question: How can we tell if a space is n-rectifiable?

Definition

Let (X, d, μ) be a metric measure space. The n-density (if it exists) of μ at $x \in X$ is

$$
\Theta^{n}(\mu ; x):=\lim _{r \rightarrow 0^{+}} r^{-n} \mu(B(x, r)) .
$$

Rectifiability and density

Question: How can we tell if a space is n-rectifiable?

Definition

Let (X, d, μ) be a metric measure space. The n-density (if it exists) of μ at $x \in X$ is

$$
\Theta^{n}(\mu ; x):=\lim _{r \rightarrow 0^{+}} r^{-n} \mu(B(x, r))
$$

Theorem (Preiss, 1987)
Let μ be a Radon measure on \mathbb{R}^{m}. Then $\left(\mathbb{R}^{m},|\cdot|, \mu\right)$ is n-rectifiable iff $\Theta^{n}(\mu ; x)$ exists and is positive μ-a.e. $x \in \mathbb{R}^{m}$.

Rectifiability and density

Question: How can we tell if a space is n-rectifiable?

Definition

Let (X, d, μ) be a metric measure space. The n-density (if it exists) of μ at $x \in X$ is

$$
\Theta^{n}(\mu ; x):=\lim _{r \rightarrow 0^{+}} r^{-n} \mu(B(x, r))
$$

Theorem (Preiss, 1987)
Let μ be a Radon measure on \mathbb{R}^{m}. Then $\left(\mathbb{R}^{m},|\cdot|, \mu\right)$ is n-rectifiable iff $\Theta^{n}(\mu ; x)$ exists and is positive μ-a.e. $x \in \mathbb{R}^{m}$.

What if (X, d) is not $\left(\mathbb{R}^{m},|\cdot|\right)$?

Rectifiability and density

Question: How can we tell if a space is n-rectifiable?

Definition

Let (X, d, μ) be a metric measure space. The n-density (if it exists) of μ at $x \in X$ is

$$
\Theta^{n}(\mu ; x):=\lim _{r \rightarrow 0^{+}} r^{-n} \mu(B(x, r))
$$

Theorem (Preiss, 1987)
Let μ be a Radon measure on \mathbb{R}^{m}. Then $\left(\mathbb{R}^{m},|\cdot|, \mu\right)$ is n-rectifiable iff $\Theta^{n}(\mu ; x)$ exists and is positive μ-a.e. $x \in \mathbb{R}^{m}$.

What if (X, d) is not $\left(\mathbb{R}^{m},|\cdot|\right) ? \Rightarrow$ Yes (Kirchheim 1994).

Rectifiability and density

Question: How can we tell if a space is n-rectifiable?

Definition

Let (X, d, μ) be a metric measure space. The n-density (if it exists) of μ at $x \in X$ is

$$
\Theta^{n}(\mu ; x):=\lim _{r \rightarrow 0^{+}} r^{-n} \mu(B(x, r)) .
$$

Theorem (Preiss, 1987)
Let μ be a Radon measure on \mathbb{R}^{m}. Then $\left(\mathbb{R}^{m},|\cdot|, \mu\right)$ is n-rectifiable iff $\Theta^{n}(\mu ; x)$ exists and is positive μ-a.e. $x \in \mathbb{R}^{m}$.

What if (X, d) is not $\left(\mathbb{R}^{m},|\cdot|\right) ? \Rightarrow$ Yes (Kirchheim 1994). \Leftarrow No.

Rectifiability and density

Theorem (Preiss, 1987)

Let μ be a Radon measure on \mathbb{R}^{m}. Then $\left(\mathbb{R}^{m},|\cdot|, \mu\right)$ is n-rectifiable iff $\Theta^{n}(\mu ; x)$ exists and is positive μ-a.e. $x \in \mathbb{R}^{m}$.

Rectifiability and density

Theorem (Preiss, 1987)

Let μ be a Radon measure on \mathbb{R}^{m}. Then $\left(\mathbb{R}^{m},|\cdot|, \mu\right)$ is n-rectifiable iff $\Theta^{n}(\mu ; x)$ exists and is positive μ-a.e. $x \in \mathbb{R}^{m}$.

The von Koch snowflake $(X, d, \mu)=\left(\mathbb{R}, \sqrt{|\cdot|}, \mathcal{L}^{1}\right)$ satisfies

$$
\lim _{r \rightarrow 0^{+}} r^{-2} \mathcal{L}^{1}(B(x, r))=2, \quad \forall x \in X
$$

but is not n-rectifiable for any $n \in \mathbb{N}$.

