Non-Archimedean Methods in Complex Dynamics

Araceli Bonifant

University of Rhode Island

Stony Brook University March 7, 2013

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Any cubic polynomial map with marked critical point is affinely conjugate to one of the form

$$F(z) = F_{a,v}(z) = z^3 - 3a^2z + (2a^3 + v)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Any cubic polynomial map with marked critical point is affinely conjugate to one of the form

$$F(z) = F_{a,v}(z) = z^3 - 3a^2z + (2a^3 + v)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where

a is the marked critical point

Any cubic polynomial map with marked critical point is affinely conjugate to one of the form

$$F(z) = F_{a,v}(z) = z^3 - 3a^2z + (2a^3 + v)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where

- a is the marked critical point
- v = F(a) is the marked critical value

Any cubic polynomial map with marked critical point is affinely conjugate to one of the form

$$F(z) = F_{a,v}(z) = z^3 - 3a^2z + (2a^3 + v)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where

- a is the marked critical point
- v = F(a) is the marked critical value
- -a is the free critical point

Any cubic polynomial map with marked critical point is affinely conjugate to one of the form

$$F(z) = F_{a,v}(z) = z^3 - 3a^2z + (2a^3 + v)$$

where

- a is the marked critical point
- v = F(a) is the marked critical value
- -a is the free critical point

The set of all such maps $F = F_{a,v}$ will be identified with the parameter space, consisting of all pairs $(a, v) \in \mathbb{C}^2$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Period *p* Curve, S_p

Definition: The period *p* curve

$$\mathcal{S}_{p} = \left\{ (a, v) \in \mathbb{C}^{2} ; F^{\circ p}(a) = a
ight\}$$
 with p minimal

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The Period *p* Curve, S_p

Definition: The period *p* curve

$$\mathcal{S}_{p} = \left\{ (a, v) \in \mathbb{C}^{2} ; F^{\circ p}(a) = a
ight\}$$
 with p minimal

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem (Milnor 1991). S_p is a smooth affine algebraic curve in \mathbb{C}^2 (conjecturally always connected).

The Period *p* Curve, S_p

Definition: The period *p* curve

$$\mathcal{S}_{p} = \left\{ (a, v) \in \mathbb{C}^{2} ; F^{\circ p}(a) = a
ight\}$$
 with p minimal

Theorem (Milnor 1991). S_p is a smooth affine algebraic curve in \mathbb{C}^2 (conjecturally always connected).

For most periods p, S_p is a many times punctured surface of high genus.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

\mathcal{S}_1 has genus zero with one puncture ($\cong \mathbb{C}$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

$\mathcal{S}_2~$ has genus zero with two punctures

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

\mathcal{S}_3 has genus one with eight punctures

Universal covering of \overline{S}_3 .

(ロ)、

Escape Regions $\mathcal{E}_h \subset \mathcal{S}_p$

Definition. An **escape region** $\mathcal{E}_h \subset \mathcal{S}_p$ is a connected component of the open set consisting of maps $F \in \mathcal{S}_p$

Escape Regions $\mathcal{E}_h \subset \mathcal{S}_p$

Definition. An **escape region** $\mathcal{E}_h \subset \mathcal{S}_p$ is a connected component of the open set consisting of maps $F \in \mathcal{S}_p$ for which the orbit of the critical point -a escapes to ∞ .

Definition. An **escape region** $\mathcal{E}_h \subset \mathcal{S}_p$ is a connected component of the open set consisting of maps $F \in \mathcal{S}_p$ for which the orbit of the critical point -a escapes to ∞ .

Lemma (Milnor 1991). Each escape region \mathcal{E}_h is canonically diffeomorphic to the μ -fold covering of the complement $\mathbb{C}\setminus\overline{\mathbb{D}}$,

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition. An **escape region** $\mathcal{E}_h \subset \mathcal{S}_p$ is a connected component of the open set consisting of maps $F \in \mathcal{S}_p$ for which the orbit of the critical point -a escapes to ∞ .

Lemma (Milnor 1991). Each escape region \mathcal{E}_h is canonically diffeomorphic to the μ -fold covering of the complement $\mathbb{C} \setminus \overline{\mathbb{D}}$, where $\mu = \mu_h \ge 1$ is an integer called the **multiplicity** of \mathcal{E}_h .

Definition. An **escape region** $\mathcal{E}_h \subset \mathcal{S}_p$ is a connected component of the open set consisting of maps $F \in \mathcal{S}_p$ for which the orbit of the critical point -a escapes to ∞ .

Lemma (Milnor 1991). Each escape region \mathcal{E}_h is canonically diffeomorphic to the μ -fold covering of the complement $\mathbb{C} \setminus \overline{\mathbb{D}}$, where $\mu = \mu_h \ge 1$ is an integer called the **multiplicity** of \mathcal{E}_h .

