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Motivation: 3D Euler

Consider an ideal (no viscosity, incompressible) fluid filling up a
domain M with boundary ∂M.

Velocity field U satisfies the Euler equation

Ut + U · ∇U = −∇P, div U = 0.

Take divergence of both sides to get ∆P = − div (U · ∇U).

Boundary condition: no flow through boundary, so 〈U, n〉 = 0
where n is the unit normal field. Hence 〈∇P, n〉 = −〈U · ∇U, n〉.

1. Begin with initial divergence-free velocity U0.

2. Solve Neumann problem to find pressure P0.

3. Use ∇P0 as acceleration to get velocity U1.

4. etc.



Difficult because pressure P is nonlocal: change velocity anywhere
and pressure changes everywhere!

Local well-posedness: If U0 is smooth enough (e.g., C 1+α for
α > 0 or Hs for s > dim M/2) then U(t) exists on a short time
interval |t| < ε, U(t) is as smooth as U0, and U(t) is a continuous
function of U0. (Wolibner, Ebin-Marsden, Kato, etc.)

Global well-posedness: if U0 is smooth, does U(t) remain
smooth for all time t? True if dim M = 2, unknown for dim M ≥ 3.
For positive viscosity, this is a Millennium problem.

Even for axisymmetric fluids, it’s open (believed to be false due to
numerical results (Luo-Hou, 2014).



Vorticity formulation

Take curl of the Euler equation to get{
ωt + U(ω) = 0 dim M = 2

ωt + [U, ω] = 0 dim M = 3.

We can reconstruct U from ω using the Biot-Savart law since
div U = 0 and curl U = ω.

I If dim M = 2 then ω is a function transported by the flow.

I If dim M = 3 then ω is a vector field which may be stretched.

Theorem (Beale-Kato-Majda, 1984): If
∫ T
0 ‖ω(t)‖L∞ dt <∞ then

the solution can be continued past time T .



Lagrangian analysis

Let η denote the flow of U, satisfying η̇ = U ◦ η, η(0) = id. The
Euler equation becomes

η̈(t) = −∇P ◦ η, det Dη ≡ 1.

Vorticity:

I If dim M = 2 then ω(t, η(t, x)) = ω0(x).

I If dim M = 3 then ω(t, η(t, x)) = Dη(t, x)ω0(x).

Vorticity growth comes from Dη →∞ (or Dη → 0). And Dη
satisfies

d2

dt2
Dη = −∇2P ◦ ηDη,

a linear ODE along a particle path.



Special paths

r = 0 and r = 1 are preserved (axis of symmetry and boundary).
Write the flow as

η(t, r , θ, z) =
(
α(t, r , z), θ + β(t, r , z), γ(t, r , z)

)
.

Then α(t, 0, z) = 0 and α(t, 1, z) = 1.

If U0 is odd through z = 0, then U will remain odd and z = 0 is a
fixed point of the flow.

For example on the axis we have ρ(t) = αr (t, 0, 0) satisfying

ρ̈(t) =
b2
0

ρ(t)3
− Prr (t, 0, 0)ρ(t),

where b0 is the initial “swirl” at the origin. This is the
Ermakov-Pinney equation. Describes the radial motion of a
harmonic oscillator in the plane with angular momentum b0 and
radial force −Prr . If ρ(t)→ 0 then we have blowup.



Riemannian geometry

Arnold (1966) noticed that the Euler equation ηtt = −∇P ◦ η and
det Dη ≡ 1 is formally the geodesic equation on the group
Diffvol(M), the group of volume-preserving diffeomorphisms. That
is, fluids locally minimize the length determined by kinetic energy
when constrained by volume.

Ebin-Marsden (1970) proved that in the context of Sobolev Hs

diffeomorphisms, the geodesic equation is actually smooth. In other
words, the Euler PDE is actually an infinite-dimensional ODE,
which does not lose derivatives! (This almost never happens.)

Thus there is an exponential map which takes initial velocity U0 to
final position η(1), and this map is smooth. (The data-to-solution
map U0 7→ U(1) is not smooth, or even uniformly continuous;
Himonas-Misio lek, 2010.)



The derivative of the exponential map is a linear map from one
Hilbert space to another.

I Is it invertible? (If not, conjugate points.)

I If not, is the kernel finite-dimensional?

I Is the cokernel finite-dimensional?

I How can one find the singular points? What do they mean?

If the kernel and cokernel are always finite-dimensional, the
exponential map is called Fredholm.

Theorem: (Ebin, Misio lek, P.) If dim M = 2 and ∂M = ∅, then
the exponential map is Fredholm. If dim M = 3 it is not.

Failure of Fredholmness relates conjugate points to blowup via
BKM (P. 2010).



A good model of 3D Euler should have:

I smooth exponential map

I non-Fredholm exponential map

I energy conservation

I vorticity stretching

I velocity determined nonlocally from vorticity

I a BKM criterion for blowup via vorticity

The only known model in one dimension having all of these is the
Wunsch equation, which is the topic of this talk (finally!).



The Wunsch equation

Vorticity form:

ωt + uωθ + 2uθω = 0, ω = Huθ.