Rectifiability and density

Theorem (Preiss, 1987)

Let μ be a Radon measure on \mathbb{R}^{m}. Then $\left(\mathbb{R}^{m},|\cdot|, \mu\right)$ is n-rectifiable iff $\Theta^{n}(\mu ; x)$ exists and is positive μ-a.e. $x \in \mathbb{R}^{m}$.

The von Koch snowflake $(X, d, \mu)=\left(\mathbb{R}, \sqrt{|\cdot|}, \mathcal{L}^{1}\right)$ satisfies

$$
\lim _{r \rightarrow 0^{+}} r^{-2} \mathcal{L}^{1}(B(x, r))=2, \quad \forall x \in X
$$

but is not n-rectifiable for any $n \in \mathbb{N}$.
Idea: Lipschitz maps $f:([a, b],|\cdot|) \rightarrow X$ correspond to 2 -Hölder maps on $[a, b]$ and so are constant. Same then holds for $f:(Y, \rho) \rightarrow X$ any Lipchitz path connected space (Y, ρ).

Lipschitz differentiability spaces

Recall that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at $x_{0} \in \mathbb{R}^{n}$ if there exists a unique $\operatorname{Df}\left(x_{0}\right) \in L\left(\mathbb{R}^{n}, \mathbb{R}\right)$ so that

$$
f(x)=f\left(x_{0}\right)+D f\left(x_{0}\right)\left(x-x_{0}\right)+o\left(\left|x-x_{0}\right|\right) .
$$

Lipschitz differentiability spaces

Recall that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at $x_{0} \in \mathbb{R}^{n}$ if there exists a unique $\operatorname{Df}\left(x_{0}\right) \in L\left(\mathbb{R}^{n}, \mathbb{R}\right)$ so that

$$
f(x)=f\left(x_{0}\right)+D f\left(x_{0}\right)\left(x-x_{0}\right)+o\left(\left|x-x_{0}\right|\right) .
$$

Let (X, d) be a metric space and $\varphi: X \rightarrow \mathbb{R}^{n}$ (a chart).

Lipschitz differentiability spaces

Recall that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at $x_{0} \in \mathbb{R}^{n}$ if there exists a unique $\operatorname{Df}\left(x_{0}\right) \in L\left(\mathbb{R}^{n}, \mathbb{R}\right)$ so that

$$
f(x)=f\left(x_{0}\right)+D f\left(x_{0}\right)\left(x-x_{0}\right)+o\left(\left|x-x_{0}\right|\right) .
$$

Let (X, d) be a metric space and $\varphi: X \rightarrow \mathbb{R}^{n}$ (a chart). We say $f: X \rightarrow \mathbb{R}$ is φ-differentiable at $x_{0} \in X$ if there exists a unique $\operatorname{Df}\left(x_{0}\right) \in L\left(\mathbb{R}^{n}, \mathbb{R}\right)$ so that

$$
f(x)=f\left(x_{0}\right)+D f\left(x_{0}\right)\left(\varphi(x)-\varphi\left(x_{0}\right)\right)+o\left(d\left(x, x_{0}\right)\right) .
$$

Lipschitz differentiability spaces

Recall that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at $x_{0} \in \mathbb{R}^{n}$ if there exists a unique $\operatorname{Df}\left(x_{0}\right) \in L\left(\mathbb{R}^{n}, \mathbb{R}\right)$ so that

$$
f(x)=f\left(x_{0}\right)+D f\left(x_{0}\right)\left(x-x_{0}\right)+o\left(\left|x-x_{0}\right|\right) .
$$

Let (X, d) be a metric space and $\varphi: X \rightarrow \mathbb{R}^{n}$ (a chart). We say $f: X \rightarrow \mathbb{R}$ is φ-differentiable at $x_{0} \in X$ if there exists a unique $\operatorname{Df}\left(x_{0}\right) \in L\left(\mathbb{R}^{n}, \mathbb{R}\right)$ so that

$$
f(x)=f\left(x_{0}\right)+D f\left(x_{0}\right)\left(\varphi(x)-\varphi\left(x_{0}\right)\right)+o\left(d\left(x, x_{0}\right)\right) .
$$

We then say that $\operatorname{Df}\left(x_{0}\right)$ is the (Cheeger) derivative of f at x_{0}.

Lipschitz differentiability spaces (cont.)

