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Introduction: The general problematic and our model equation

Nonlinear dispersive equations

What are dispersive equations? (e.g. Nonlinear Schrödinger (NLS),
nonlinear wave (NLW), water waves, Einstein’s equations of GR, etc.).

Dispersion= Solutions (or waves packets) with different frequencies
travel with different velocities.

On unbounded domains like Rd , dispersion is a mechanism of
non-dissipative decay:

‖u(t)‖L∞(Rd ) . t−α for some α > 0.

Decay ⇒ Nonlinear Asymptotic stability of equilibrium sol’ns on Rd

(e.g. small-data scattering, stability of Minkowski (or black hole?)
spaces in general relativity, theory of elasticity, etc.)
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Introduction: The general problematic and our model equation

Out-of-equilibrium dynamics on bounded domains

On compact domains, wave packets interact indefinitely.

Dispersion ; Decay neither at the linear nor the nonlinear level.

Consequence: Loss of all asymptotic stability results of equilibrium
solutions for nonlinear dispersive equations on compact domains.

Out-of-equilibrium dynamics is anticipated.

Problematic: How to understand, explain, and capture this
out-of-equilibrium dynamics?
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Introduction: The general problematic and our model equation

Energy cascades

One main aspect of this out-of-equilibrium dynamics is
Energy-cascade: Energies of the system (while remaining conserved)
move their concentration zones between characteristically different
length-scales.

Direct Cascade of energy: Migration of energy from low to arbitrarily
high frequency concentration zones (small scales).

Question: How to capture this cascade? More generally, how to
understand the out-of-equilibrium dynamics?
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Introduction: The general problematic and our model equation

Two approaches

1 Growth of Sobolev Norm Approach: Search for solutions whose high
Sobolev norms grow in time.

‖u(t)‖Hs(Td ) =
∑
|α|6s

‖∇αu‖L2(Td ) ∼

∑
n∈Zd

(1 + |n|2)s |û(n)|2
1/2

.

Bourgain, Staffilani, Kuksin, Tao, Colliander, Keel, Takaoka, H.,
Kaloshin, Guardia, etc.

2 Effective dynamics approach: Derive effective equations for the
dynamics by taking various limits of the original system.
Weak (wave) turbulence theory. Peierls (1929), Hasselman (1962),

Zakharov et al., Majda-Mclaughlin-Tabak (1997–), etc.
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Introduction: The general problematic and our model equation

Our model: Cubic NLS on a periodic box

We consider the 2D cubic nonlinear Schrödinger equation (NLS) on
T2
L := [0, L]× [0, L] with periodic boundary conditions (dimension could be

higher):{
−i∂tv(t, x) + ∆v(t, x) = λ|v(t, x)|2v(t, x), λ ∈ {+1,−1},
v(0) = v0,

Solutions exist globally at least for ‖v0‖L2 6 ε (Bourgain ’93).

Aim: Understand out-of-equilibrium dynamics of small initial data.

Ansatz v(t, x) = εu(t, x) with ‖u0‖L2(T2
L) ∼ 1  Weak nonlinearity.{

−i∂tu(t, x) + ∆u(t, x) = ε2λ|u(t, x)|2u(t, x)

u(0) = u0,
(NLSε)
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Introduction: The general problematic and our model equation

Fourier Picture

Functions on T2
L can be expanded in Fourier series (K ∈ Z2

L := Z2/L)

f (x) =
1

L2

∑
K∈Z2/L

aK e2πiK .x , aK :=

∫
T2
L

f (x)e−2πiK .x dx .

Expanding the solution u(t) = 1
L2

∑
K∈Z2

L
aK (t) e2πiK .x . We get that

(up to a phase factor):

−i∂taK (t) =λ
ε2

L4

∑
(K1,K2,K3)∈SK

aK1(t)aK2(t)aK3(t)e4π2iΩt (NLS)

SK ={(K1,K2,K3) ∈ (Z2
L)3 : K1 − K2 + K3 = K}

Ω =|K1|2 − |K2|2 + |K3|2 − |K |2.
Resonant interactions: R(K ) = S(K ) ∩ {Ω = 0} are most important.

−i∂trK =λ
ε2

L4

∑
(K1,K2,K3)∈RK

rK1(t)rK2(t)rK3(t) (RNLS)
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Introduction: The general problematic and our model equation

Strichartz Estimates

Strichartz Estimates: Lpt,x -estimates on linear solutions.

