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Part 1. A survey of older results

Pentagram Map of Richard Schwartz:

A good reference (among many others): http://en.wikipedia.

org/wiki/Pentagram_map



Example: if n=5 then T'(P) = P.

. t1—t2) (t3—t
Cross-ratio: [t1,to,t3,t4] = gti_é% %tg_tjg.
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Exercise: if n = 6 then T2(P) = P.

Let’'s watch an animation



Relevant moduli spaces:
Cn, Space of projective equivalence classes of closed n-gons in

RP? ; dim = 2n — 8;
Pr, space of projective equivalence classes of twisted n-gons in
RP2: dim = 2n:

é:7Z—RP? st. ¢(k+n)=Modao(k); Vk.

M is the monodromy.



Theorem (OST 2010) The Pentagram Map is completely inte-
grable on the space of twisted n-gons Py,;:

1). There are 2[n/2] 4+ 2 algebraically independent integrals;

2). There is an invariant Poisson structure of corank 2 if n is
odd, and corank 4 if n is even, such that the integrals Poisson
commute.

In both cases,
dim P, — corank = 2(number of integrals — corank).



Arnold-Liouville integrability (Poisson set-up)

Let MP124 have independent Poisson commuting ‘integrals’

1o Iy fp1s- -5 fpq Where f1,..., fp are Casimirs. One has
the symplectic foliation given by

f1 = const, fo = const, ..., fp = const,

and the Lagrangian subfoliation F9 given by

Jp4+1 = const, f,1 o = const, ..., f,41, = const.
The leaves carry a flat structure given by the commuting fields

pr+1,...,pr+q.
If a (discrete or continuous time) dynamical system on M pre-
serves all this, then the motion on the leaves is a parallel trans-
lation. If the leaves are compact, they are tori, and the motion
IS quasi-periodic.



Poncelet-style Corollary. If a point is T-periodic then all points
on the same leaf are periodic with the same period.




Corner coordinates: left and right cross-ratios X1,Y7,..., Xn, Yn.

The map is as follows:
1-X, 1Y

X; = X; ;
1 —Xij41Yi41
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TwO consequences:

1). Hidden scaling symmetry

(X1,Y1, o0, X0, Yo) = (¢X 1,71V, o t X0, t7 1Y)

commutes with the map.

2). “Easy" integrals:

and, for even n,

7 even 1 odd
These are the Casimirs.



Monodromy invariants:

023 Er3(Tr M) [%2]0
(det M)1/3 ="

are polynomials in (X;,Y;), decomposed into homogeneous com-
ponents; likewise, for EF; with M1 replacing M.

T hey are algebraically independent. There is a combinatorial de-
scription, and a description in terms of 4-diagonal determinants.

Poisson bracket:

(X, Xip1t =X X1, Yo, Yip1} =Y Y4,

and the rest = 0.
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Complete integrability on the space of closed polygons C, holds
as well:

V. Ovsienko, R. Schwartz, S. T. Liouville-Arnold integrability of
the pentagram map on closed polygons, Duke Math. J. 162
(2013), 2149—-2196;

F. Soloviev. Integrability of the Pentagram Map, Duke Math.
J., 162 (2013), 2815—2996.
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Continuous limit of the pentagram map

Object of study: the space P of non-degenerate twisted param-
eterized curves in RP2 modulo projective equivalence:

(x4 1) = M(v(z)).
Lift so that
(@) M(@) M (z)| = 1.
Then
" (z) + w(x) M(z) + v(z) M (z) = 0.
Thus P = space of linear differential operators on R:

d\3 d
A= (—) + u(z) — + v(x),
dx dx
with v and v smooth 1l-periodic functions.
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Rewrite as

A= (%)3 + % (u(x) di; + dci u(w)) + (@)

where w(xz) = v(x) — @ (sum of a skew-symmetric and zero-
order symmetric operators). These v and w are the “projective
curvature” and ‘“projective length element’ .