Here H is the Hilbert transform. Intuitively: H is a (nonlocal)
rotation, and Hux is like a curl.

Operator form:

Hf (θ) =
1

π
P.V .

∫ 2π

0
cot θ−ψ2 f (ψ) dψ = lim

ε→0

1

π

∫
|θ−ψ|>ε

cot θ−ψ2 f (ψ) dψ.

(Like the Biot-Savart operator that recovers U from curl U.)

Fourier coefficient form: if f (θ) =
∑

n∈Z fne inθ then

Hf (θ) =
∑
n∈Z
−i sgn nfne inθ.



Hilbert transform

I If f : S1 → R, then there is a unique φ(x , y) such that
φxx + φyy = 0 for y > 0 and φ(e iθ) = f (θ).

I This φ is harmonic and has a harmonic conjugate ψ(x , y)
satisfying the Cauchy-Riemann equations φx = ψy and
φy = −ψx .

I Then g(θ) = ψ(e iθ) is the Hilbert transform of f .
(Determined uniquely by condition that

∫
S1 ψ = 0.)

In other words, g = Hf iff there is a complex analytic function F
on the unit disc such that F (e iθ) = f (θ) + ig(θ).

For example H(cos nθ) = sin nθ using F (z) = zn and
H(sin nθ) = − cos nθ using F (z) = −izn, assuming n > 0. Briefly
H(e inθ) = −i sgn ne inθ.



Consequences if
∫
S1 f = 0:

I H2f = −f since iF is also analytic if F is.
I fHg + gHf = H(fg −HfHg) since FG is also analytic if F and

G are.

Define Λ = H∂θ.

Λ is symmetric since∫
S1

(fHg ′−gHf ′) dθ−
∫
S1

(fHg ′+g ′Hf ) dθ =

∫
S1

H(fg ′−HfHg ′) dθ = 0.

Λ is positive-definite since e inθ is an orthogonal basis of
eigenvectors with H(e inθ) = |n|e inθ. (Question: how to prove this
directly?)

Thus

〈〈u, v〉〉Ḣ1/2 =

∫
S1

uΛv dθ

defines a metric on the space of mean-zero vector fields on S1.



Consider the group Diff(S1) of smooth diffeomorphisms of the
circle, under composition.

It is a Fréchet manifold: tangent space at η ∈ Diff(S1) is

TηDiff(S1) = {U : S1 → TS1 |U(θ) ∈ Tη(θ)S
1∀θ ∈ S1}.

In particular TidDiff(S1) is the space of vector fields on S1.

Left-translation is (DLη)(U) = Dη(U) and right-translation is
(DRη)(U) = U ◦ η. Define right-invariant metric on Diff(S1) by

〈〈U,V 〉〉Ḣ1/2,η =

∫
M

(U ◦ η−1)Λ(V ◦ η−1) dθ

for U,V ∈ TηDiff(S1).

Geodesic equation for η(t) ∈ Diff(S1) is (with ω = Λu)

ηt(t, θ) = u
(
t, η(t, θ)

)
ωt(t, θ) + u(t, θ)ωθ(t, θ) + 2uθ(t, θ)ω(t, θ) = 0

This is called the Euler-Arnold equation. The Wunsch equation
comes from Λ = H∂θ.



Other Euler-Arnold equations:

I If Λ = 1 on Diff(S1) we get ut + 3uuθ = 0. (Burgers’)

I If Λ = 1− ∂2θ on Diff(S1) we get
ut − utθθ + 3uuθ − 2uθuθθ − uuθθθ = 0. (Camassa-Holm)
(Kouranbaeva, Misio lek)

I If Λ = −∂2θ on Diff(S1)/Rot(S1) we get
utθθ + 2uθuθθ + uuθθθ = 0. (Hunter-Saxton) (Lenells)

I If Λ = 1 on Bott-Virasoro group we get ut + 3uuθ + uθθθ = 0.
(Korteweg-DeVries) (Ovsienko-Khesin)

I If Λ = 1 on Diffvol(M) we get ut + u · ∇u = −∇p. (Ideal
Euler) (Arnold)

Studying PDEs as geodesic equations allows us to:

I study stability using sectional curvature (Arnold);

I prove well-posedness using FTODE rather than PDE methods
(Ebin-Marsden);

I understand blowup and weak solutions geometrically (Lenells).



Well-posedness:

I Note that ωt + uωθ + 2ωuθ = 0, u = (H∂θ)−1ω is not an
ODE for ω.

I However if ηt(t, θ) = u(t, η(t, θ)), then

∂
∂tω(t, η(t, θ)) = −2ω(t, η(t, θ))uθ(t, η(t, θ)).

I In addition ηtθ(t, θ) = uθ(t, η(t, θ))ηθ(t, θ). We get vorticity
conservation:

ηθ(t, θ)2ω(t, η(t, θ)) = ω0(θ).

I Solve for uθ in terms of ω: we have uθ = −H(ω), and
uθ ◦ η = −Hη(ω0/η

2
θ) where Hηf = H(f ◦ η−1) ◦ η.

I Thus ηtθ/ηθ = −Hη(ω0/η
2
θ), and this is an ODE for ηθ.