Definition

A metric measure space (X, d, μ) is a n-dimensional Lipschitz differentiability space (LDS) if there is a Lipschitz chart $\varphi: X \rightarrow \mathbb{R}^{n}$ so that every Lipschitz function $f: X \rightarrow \mathbb{R}$ is φ-differentiable at μ-a.e. $x \in X$.

Lipschitz differentiability spaces (cont.)

Definition

A metric measure space (X, d, μ) is a n-dimensional Lipschitz differentiability space (LDS) if there is a Lipschitz chart $\varphi: X \rightarrow \mathbb{R}^{n}$ so that every Lipschitz function $f: X \rightarrow \mathbb{R}$ is φ-differentiable at μ-a.e. $x \in X$.

LDS are precisely the metric measure spaces for which Rademacher's theorem holds.

Lipschitz differentiability spaces (cont.)

Definition

A metric measure space (X, d, μ) is a n-dimensional Lipschitz differentiability space (LDS) if there is a Lipschitz chart $\varphi: X \rightarrow \mathbb{R}^{n}$ so that every Lipschitz function $f: X \rightarrow \mathbb{R}$ is φ-differentiable at μ-a.e. $x \in X$.

LDS are precisely the metric measure spaces for which Rademacher's theorem holds.

Examples include Euclidean spaces (Rademacher), Carnot groups (Pansu), doubling spaces with the Poincaré inequality (Cheeger).

Characterization of rectifiability

Theorem (Bate-L.)
A metric measure space (X, d, μ) is n-rectifiable iff there exists a countable number of Borel sets $U_{i} \subset X$ with $\mu\left(X \backslash \bigcup_{i} U_{i}\right)=0$ so that
(1) $\Theta^{n}(\mu ; x)$ exists and is positive μ-a.e $x \in X$,
(2) Each $\left(U_{i}, d,\left.\mu\right|_{U_{i}}\right)$ is an n-dimensional LDS.

Characterization of rectifiability

Theorem (Bate-L.)
A metric measure space (X, d, μ) is n-rectifiable iff there exists a countable number of Borel sets $U_{i} \subset X$ with $\mu\left(X \backslash \bigcup_{i} U_{i}\right)=0$ so that
(1) $\Theta^{n}(\mu ; x)$ exists and is positive μ-a.e $x \in X$,
(2) Each $\left(U_{i}, d,\left.\mu\right|_{U_{i}}\right)$ is an n-dimensional LDS.

Both (1) and (2) are necessary and do not imply one another.

Characterization of rectifiability

Theorem (Bate-L.)

A metric measure space (X, d, μ) is n-rectifiable iff there exists a countable number of Borel sets $U_{i} \subset X$ with $\mu\left(X \backslash \bigcup_{i} U_{i}\right)=0$ so that
(1) $\Theta^{n}(\mu ; x)$ exists and is positive μ-a.e $x \in X$,
(2) Each $\left(U_{i}, d,\left.\mu\right|_{U_{i}}\right)$ is an n-dimensional LDS.

Both (1) and (2) are necessary and do not imply one another.
Rectifiability: There exists Lipschitz $f_{i}: A_{i} \rightarrow X$ where $A_{i} \subseteq \mathbb{R}^{n}$ such that...

Characterization of rectifiability

Theorem (Bate-L.)

A metric measure space (X, d, μ) is n-rectifiable iff there exists a countable number of Borel sets $U_{i} \subset X$ with $\mu\left(X \backslash \bigcup_{i} U_{i}\right)=0$ so that
(1) $\Theta^{n}(\mu ; x)$ exists and is positive μ-a.e $x \in X$,
(2) Each $\left(U_{i}, d,\left.\mu\right|_{U_{i}}\right)$ is an n-dimensional LDS.

Both (1) and (2) are necessary and do not imply one another.
Rectifiability: There exists Lipschitz $f_{i}: A_{i} \rightarrow X$ where $A_{i} \subseteq \mathbb{R}^{n}$ such that...

Differentiability: There exists Lipschitz $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ where $U_{i} \subseteq X$ such that...

Characterization of rectifiability

Theorem (Bate-L.)

A metric measure space (X, d, μ) is n-rectifiable iff there exists a countable number of Borel sets $U_{i} \subset X$ with $\mu\left(X \backslash \bigcup_{i} U_{i}\right)=0$ so that
(1) $\Theta^{n}(\mu ; x)$ exists and is positive μ-a.e $x \in X$,
(2) Each $\left(U_{i}, d,\left.\mu\right|_{U_{i}}\right)$ is an n-dimensional LDS.