Construction:

Y(x) v(X+¢€)

Y. (%)
Y(x-¢)
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It turns out that

ue = u—+ i+ (e3), we=w—+ 2w+ (3),

giving the flow: ©« =u, w = w.
A computation reveals :

or

u +

the Boussinesq equation!
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Other interesting things (not for this talk):

e New configuration theorems of elementary projective geometry (Schwartz
& S.T.)

e Combinatorics of monodromy invariants on inscribed polygons (Schwartz
& S.T.)

e Algebraic combinatorics of frieze and 2-frieze patterns, and cluster alge-
bras (Mourier-Genoud, Ovsienko & S.T.)

e Pentagram Map, cluster algebras, Y- and T-patterns (M. Glick; R. Ke-
dem)

e Singularity confinement (M. Glick)

e Milti-dimensional pentagram maps (B. Khesin & F. Soloviev; G. Mari-
Beffa)

e Loop groups and cluster algebras (V. Fock & A. Marshakov)

e Combinatorial Gale transform and commuting difference operators ((Mourier-
Genoud, Ovsienko & S.T.; I. Krichever)
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Part 2. Higher- (and lower-) dimensional Pentagram Maps

Joint work (still in progress) with M. Gekhtman, M. Shapiro and
A. Vainshtein, ERA 19 (2012), 1-17.

The change of variables
r, =Y, yi=-YX;1+1Y11
yields the map T3:

. x; + Y; . Tit1 + Yi+1
T; = Tj_D , Y = Y1 :
Ti—2+ Yi—2 Ti—1+ Yi—1

1
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Generalize to the family of map T, k= 2,3,...:

x- . x- .
of = iUy, BTV even
i—r— i—r— i—r i—r
x- . x- .
vF =2 o itr T Yitr vE =y 1 itr4+1 T yz—l—r—l—l’ k odd,

)
Ti—p—2 T+ Yi—p—2 Ti—p—1 T Yi—r—1

where r = [g] — 1.

As we shall see, kK — 1 is the dimension of the ambient projective
space.
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Weighted directed networks on the cylinder and the torus
(A. Postnikov math /0609764, for networks in a disc;
GSV, Cluster algebras and Poisson geometry, AMS, 2010).

Example:

No cycles. Two kind of vertices, white and black.
Convention: an edge weight is 1, if not specified.
The cut is used to introduce a spectral parameter ).
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Boundary measurements: the network

corresponds to the matrix

O >» O
R O 8

x4+ vy
0
1

Concatenation of networks — product of matrices.
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Gauge group: at a vertex, multiply the weights of the incoming
edges and divide the weights of the outgoing ones by the same
monomial in the weights. Preserves the boundary measurements.

Poisson bracket on the edge weight space: {z;,z;} = c;;x;x;, 1 7~
j€{1,2,3}

X2 2
X1 ]

A3 A3

Descends to the quotient of the edge weight space by the gage
group. One chooses the standard Poisson structure (described
in terms of the dual graph).
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Postnikov moves (preserve the boundary measurements):

Y 1 b B a ]b
% d: cd
Y] b B a\llb
e

=

i
{ / \1/(1 +ab )/
) . _ bi+ab )D a/(1+ab)

/1 Y ] ]+aby

A\

/~
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Consider a network drawn on the torus. Example, k = 3,n = 5:
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The faces are squares and octagons.
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The dynamics: mutation (Postinov type 3 move on squares),

. YI(x+y),

X 1/(x+y) x/(x+y)

y * xX+y

followed by the Postnikov type 1 and 2 moves on the white-white
and black-black edges, including moving across the vertical cut,
and finally, re-calibration to restore 1s at the appropriate places.

These moves preserve the graph and the conjugacy class of the
boundary measurement matrix.
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Schematically:

I 1
‘ Y
Y
¢ mutation
I : i
‘ Y
i
Y

¢ commutation

I
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Complete integrability of the maps 7}

The ingredients are suggested by the combinatorics of the net-
WOrK.