(−i∂t + ∆)u = 0, u(0) = ϕ; ulin(t) := e−it∆ϕ .

Crucial for low-regularity existence questions (Bourgain, K-P-V, Tao,
etc.).

The relevant Strichartz estimate in 2D is:

‖e−it∆PNϕ‖L4
t,x ([−1,1]×T2) 6 C (N)‖ϕ‖L2 .

C (N) 6 Cε exp( c log N
log log N )� Nε for all ε > 0 (Bourgain ’93).

C (N) > C (logN)1/4. Counterexample: φ̂(k) = 1B(0,10N), k ∈ Z2.
Question: What is the sharp dependence of C (N) on N?

‖e it∆PNφ‖L4
t,x (T2×[0,1]) . (logN)1/4‖φ‖L2(T2)?? Bourgain ’93, ’96.
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First approach: Energy cascades and growth of Sobolev norms

Quest for unbounded Sobolev orbits

Movement of energy to high-frequency regions leads to the increase in
the Hs Sobolev norms for s > 1

‖u(t)‖Hs(Td ) =

∑
n∈Zd

(1 + |n|2)s |û(n)|2
1/2

Conjecture (Bourgain GAFA 2000)

There exists (many) global solutions to cubic NLS whose Hs norm (s > 1)
exhibits infinite growth in time, i.e.

lim sup
t→+∞

‖u(t)‖Hs = +∞

This is sometime called the “unbounded orbits conjecture”.
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First approach: Energy cascades and growth of Sobolev norms

First progress

Colliander, Keel, Staffilani, Takaoka, and Tao constructed solutions
with arbitrary large but finite growth:

Theorem (CKSTT; Inventiones 2008)

Let s > 1 and d > 2. For any δ � 1 and K � 1, there exists a solutions
u(t) of cubic NLS on Td and a time T such that

‖u(0)‖Hs 6 δ but ‖u(T )‖Hs > K .

Regard as long-time strong instability of the zero solution.

Theorem (H.; ARMA 2012)

There exists solutions to the resonant cubic NLS (RNLS) on Td (d > 2)
that exhibit infinite growth of high Sobolev norms. The same is true for a
family of systems approximating (NLS) arbitrarily closely.
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First approach: Energy cascades and growth of Sobolev norms Recent progress on Bourgain’s unbounded orbits conjecture
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First approach: Energy cascades and growth of Sobolev norms Recent progress on Bourgain’s unbounded orbits conjecture

Unbounded orbits for cubic NLS on R× Td

Consider the cubic NLS equation posed on R× Td (d > 2).

Modified scattering to the resonant dynamics: Sol’ns to NLS converge
to solutions of its resonant system [H.-Pausader-Tzvetkov-Visciglia].

Combining this to [H. 2012] gives

Theorem (H.-Pausader-Tzvetkov-Visciglia 2013)

For any d > 2 and ε > 0, there exists global Hs (s > 1) solutions to the
cubic NLS equation on R× Td satisfying

‖u(0)‖Hs(R×Td ) 6 ε and lim sup
t→∞

‖u(t)‖Hs(R×Td ) = +∞.

This gives the first rigorous results on infinite energy cascade for any
natural nonlinear dispersive equation.
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Second Approach: Deriving Effective equations (WT theory)
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Second Approach: Deriving Effective equations (WT theory)

Weak (or wave) turbulence theory

Aim: Statistical description of out-of-equilibrium dynamics of
solutions [Zakharov 60’s after Kolmogorov 41].

Setup: Random initial data (random phase and amplitude RPA):
aK (0) are independent random variable (K ∈ Z2

L).

Key quantity: n(K , t) := E|aK (t)|2. wave spectrum/ mass density.

Limits taken in the formal derivation of the effective eq’n for n(K ):
1 Statistical and time averaging (particularly non-rigorous).
2 Large-box limit (L→∞).
3 weak-nonlinearity limit (ε→ 0).

This gives an effective equation for n(K , t) (K ∈ R2): The
Kolmogorov-Zakharov equation.

**Not rigorously justified!!**

Zaher Hani (CIMS) Energy cascades and weak turbulence 17 / 44



Second Approach: Deriving Effective equations (WT theory)

Weak (or wave) turbulence theory

Aim: Statistical description of out-of-equilibrium dynamics of
solutions [Zakharov 60’s after Kolmogorov 41].

Setup: Random initial data (random phase and amplitude RPA):
aK (0) are independent random variable (K ∈ Z2

L).