Both (1) and (2) are necessary and do not imply one another.
Rectifiability: There exists Lipschitz $f_{i}: A_{i} \rightarrow X$ where $A_{i} \subseteq \mathbb{R}^{n}$ such that...

Differentiability: There exists Lipschitz $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ where $U_{i} \subseteq X$ such that...

Done if φ_{i} and f_{i} are biLipschitz! (That is f_{i}, φ_{i} are Lipschitz, injective, and $f_{i}^{-1}, \varphi_{i}^{-1}$ are Lipschitz).

Characterization of rectifiability

Theorem (Bate-L.)

A metric measure space (X, d, μ) is n-rectifiable iff there exists a countable number of Borel sets $U_{i} \subset X$ with $\mu\left(X \backslash \bigcup_{i} U_{i}\right)=0$ so that
(1) $\Theta^{n}(\mu ; x)$ exists and is positive μ-a.e $x \in X$,
(2) Each $\left(U_{i}, d,\left.\mu\right|_{U_{i}}\right)$ is an n-dimensional LDS.

Both (1) and (2) are necessary and do not imply one another.
Rectifiability: There exists Lipschitz $f_{i}: A_{i} \rightarrow X$ where $A_{i} \subseteq \mathbb{R}^{n}$ such that...

Differentiability: There exists Lipschitz $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ where $U_{i} \subseteq X$ such that...

Done if φ_{i} and f_{i} are biLipschitz! (That is f_{i}, φ_{i} are Lipschitz, injective, and $f_{i}^{-1}, \varphi_{i}^{-1}$ are Lipschitz). But not every Lipschitz function is biLipschitz. Need more general notion of being biLipschitz.

BiLipschitz decomposition

Definition

We say Lipschitz $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}, \nu\right)$ is biLipschitz decomposable if there exists a countable number of Borel subsets $E_{i} \subset X$ so that $\left.f\right|_{E_{i}}$ are biLipschitz and $\nu\left(f\left(X \backslash \bigcup_{j} E_{j}\right)\right)=0$.

BiLipschitz decomposition

Definition

We say Lipschitz $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}, \nu\right)$ is biLipschitz decomposable if there exists a countable number of Borel subsets $E_{i} \subset X$ so that $\left.f\right|_{E_{i}}$ are biLipschitz and $\nu\left(f\left(X \backslash \bigcup_{j} E_{j}\right)\right)=0$.

Kirchheim (1994) showed each $f_{i}: A_{i} \rightarrow X$ is biLipschitz decomposable for n-rectifiable metric measure spaces.

BiLipschitz decomposition

Definition

We say Lipschitz $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}, \nu\right)$ is biLipschitz decomposable if there exists a countable number of Borel subsets $E_{i} \subset X$ so that $\left.f\right|_{E_{i}}$ are biLipschitz and $\nu\left(f\left(X \backslash \bigcup_{j} E_{j}\right)\right)=0$.

Kirchheim (1994) showed each $f_{i}: A_{i} \rightarrow X$ is biLipschitz decomposable for n-rectifiable metric measure spaces.

We showed that each chart $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ is biLipschitz decomposable when $0<\Theta^{n}(\mu ; x)<\infty \mu$-a.e. (Actually, we needed $\mu\left(U_{i} \backslash \bigcup_{j} E_{j}\right)=0$).

BiLipschitz decomposition

Definition

We say Lipschitz $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}, \nu\right)$ is biLipschitz decomposable if there exists a countable number of Borel subsets $E_{i} \subset X$ so that $\left.f\right|_{E_{i}}$ are biLipschitz and $\nu\left(f\left(X \backslash \bigcup_{j} E_{j}\right)\right)=0$.

Kirchheim (1994) showed each $f_{i}: A_{i} \rightarrow X$ is biLipschitz decomposable for n-rectifiable metric measure spaces.

We showed that each chart $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ is biLipschitz decomposable when $0<\Theta^{n}(\mu ; x)<\infty \mu$-a.e. (Actually, we needed $\mu\left(U_{i} \backslash \bigcup_{j} E_{j}\right)=0$). This heavily uses the fact that φ_{i} are differentiability charts.