Invariant Poisson bracket (in the “stable range” n > 2k — 1):

{zi, i} = —@iwiq; 1 <U< k=2 {y;, i1} = —Yivit, 1 < U< k-1,
{vi i1t = —yiwip, L < U< k=1, {y;, i} = yw;, 0 < U< k=2
the indices are cyclic.

The functions [[xz; and []y; are Casimirs. If n is even and k is
odd, one has four Casimir functions:

Il = Il = I w I w

7 even 7 odd 7 even 1 odd
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Lax matrices, monodromy, integrals: for k > 3,

(O 0O O T oty )
A O 0 0 0
o 1 0 0 o©
v 0 0 1 0 0 ’
\ 0o 0 0o ... 1 1
and for k = 2,

Li:<>\;\6i %‘i‘%)

The boundary measurement matrix is M(\) = Ly---Ly. The
characteristic polynomial

det(M(\) — 2) =Y Ij(z,y)z'N.
IS Ti-invariant: the integrals I;; are in involution.

26



Geometric interpretations

Twisted corrugated polygons in RPF1 and k — 1-diagonal maps

Let £ > 3. Pk,n — projective equivalence classes of generic
twisted n-gons in RP*~1; dim Py, = n(k — 1).

Pg,n C Pkm consist of corrugated polygons: for every ¢, the ver-
tices V;, V41, Viqg—1 and V4 are coplanar.

A polygon, projectively dual to a corrugated polygon, is corru-
gated.

The consecutive k£ — 1-diagonals of a corrugated polygon inter-
sect. The resulting polygon is again corrugated. One gets a
pentagram-like k — 1-diagonal map on ngn. For £k = 3, this is
the pentagram map.
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Example: a 5-corrugated octagon

6
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Coordinates: lift the vertices V; of a corrugated polygon to vec-
tors \7; in R* so that the linear recurrence holds

Vidk = ¥i-1Vi + ziVig1 + Vigr—1,
where x; and y; are n-periodic sequences. These are coordinates
in Pgn. In these coordinates, the map is identified with Tj..

Projective interpretation. The coordinates x,y are determined
by two cross-ratios:
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Viio Vitk-1

Vitk+1

[‘/’L’—I—la‘/jila ‘/z’—|—17‘/z—|—k] and [P’w‘/u‘/:o—l—lan]
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Case k=2

Sy is the space of pairs of twisted n-gons (57,5) in RP1! with
the same monodromy. Consider the (multiple) cross-ratios:
_ (Sit1 — Sz'_—I—Q)(Si_ - Sz'_—I—l)

(Sq:_ - 7L—|—1)(SZ'__|_1 _Si__|_2)

Ly

(S = Si41)(Si40 = Si2)(S; — S5 1)
(Sz'__|_1 — Si—|—2)(sz'_ — Si—|—1)(sz'__|_1 - SZ'__|_2)

Yi

Then z;,y; are coordinates in S,/PGL(2,R).
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Define a transformation (S—,5) — (S,ST), where ST is given by
the following local leapfrog rule: given points S;_1,S,,S;,S;41,
the point S,L.'" is obtained by the reflection of SZ._ in S; in the

projective metric on the segment [S;_1,S;4+1]:

Si+]

The projective distance between points S; and S5, on a segment
Si;—15;41 Is as given by the formula

1 (S —8i—1)(Si+1 — Si)

d(SZ-,Si_):—In —.
2 (S;—85i—1)(Six+1—5;)

The projection to z,y conjugates the leapfrog map and 75.
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In formulas (equivalently):

1 1 1 1
. - + ,
St—8, S, =S Si41—5  Si—1—5;
or
(S = Si41)(Si =SS = Si-1) _
(St = S)(Six1 — Si)(S; — Si_1)
or
(S — S8i_1)(Si—87)(Siq1 —Si) 1

(S = 8)(S; — Si_1)(S; — Sit1) B
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In CP! a circle pattern interpretation:
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Thank you!
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