Key quantity: n(K , t) := E|aK (t)|2. wave spectrum/ mass density.

Limits taken in the formal derivation of the effective eq’n for n(K ):
1 Statistical and time averaging (particularly non-rigorous).
2 Large-box limit (L→∞).
3 weak-nonlinearity limit (ε→ 0).

This gives an effective equation for n(K , t) (K ∈ R2): The
Kolmogorov-Zakharov equation.

**Not rigorously justified!!**

Zaher Hani (CIMS) Energy cascades and weak turbulence 17 / 44



Second Approach: Deriving Effective equations (WT theory) The weakly nonlinear large-box limit of NLS
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Second Approach: Deriving Effective equations (WT theory) The weakly nonlinear large-box limit of NLS

The weakly nonlinear large-box limit (jointly with E. Faou
and P. Germain)

Infinite-volume approximation A physical system might be more
effectively modeled Rd rather than the box of size L.

For well-localized data (frequency ∼ 1) of size ε, there are two
relevant time scales

1 Time to reach the boundary is T1 ∼ L (wave moves with speed ∼ 1).
2 Time for the nonlinearity to take effect Tnl ∼ ε−2.

Compare!

If T1 � Tnl ⇔ L� ε−2 → Use NLS on R2.
If T1 � Tnl ⇔ L� ε−2, the wave feels the “boundary” before the
nonlinearity kicks in. We are interested in this weakly nonlinear regime.

In this regime, we will see that a new equation dictates the nonlinear
dynamics for (NLS).
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Second Approach: Deriving Effective equations (WT theory) The weakly nonlinear large-box limit of NLS

Deriving the weakly nonlinear large-box limit

Argue formally. Consider the (NLS) for aK (t) (Now K ∈ Z2
L!).

Due to the weak nonlinearity regime we are in, one can approximate
the NLS flow with the resonant flow.

−i∂taK (t) =
ε2

L4

∑
(K1,K2,K3)∈R(K)

aK1(t)aK2(t)aK3(t) (RNLS)

where R(K ) = {(K1,K2,K3) ∈ Z2
L : K1 − K2 + K3 = K , Ω :=

|K1|2 − |K2|2 + |K3|2 − |K |2 = 0}.
Now we want to take the large box limit  Let L→∞.

Let (K1,K2,K3) ∈ R(K ). Set Ni = Ki − K (i = 1, 2, 3)
 N2 = N1 + N3 & |N2|2 = |N1|2 + |N3|2 ⇒ N1 ⊥ N3.
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Second Approach: Deriving Effective equations (WT theory) The weakly nonlinear large-box limit of NLS

Parametrization of rectangles in Z2/L

−i∂taK (t) =
ε2

L4

∑
N1,N3∈Z2

L
N1⊥N3

aK+N1(t)aK+N1+N3(t)aK+N3(t)

N1 = α(p, q)/L with α ∈ N and (p, q) ∈ Z2 satisfying
g. c. d(|p|, |q|) = 1. Then N3 = β(−q, p)/L for some β ∈ Z.

A lattice point J ∈ Z2
L is called visible if J = (p, q)/L with

g. c. d(|p|, |q|) = 1.

Writing N1 = αJ and N3 = βJ⊥, with J visible, one obtains
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Second Approach: Deriving Effective equations (WT theory) The weakly nonlinear large-box limit of NLS

Resonant NLS in new coordinates

−i∂ta(K ) =
ε2

L4

∑
α∈N,β∈Z

∑
J∈Z2

L
visible

a(K +

N1︷︸︸︷
αJ )a(K +

N3︷︸︸︷
βJ⊥)a(K +

N2︷ ︸︸ ︷
αJ + βJ⊥)

Passing to the large box limit (L→∞) amounts to replacing the
above sums by integrals.

To do this we need information about the equidistribution of visible
lattice points+quantitative error estimates.
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Second Approach: Deriving Effective equations (WT theory) The weakly nonlinear large-box limit of NLS

Co-prime equidistribution

Equidistribution: L−2
∑

K∈Z2
L
u(K )→

∫
R2 u(z)dz as L→∞ provided

say that u is sufficiently well-behaved (like u ∈ L1, ∇u ∈ L1).

Key point: Density of visible lattice points in Z2
L is 1

ζ(2) = 6
π2 . I.e.

L−2#{J ∈ Z2
L ∩ Ω : J visible} → Vol Ω

ζ(2) as L→∞ (classical).