The Heisenberg group

The Heisenberg group \mathbb{H} is the Lie group $\left(\mathbb{R}^{3}, \cdot\right)$ where

$$
(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-x^{\prime} y\right)\right)
$$

The Heisenberg group

The Heisenberg group \mathbb{H} is the Lie group $\left(\mathbb{R}^{3}, \cdot\right)$ where

$$
(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-x^{\prime} y\right)\right)
$$

This is nonabelian. The identity is $0=(0,0,0)$. The group inverse of (x, y, z) is $(-x,-y,-z)$.

The Heisenberg group

The Heisenberg group \mathbb{H} is the Lie group $\left(\mathbb{R}^{3}, \cdot\right)$ where

$$
(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-x^{\prime} y\right)\right)
$$

This is nonabelian. The identity is $0=(0,0,0)$. The group inverse of (x, y, z) is $(-x,-y,-z)$.

Define the norm $N: \mathbb{H} \rightarrow[0, \infty)$ by $N(x, y, z)=\max \left\{|x|,|y|,|z|^{1 / 2}\right\}$. The left-invariant metric is $d(g, h)=N\left(g^{-1} h\right)$ and the measure is \mathcal{L}^{3}.

The Heisenberg group

The Heisenberg group \mathbb{H} is the Lie group $\left(\mathbb{R}^{3}, \cdot\right)$ where

$$
(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-x^{\prime} y\right)\right)
$$

This is nonabelian. The identity is $0=(0,0,0)$. The group inverse of (x, y, z) is $(-x,-y,-z)$.

Define the norm $N: \mathbb{H} \rightarrow[0, \infty)$ by $N(x, y, z)=\max \left\{|x|,|y|,|z|^{1 / 2}\right\}$. The left-invariant metric is $d(g, h)=N\left(g^{-1} h\right)$ and the measure is \mathcal{L}^{3}.

For each $\lambda>0$, define the scaling automorphism $\delta_{\lambda}(x, y, z)=\left(\lambda x, \lambda y, \lambda^{2} z\right)$.

The Heisenberg group (cont.)

$$
\begin{aligned}
& (x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-x^{\prime} y\right) / 2\right) . \\
& N(x, y, z)=\max \left\{|x|,|y|,|z|^{1 / 2}\right\} \text { and } \delta_{\lambda}(x, y, z)=\left(\lambda x, \lambda y, \lambda^{2} z\right)
\end{aligned}
$$

Properties of \mathbb{H}

The Heisenberg group (cont.)

$$
\begin{aligned}
& (x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-x^{\prime} y\right) / 2\right) . \\
& N(x, y, z)=\max \left\{|x|,|y|,|z|^{1 / 2}\right\} \text { and } \delta_{\lambda}(x, y, z)=\left(\lambda x, \lambda y, \lambda^{2} z\right)
\end{aligned}
$$

Properties of \mathbb{H}

(1) Same topology as \mathbb{R}^{3},

The Heisenberg group (cont.)

$$
\begin{aligned}
& (x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-x^{\prime} y\right) / 2\right) . \\
& N(x, y, z)=\max \left\{|x|,|y|,|z|^{1 / 2}\right\} \text { and } \delta_{\lambda}(x, y, z)=\left(\lambda x, \lambda y, \lambda^{2} z\right)
\end{aligned}
$$

Properties of \mathbb{H}

(1) Same topology as \mathbb{R}^{3},
(2) Geodesic*,

The Heisenberg group (cont.)

$$
\begin{aligned}
& (x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-x^{\prime} y\right) / 2\right) . \\
& N(x, y, z)=\max \left\{|x|,|y|,|z|^{1 / 2}\right\} \text { and } \delta_{\lambda}(x, y, z)=\left(\lambda x, \lambda y, \lambda^{2} z\right)
\end{aligned}
$$

Properties of \mathbb{H}

(1) Same topology as \mathbb{R}^{3},
(2) Geodesic*,
(3) Left translation is isometry,

The Heisenberg group (cont.)

$$
\begin{aligned}
& (x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-x^{\prime} y\right) / 2\right) . \\
& N(x, y, z)=\max \left\{|x|,|y|,|z|^{1 / 2}\right\} \text { and } \delta_{\lambda}(x, y, z)=\left(\lambda x, \lambda y, \lambda^{2} z\right)
\end{aligned}
$$

Properties of \mathbb{H}

(1) Same topology as \mathbb{R}^{3},
(2) Geodesic*,
(3) Left translation is isometry,
(9) $d\left(\delta_{\lambda}(x), \delta_{\lambda}(y)\right)=\lambda d(x, y)$ for all $x, y \in \mathbb{H}, \lambda>0$,