Curvature and blowup (Lenells, Hunter-Saxton):

I The sectional curvature for the Ḣ1 metric giving
Hunter-Saxton is a positive constant.

I This implies it is isometric to a sphere. In fact the isometry is
η 7→ √ηθ = ρ; note that

∫
S1 ρ

2 dθ = 1.

I The image of Diff(S1) is the positive “octant.” All geodesics
leave it, but squaring a spherical geodesic gives a weak
solution.



Recall Wunsch equation: Hutθ + uHuθθ + 2uθHuθ = 0. Magic
formula 2H(fHf ) = (Hf )2 − f 2 implies

utθ + u2
θ − (Huθ)2 = H(uHuθθ)

Notice:

ηt(t, θ) = u(t, η(t, θ))

ηtθ(t, θ) = uθ(t, η(t, θ))ηθ(t, θ)

ηttθ(t, θ) = utθ(t, η(t, θ))ηθ(t, θ) + uθθ(t, η(t, θ))ηθ(t, θ)ηt(t, θ)

+ uθ(t, η(t, θ))ηtθ(t, θ)

= [utθ + uuθθ + u2
θ ](t, η(t, θ))ηθ(t, θ).

Thus

ηttθ(t, θ)− ω(t, η(t, θ))2ηθ(t, θ) = −F (t, η(t, θ))ηθ

where F = −H(uHuθθ)− uuθθ.



Recall ω(t, η(t, θ)) = ω0(θ)/ηθ(t, θ)2, and thus we get

ρ̈(t)− ω2
0

ρ(t)3
= −f (t)ρ(t),

for ρ(t) = ηttθ(t, θ0), with f (t) = F (t, η(t, θ0)).

This is the Ermakov-Pinney equation again! Planar harmonic
oscillator, angular momentum ω0, radial force f (t). Heuristic
example with ω0 = 1 and f (t) = C

(1−t)2 :



But what do we know about the mystery force
F = −H(uHuθθ)− uuθθ?

Theorem (Bauer, Kolev, P.)

For any f : S1 → R and any p > 0 we have

H(fHΛpf ) + f Λpf ≥ 0

everywhere, where Λ = H∂θ.

Proof: expand f in a Fourier series f (θ) =
∑

n fne inθ. Manipulate
series to get

H(fHΛpf ) + f Λpf = 2
∞∑
n=1

[np − (n − 1)p]|φn|2

where φn(x) =
∑∞

m=n fme imθ.

Special case p = 1 discovered by Córdoba-Córdoba, special case
p = 2 with f odd discovered by Castro-Córdoba.



In particular H(fHf ′′) + ff ′′ ≤ 0 since H2 = −1, so the mystery
force is always positive!.

Intuition: blowup requires ηx → 0. Angular momentum (initial
vorticity) tries to prevent it. Mystery force tries to send “particle”
to origin.

Beale-Kato-Majda criterion (Bauer-Kolev-P.): if∫ T
0 ‖ω(t)‖∞L dt <∞ then existence up to time T . (Works the

same way for Wunsch equation as for 3D Euler.)

Intuition: since ω ◦ η = ω0/η
2
x , blowup at T should require∫ T

0 dt/ρ(t)2 =∞. But angular momentum means ρ2θ̇ is constant,
so we need θ(t)→∞ as t → T .

Still mysterious!



Special case: ω(x0) = 0. Then

ηttx(t, x0) = −F (t, η(t, x0))ηx(t, x0).

Now ηx(0, x0) = 1. Since F is always positive, the function
t 7→ ηx(t, x0) is always concave down.

If ηtx(0, x0) = ux(0, x0) ≤ 0 then ηx(T , x0) = 0 for some T > 0.
(Set the controls for the heart of the sun.)



What 3D Euler and the Wunsch equation have in common:

I Smooth Riemannian exponential map on Hs Sobolev-class
diffeomorphism groups.

I Exponential map is not Fredholm, due to too many conjugate
points.

I Vorticity conservation law and Beale-Kato-Majda vorticity
criterion for blowup.

I Flow map differential satisfies Ermakov-Pinney equation
(sometimes).

I Intrinsic distance locally bounded (finite diameter for 3D
fluids, zero distance for Wunsch equation).



Non-Fredholmness? Related to conjugate points. Geodesics
locally minimize length between two points, but may not minimize
globally. (E.g., on a sphere.)

Roughly, η(a) and η(b) are conjugate if some family of geodesics
connects them with shorter length. Fredholmness implies there are
at most a finite-dimensional family of length-shortening
perturbations along any finite portion of a geodesic.



Open questions:

I Does every geodesic end in finite time?

I Are there infinitely many conjugate pairs along a geodesic
that ends in finite time? (Probably yes.)

I Is failure of Fredholmness related to vanishing geodesic
distance?

I What happens near the blowup location?

I Does the flow η remain smooth even if it fails to be a
diffeomorphism (as happens for Camassa-Holm)?

I Does the “magic inequality” H(fHΛpf ) + f Λpf ≥ 0 generalize
to higher dimensions, using e.g., Riesz transforms instead?
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