Proposition (Co-prime equidistribution)

Suppose that u is sufficiently nice (say |u|+ |∇u| ∈ 〈K 〉−2−δL∞(R2)),
then for L� 1∣∣∣∣∣∣∣∣L

−2
∑

J∈Z2/L
J visible

u(J)− 1

ζ(2)

∫
R2

u(z)dz

∣∣∣∣∣∣∣∣ = O(
log L

L
), ζ(2) =

π2

6
.
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Second Approach: Deriving Effective equations (WT theory) The weakly nonlinear large-box limit of NLS

Continuum limit

Using this info., we get (formally) that aK satisfies:

−i∂ta(K , t) =
1

T ∗

∫ 1

−1

∫
R2

a(K + λz)a(K + λz + z⊥)a(K + z⊥)dz dλ

where T ∗
def
= ζ(2)L2

2ε2 log L
∼ L2

ε2 log L
(� ε−2!).

Reparametrizing time t = T ∗τ , we get formally that

−i∂τa(K , τ) =

∫ 1

−1

∫
R2

a(K + λz)a(K + λz + z⊥)a(K + z⊥) dz dλ.
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Second Approach: Deriving Effective equations (WT theory) The weakly nonlinear large-box limit of NLS

The Continuous Resonant equation (CR)

−i∂tg(ξ, t) =T (g , g , g)(ξ, t); ξ ∈ R2

T (g , g , g)(ξ, t) =

∫ 1

−1

∫
R2

g(ξ + λz , t)g(ξ + λz + z⊥)g(ξ + z⊥) dz dλ.

(CR)

g : Rt × R2
ξ → C.

Analogue of K-Z equation.

It is Hamiltonian (like NLS):

H(g) =
1

2

∫ 1

−1

∫
R2
ξ×R2

z

g(ξ)g(ξ + λz)g(ξ + λz + z⊥)g(ξ + z⊥) dz dλ

=
1

2

∫
Rs

∫
R2
x

|e is∆R2g(x)|4dsdx → L4
t,x Strichartz norm!
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Second Approach: Deriving Effective equations (WT theory) Properties of the limiting equation
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Second Approach: Deriving Effective equations (WT theory) Properties of the limiting equation

Conserved quantities

Proposition

The following quantities are conserved by the flow of (CR):

The Hamiltonian H,

Mass:
∫
|g(x)|2 dx.

Momentum:
∫
ξ |ĝ(ξ)|2 dξ.

Position:
∫
x |g(x)|2 dx.

Second moment
∫
|x |2|g(x)|2 dx.

Kinetic energy:
∫
|∇g(x)|2 dx.

Angular momentum
∫

(x ×∇)g(x)g(x) dx.
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Second Approach: Deriving Effective equations (WT theory) Properties of the limiting equation

Fourier transform

Theorem (Invariance under Fourier transform)

If g(t) is a solution of (CR), the so is ĝ(t) := Fg(t). Moreover,

H(f ) = H(f̂ ) for any function f ∈ L2.
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Second Approach: Deriving Effective equations (WT theory) Properties of the limiting equation

Invariance of Harmonic oscillator eigenspaces

The quantum harmonic oscillator H = −∆ + |x |2 admits an
orthonormal basis of eigenvectors for L2(R2).

The eigenspaces Ek correspond to the eigenvalue 2k (k = 1, 2, ...).
They are k-dimensional and are spanned by k − th order Hermite

functions (e.g. E0 = Span{e−
|x|2

2 }).

Theorem

The spaces Ek are invariant by the nonlinear flow of (CR), i.e. if g0 ∈ Ek ,
then g(t) ∈ Ek for all t ∈ R.
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Second Approach: Deriving Effective equations (WT theory) Properties of the limiting equation

Global well-posedness

Global well-posedness= global existence+uniqueness+continuous
dependence on initial data.

Theorem (Global well-posedness)

Equation (CR) is globally well-posed in L2(R2), i.e. for any
g0 ∈ L2(R2), there exists a unique global solution
g(t) ∈ CtL

2(Rt × R2).

Equation (CR) is globally well-posed in Hs(R2) for any s > 0.

Equation (CR) is globally well-posed in H0,s(R2) := 〈x〉−sL2 for any
s > 0.