The Heisenberg group (cont.)

$$
\begin{aligned}
& (x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-x^{\prime} y\right) / 2\right) . \\
& N(x, y, z)=\max \left\{|x|,|y|,|z|^{1 / 2}\right\} \text { and } \delta_{\lambda}(x, y, z)=\left(\lambda x, \lambda y, \lambda^{2} z\right)
\end{aligned}
$$

Properties of \mathbb{H}

(1) Same topology as \mathbb{R}^{3},
(2) Geodesic*,
(3) Left translation is isometry,
(9) $d\left(\delta_{\lambda}(x), \delta_{\lambda}(y)\right)=\lambda d(x, y)$ for all $x, y \in \mathbb{H}, \lambda>0$,
(3) Left translation is measure-preserving,

The Heisenberg group (cont.)

$$
\begin{aligned}
& (x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-x^{\prime} y\right) / 2\right) . \\
& N(x, y, z)=\max \left\{|x|,|y|,|z|^{1 / 2}\right\} \text { and } \delta_{\lambda}(x, y, z)=\left(\lambda x, \lambda y, \lambda^{2} z\right)
\end{aligned}
$$

Properties of \mathbb{H}

(1) Same topology as \mathbb{R}^{3},
(2) Geodesic*,
(3) Left translation is isometry,
(9) $d\left(\delta_{\lambda}(x), \delta_{\lambda}(y)\right)=\lambda d(x, y)$ for all $x, y \in \mathbb{H}, \lambda>0$,
(3) Left translation is measure-preserving,
(0) $\mathcal{L}\left(\delta_{\lambda}(A)\right)=\lambda^{4} \mathcal{L}(A)$. In particular $\mathcal{L}(B(x, r))=c r^{4}$.

The Heisenberg group (cont.)

$$
\begin{aligned}
& (x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-x^{\prime} y\right) / 2\right) . \\
& N(x, y, z)=\max \left\{|x|,|y|,|z|^{1 / 2}\right\} \text { and } \delta_{\lambda}(x, y, z)=\left(\lambda x, \lambda y, \lambda^{2} z\right)
\end{aligned}
$$

Properties of \mathbb{H}

(1) Same topology as \mathbb{R}^{3},
(2) Geodesic*,
(3) Left translation is isometry,
(9) $d\left(\delta_{\lambda}(x), \delta_{\lambda}(y)\right)=\lambda d(x, y)$ for all $x, y \in \mathbb{H}, \lambda>0$,
(3) Left translation is measure-preserving,
(0) $\mathcal{L}\left(\delta_{\lambda}(A)\right)=\lambda^{4} \mathcal{L}(A)$. In particular $\mathcal{L}(B(x, r))=c r^{4}$.

Almost Euclidean, except that it is nonabelian.

The Heisenberg group (cont.)

$$
\begin{aligned}
& (x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-x^{\prime} y\right) / 2\right) . \\
& N(x, y, z)=\max \left\{|x|,|y|,|z|^{1 / 2}\right\} \text { and } \delta_{\lambda}(x, y, z)=\left(\lambda x, \lambda y, \lambda^{2} z\right)
\end{aligned}
$$

Properties of \mathbb{H}

(1) Same topology as \mathbb{R}^{3},
(2) Geodesic*,
(3) Left translation is isometry,
(9) $d\left(\delta_{\lambda}(x), \delta_{\lambda}(y)\right)=\lambda d(x, y)$ for all $x, y \in \mathbb{H}, \lambda>0$,
(5) Left translation is measure-preserving,
(0) $\mathcal{L}\left(\delta_{\lambda}(A)\right)=\lambda^{4} \mathcal{L}(A)$. In particular $\mathcal{L}(B(x, r))=c r^{4}$.

Almost Euclidean, except that it is nonabelian. Group metric spaces satisfying (1-4) are called Carnot groups.

Heisenberg rectifiability

Definition

A metric measure space (X, d, μ) is \mathbb{H}-rectifiable if there exists a countable family of Lipschitz maps $\left\{f_{i}: A_{i} \rightarrow X\right\}_{i=1}^{\infty}$ where $A_{i} \subset \mathbb{H}$ is Borel such that
(1) $\mu\left(X \backslash \bigcup_{i} f_{i}\left(A_{i}\right)\right)=0$,
(2) $\lim \sup _{r \rightarrow 0^{+}} r^{-4} \mu(B(x, r))<\infty$ for μ-a.e. $x \in X$.