Equation (CR) is globally well-posed in X σ(R2) = 〈x〉−σL∞ for any
σ > 2.
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Second Approach: Deriving Effective equations (WT theory) Properties of the limiting equation

Explicit Stationary Solutions

Gaussian Family: For any α ∈ C satisfying Reα > 0, there exists a
constant ω = ω(α) such that

g(t, ξ) = e iωte−α|ξ|
2

solves (CR).

Applying the symmetry group of the equation we obtain a 7-dim.
manifold of stationary solutions +Orbital Stability.

”Raleigh-Jeans” solution

g(t, ξ) =
e iω
′t

|ξ|
solves (CR) corresponds to n(ξ) = |ξ|−2of (KZ).

Many other explicit stationary solutions at higher energy levels of the
harmonic oscillator.
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Second Approach: Deriving Effective equations (WT theory) Rigorous approximation results
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Second Approach: Deriving Effective equations (WT theory) Rigorous approximation results

From Equation (CR) to NLS

Ultimately, we would like to project the dynamics of (CR) onto that
of (NLS) on the box T2

L of finite size. Suppose we have a solution
g(t, ξ) of (CR) on an interval [0,M] (with M arbitrarily large). We
would like to construct a solution of (NLS) that carries the dynamics
of g(t).

For this, we start with a solution of NLS with initial data
aK (0) = g(0,K ).

Recall that formal derivation of (CR) tells us that

−i∂taK
formally

“ = ”
1

T ∗
T (a, a, a) T ∗ =

ζ(2)L2

2ε2 log L
.

We should compare aK (t) with g( t
T∗ ,K ).

Zaher Hani (CIMS) Energy cascades and weak turbulence 33 / 44



Second Approach: Deriving Effective equations (WT theory) Rigorous approximation results

From Equation (CR) to NLS

Ultimately, we would like to project the dynamics of (CR) onto that
of (NLS) on the box T2

L of finite size. Suppose we have a solution
g(t, ξ) of (CR) on an interval [0,M] (with M arbitrarily large). We
would like to construct a solution of (NLS) that carries the dynamics
of g(t).

For this, we start with a solution of NLS with initial data
aK (0) = g(0,K ).

Recall that formal derivation of (CR) tells us that

−i∂taK
formally

“ = ”
1

T ∗
T (a, a, a) T ∗ =

ζ(2)L2

2ε2 log L
.

We should compare aK (t) with g( t
T∗ ,K ).

Zaher Hani (CIMS) Energy cascades and weak turbulence 33 / 44



Second Approach: Deriving Effective equations (WT theory) Rigorous approximation results

Difficulties

1 Passing to the resonant system: Tools from dynamical systems
(Normal forms transformations).  

−i∂taK = ε2L−4
∑
R(K)

aK1aK2aK3︸ ︷︷ ︸
resonant interactions

+ O(ε4L0+)︸ ︷︷ ︸
contribution of

non−resonant interactions

2 Obtaining good disc. to cont. error estimates: Tools from analytic
number theory (Möbius inversion formula).

3 Sharp estimates on resonant sums: Tools from Harmonic analysis and
analytic number theory (Periodic Strichartz estimates).
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1 Passing to the resonant system: Tools from dynamical systems
(Normal forms transformations)  

−i∂taK = ε2L−4
∑
R(K)

aK1aK2aK3︸ ︷︷ ︸
ESTIMATE !

+ O(ε4L0+)︸ ︷︷ ︸
contribution of

non−resonant interactions

2 Obtaining good disc. to cont. error estimates: Tools from analytic
number theory (Möbius inversion formula).

3 Sharp estimates on resonant sums: Tools from harmonic analysis and
analytic number theory (Periodic Strichartz estimates).
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Second Approach: Deriving Effective equations (WT theory) Rigorous approximation results

Estimates on resonant sums

∥∥∥∥∥∥
∑
R(K)

aK1 bK2 cK3

∥∥∥∥∥∥
X (Z2

L)

6 C (L)‖aK‖X (Z2
L)‖bK‖X (Z2

L)‖cK‖X (Z2
L) (*)

Formal argument gives that C (L) ∼ L2 log L if {aK}, {bK}, {cK} are
“smooth”.

If X = 〈K 〉−σ`2
L (Sobolev space), (*) is equivalent to the (still open!)

∥∥∥e it∆T2PNφ
∥∥∥
L4
t,x ([0,1]×T2)

???︷︸︸︷
6 C (logN)1/4‖φ ‖L2(T2) [Bourgain 93, 96].

We prove (*) in the space X σ = 〈K 〉−σ`∞ for σ > 2 with the sharp
constant L2 log L. Corollary: Periodic Strichartz estimates at critical
scaling.
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Second Approach: Deriving Effective equations (WT theory) Rigorous approximation results

Discrete weak turbulence regime

−i∂taK = ε2L−4
∑
R(K)

aK1aK2aK3︸ ︷︷ ︸
O( ε

2 log L

L2 )←in Xσ by (*)

+O(ε4L0+)

For the resonant sum to drive the dynamics, we need

Resonant Inter. ∼ ε2 log L

L2
� ε4L0+ i.e. ε� 1

L1+
.

Discrete wave turbulence regime.
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Second Approach: Deriving Effective equations (WT theory) Rigorous approximation results

Discrete to continuous error estimates

Proposition

Assuming that g : R2 → C is “ reasonably nice” (g ,∇g ∈ 〈ξ〉−3−δL∞ is
enough), then∥∥∥∥∥∥ 1

L2 log L

∑
R(K)

g(K1)g(K2)g(K3)− 1

ζ(2)
T (g , g , g)(K )

∥∥∥∥∥∥
Xσ

6
C

log L

Proof relies on some analytic number theory (Möbuis inversion
formula).
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Second Approach: Deriving Effective equations (WT theory) Rigorous approximation results

Approximation theorem on T2
L

Theorem (Faou-Germain-H. 2013)

Fix σ > 2. Suppose that g(t, ξ) is a solution of the (CR) on an
interval [0,M] such that g0,∇g0 ∈ X σ+1. Recall that (CR) is globally
well-posed for such initial data.

For any L > L0(M) and any ε� L−1, let aK (t) be the solution of
NLS with initial data aK (0)︸ ︷︷ ︸

=û0(K)

= g0(K ) (so ‖u0‖L2 ∼ 1).

THEN ∥∥∥aK (t)− g(
t

T ∗
,K )

∥∥∥
Xσ(Z2

L)
6

C

log L
.

for all 0 6 t 6 MT ∗, where T ∗ = ζ(2)L2

2ε2 log L
.
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Second Approach: Deriving Effective equations (WT theory) Rigorous approximation results

Approximate NLS solutions on T2

Corollary (Faou-Germain-H. 2013)

Fix s > 1. Suppose that g(t, ξ) is a solution of (CR) over an interval
[0,M] with initial data g0 = g(0, ξ) such that g0,∇g0 ∈ X s+3(R2).
Recall that (CR) is globally well-posed for such initial data.

Let N > N0(M). Define v(t) to be the solution to (NLS) with initial
data v̂(t = 0, k) := N−1−sg0( k

N ) for all k ∈ Z2 (so that
‖v(0)‖Hs(T2) ∼ ‖g0‖H0,s(R2) ∼ 1 uniformly in N).
THEN∥∥∥∥v(t)−F−1

{
e4π2i |k|2tN−1−sg(

t

T0
,
k

N
)

}∥∥∥∥
Hs(T2)

6
C

logN

for all 0 6 t 6 T0M where T0 = ζ(2)N2s

2 log N .
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Second Approach: Deriving Effective equations (WT theory) Rigorous approximation results

Remarks

The time interval of approximation allows to transfer all information
from g(t, ξ) over the interval [0,M] and M can arbitrarily large.

The last theorem gives explicit examples of coherent
out-of-equilibrium dynamics for NLS on T2.

This answers what happens in the regime ε� L−1. What happens in
the rest of the weakly nonlinear regime L−1 . ε . L−1/2 ???.
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Further Directions

Further Directions

Analysis of (CR)
1 Numerical study of (CR) long-time dynamics of NLS.
2 Analytical study of (CR): Properties and dynamics of its solutions (in

progress with P. Germain and L. Thomann).
3 Relation of (CR) to NLS with harmonic potential  another

justification (with L. Thomann).
4 Is (CR) completely integrable?

Deriving the weakly nonlinear large-box limit for other equations:
1 1D cubic and quintic NLS (with J. Shatah) leading to water wave

equations.
2 Klein-Gordon equations on spheres (with P. Germain and B. Pausader).
3 Geophysical flows.

Can one pass from weakly nonlinear large-box limit equations like
(CR) to KZ equations of weak turbulence by an appropriate
randomization?

Zaher Hani (CIMS) Energy cascades and weak turbulence 43 / 44



Further Directions

Thanks!

Thank you for your attention!
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