Heisenberg rectifiability

Definition

A metric measure space (X, d, μ) is \mathbb{H}-rectifiable if there exists a countable family of Lipschitz maps $\left\{f_{i}: A_{i} \rightarrow X\right\}_{i=1}^{\infty}$ where $A_{i} \subset \mathbb{H}$ is Borel such that
(1) $\mu\left(X \backslash \bigcup_{i} f_{i}\left(A_{i}\right)\right)=0$,
(2) $\lim \sup _{r \rightarrow 0^{+}} r^{-4} \mu(B(x, r))<\infty$ for μ-a.e. $x \in X$.

What geometric properties do these spaces have? Are the f_{i} 's biLipschitz decomposable? (The f_{i} 's are biLipschitz decomposable for n-rectifiable spaces by Kirchheim).

BiLipschitz decomposition (redux)

Theorem (Pauls, Meyerson, L.)
Lipschitz maps $f: A \rightarrow \mathbb{H}$ where $A \subseteq \mathbb{H}$ are biLipschitz decomposable.

BiLipschitz decomposition (redux)

Theorem (Pauls, Meyerson, L.)

Lipschitz maps $f: A \rightarrow \mathbb{H}$ where $A \subseteq \mathbb{H}$ are biLipschitz decomposable. In fact, for each $\delta>0$ there exists $M(\delta)>0$ with the following property. For every 1-Lipschitz $f: B(0,1) \rightarrow \mathbb{H}$, there is a Borel decomposition $B(0,1)=Z \cup E_{1} \cup \ldots \cup E_{M}$ where $M<M(\delta)$ so that $\left.f\right|_{E_{i}}$ are biLipschitz and

$$
\mathcal{L}(f(Z))<\delta .
$$

BiLipschitz decomposition (redux)

Theorem (Pauls, Meyerson, L.)

Lipschitz maps $f: A \rightarrow \mathbb{H}$ where $A \subseteq \mathbb{H}$ are biLipschitz decomposable. In fact, for each $\delta>0$ there exists $M(\delta)>0$ with the following property. For every 1-Lipschitz $f: B(0,1) \rightarrow \mathbb{H}$, there is a Borel decomposition $B(0,1)=Z \cup E_{1} \cup \ldots \cup E_{M}$ where $M<M(\delta)$ so that $\left.f\right|_{E_{i}}$ are biLipschitz and

$$
\mathcal{L}(f(Z))<\delta .
$$

What about Lipschitz maps $f: \mathbb{H} \rightarrow X$ where X is a metric measure space?

BiLipschitz nondecomposition

Recall (X, d, μ) is Ahlfors s-regular if there exist $C>1$ so that

$$
\frac{1}{C} r^{s} \leq \mu(B(x, r)) \leq C r^{s}, \quad \forall x \in X, r<\operatorname{diam}(X)
$$

BiLipschitz nondecomposition

Recall (X, d, μ) is Ahlfors s-regular if there exist $C>1$ so that

$$
\frac{1}{C} r^{s} \leq \mu(B(x, r)) \leq C r^{s}, \quad \forall x \in X, r<\operatorname{diam}(X)
$$

Thus, $(\mathbb{H}, \mathcal{L})$ is 4-regular.

BiLipschitz nondecomposition

Recall (X, d, μ) is Ahlfors s-regular if there exist $C>1$ so that

$$
\frac{1}{C} r^{s} \leq \mu(B(x, r)) \leq C r^{s}, \quad \forall x \in X, r<\operatorname{diam}(X)
$$

Thus, $(\mathbb{H}, \mathcal{L})$ is 4-regular.

Theorem (Le Donne-L.-Rajala)

There exists a 4-regular metric space (X, d, μ) and a Lipschitz surjection $f: \mathbb{H} \rightarrow X$ for which $\left.f\right|_{A}$ is not biLipschitz for any Borel $A \subseteq \mathbb{H}$ of positive measure.

BiLipschitz nondecomposition (cont.)

Theorem (Le Donne-L.-Rajala)

There exists a 4-regular metric space (X, d, μ) and a Lipschitz surjection $f: \mathbb{H} \rightarrow X$ for which $\left.f\right|_{A}$ is not biLipschitz for any Borel $A \subseteq \mathbb{H}$ of positive measure.

BiLipschitz nondecomposition (cont.)

Theorem (Le Donne-L.-Rajala)

There exists a 4-regular metric space (X, d, μ) and a Lipschitz surjection $f: \mathbb{H} \rightarrow X$ for which $\left.f\right|_{A}$ is not biLipschitz for any Borel $A \subseteq \mathbb{H}$ of positive measure.

Recall that $N(0,0, z)=|z|^{1 / 2}$. As $Z(\mathbb{H})=\{(0,0, z): z \in \mathbb{R}\}$, we see \mathbb{H} is foliated by $(\mathbb{R}, \sqrt{|\cdot|})$.

BiLipschitz nondecomposition (cont.)

Theorem (Le Donne-L.-Rajala)

There exists a 4-regular metric space (X, d, μ) and a Lipschitz surjection $f: \mathbb{H} \rightarrow X$ for which $\left.f\right|_{A}$ is not biLipschitz for any Borel $A \subseteq \mathbb{H}$ of positive measure.

Recall that $N(0,0, z)=|z|^{1 / 2}$. As $Z(\mathbb{H})=\{(0,0, z): z \in \mathbb{R}\}$, we see \mathbb{H} is foliated by $(\mathbb{R}, \sqrt{|\cdot|})$. Triangle inequality for $\sqrt{|\cdot|}$ is usually very generous.

BiLipschitz nondecomposition (cont.)

Theorem (Le Donne-L.-Rajala)

There exists a 4-regular metric space (X, d, μ) and a Lipschitz surjection $f: \mathbb{H} \rightarrow X$ for which $\left.f\right|_{A}$ is not biLipschitz for any Borel $A \subseteq \mathbb{H}$ of positive measure.

Recall that $N(0,0, z)=|z|^{1 / 2}$. As $Z(\mathbb{H})=\{(0,0, z): z \in \mathbb{R}\}$, we see \mathbb{H} is foliated by $(\mathbb{R}, \sqrt{|\cdot|})$. Triangle inequality for $\sqrt{|\cdot|}$ is usually very generous.

We then manually push together vertically separated points q_{1}, q_{2} at many locations and scales in a careful way to collapse the metric but not the measure.

Open problems

1. Mattila proved for any Borel $E \subseteq \mathbb{R}^{m}$ that $\left(\mathbb{R}^{m},\left.\mathcal{H}^{n}\right|_{E}\right)$ is n-rectifiable iff $\Theta^{n}\left(\left.\mathcal{H}^{n}\right|_{E} ; x\right)=2^{n}$ for $\left.\mathcal{H}^{n}\right|_{E}$-a.e. $x \in \mathbb{R}^{m}$. Does this hold when $\left(X, d, \mathcal{H}^{n}\right)$ is a n-rectifiable metric measure space?

Open problems

1. Mattila proved for any Borel $E \subseteq \mathbb{R}^{m}$ that $\left(\mathbb{R}^{m},\left.\mathcal{H}^{n}\right|_{E}\right)$ is n-rectifiable iff $\Theta^{n}\left(\left.\mathcal{H}^{n}\right|_{E} ; x\right)=2^{n}$ for $\left.\mathcal{H}^{n}\right|_{E}$-a.e. $x \in \mathbb{R}^{m}$. Does this hold when $\left(X, d, \mathcal{H}^{n}\right)$ is a n-rectifiable metric measure space?
2. The Heisenberg group is an example of a Carnot group, which are nonabelian versions of Euclidean spaces. Is there a Preiss theorem for H-rectifiability in (G, μ) when G and H are Carnot groups?

Open problems

1. Mattila proved for any Borel $E \subseteq \mathbb{R}^{m}$ that $\left(\mathbb{R}^{m},\left.\mathcal{H}^{n}\right|_{E}\right)$ is n-rectifiable iff $\Theta^{n}\left(\left.\mathcal{H}^{n}\right|_{E} ; x\right)=2^{n}$ for $\left.\mathcal{H}^{n}\right|_{E}$-a.e. $x \in \mathbb{R}^{m}$. Does this hold when $\left(X, d, \mathcal{H}^{n}\right)$ is a n-rectifiable metric measure space?
2. The Heisenberg group is an example of a Carnot group, which are nonabelian versions of Euclidean spaces. Is there a Preiss theorem for H-rectifiability in (G, μ) when G and H are Carnot groups?
3. What "nice" Ahlfors n-regular spaces X (besides \mathbb{R}^{n}) have biLipschitz decomposition for all Lipschitz maps $f: X \rightarrow\left(Y, \mathcal{H}^{n}\right)$ into arbitrary metric spaces?

Thank you!