The curve S_p can be compactified by adding finitely many ideal points ∞_h ,

The curve S_p can be compactified by adding finitely many ideal points ∞_h , one for each escape region \mathcal{E}_h ,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The curve S_p can be compactified by adding finitely many ideal points ∞_h , one for each escape region \mathcal{E}_h , thus yielding a smooth complex 1-manifold \overline{S}_p .

The curve S_p can be compactified by adding finitely many ideal points ∞_h , one for each escape region \mathcal{E}_h , thus yielding a smooth complex 1-manifold \overline{S}_p .

Caution. \overline{S}_p is NOT the closure of S_p in the projective space \mathbb{CP}^2 . (The closure has singular points at infinity.)

The curve S_p can be compactified by adding finitely many ideal points ∞_h , one for each escape region \mathcal{E}_h , thus yielding a smooth complex 1-manifold \overline{S}_p .

Caution. \overline{S}_p is NOT the closure of S_p in the projective space \mathbb{CP}^2 . (The closure has singular points at infinity.)

With this compactification, each escape region, together with its ideal point, is conformally isomorphic to the open unit disk.

Degree and the number N_p of escape regions.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

$$\deg(\mathcal{S}_{\rho}) = \mu_1 + \cdots + \mu_{N_{\rho}} ,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where μ_h is the multiplicity of \mathcal{E}_h .

$$\deg(\mathcal{S}_{\rho}) = \mu_1 + \cdots + \mu_{N_{\rho}} ,$$

where μ_h is the multiplicity of \mathcal{E}_h . Thus

 $1 \leq N_{p} \leq \deg(S_{p})$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\deg(\mathcal{S}_{\mathcal{P}}) = \mu_1 + \cdots + \mu_{N_{\mathcal{P}}} ,$$

where μ_h is the multiplicity of \mathcal{E}_h . Thus

$$1 \leq N_{p} \leq \deg(S_{p})$$
.

Here the degree grows exponentially fast with p,

 $\deg(\mathcal{S}_{\rho}) \sim \mathbf{3}^{p-1} \quad \text{as} \quad \rho \to \infty \ .$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\deg(\mathcal{S}_{\mathcal{P}}) = \mu_1 + \cdots + \mu_{N_{\mathcal{P}}} ,$$

where μ_h is the multiplicity of \mathcal{E}_h . Thus

$$1 \leq N_{p} \leq \deg(S_{p})$$
.

Here the degree grows exponentially fast with p,

 $\deg(\mathcal{S}_p) \sim 3^{p-1} \quad \text{as} \quad p \to \infty \ .$

More precisely, $deg(S_p)$ can be computed from the equation

$$\deg(\mathcal{S}_p) = 3^{p-1} - \sum_{n|p, n < p} \deg(\mathcal{S}_n).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\deg(\mathcal{S}_{\rho}) = \mu_1 + \cdots + \mu_{N_{\rho}} ,$$

where μ_h is the multiplicity of \mathcal{E}_h . Thus

$$1 \leq N_{p} \leq \deg(S_{p})$$
.

Here the degree grows exponentially fast with p,

 $\deg(\mathcal{S}_{\rho}) \sim \mathbf{3}^{p-1} \quad \text{as} \quad \rho \to \infty \ .$

More precisely, $deg(S_p)$ can be computed from the equation

$$\deg(\mathcal{S}_p) = 3^{p-1} - \sum_{n \mid p, n < p} \deg(\mathcal{S}_n).$$

Example.

 $\deg(S_1) = 3^0 - 0 = 1$

(ロ)、

$$\deg(\mathcal{S}_{\mathcal{P}}) = \mu_1 + \cdots + \mu_{N_{\mathcal{P}}} ,$$

where μ_h is the multiplicity of \mathcal{E}_h . Thus

$$1 \leq N_{p} \leq \deg(S_{p})$$
.

Here the degree grows exponentially fast with p,

 $\deg(\mathcal{S}_{\rho}) \sim \mathbf{3}^{p-1} \quad \text{as} \quad \rho \to \infty \ .$

More precisely, $deg(S_p)$ can be computed from the equation

$$\deg(\mathcal{S}_p) = 3^{p-1} - \sum_{n \mid p, n < p} \deg(\mathcal{S}_n).$$

Example.

 $deg(S_1) = 3^0 - 0 = 1$ $deg(S_2) = 3^1 - 1 = 2$

$$\deg(\mathcal{S}_{\mathcal{P}}) = \mu_1 + \cdots + \mu_{N_{\mathcal{P}}} ,$$

where μ_h is the multiplicity of \mathcal{E}_h . Thus

$$1 \leq N_{p} \leq \deg(S_{p})$$
.

Here the degree grows exponentially fast with p,

 $\deg(\mathcal{S}_{\rho}) \sim \mathbf{3}^{p-1} \quad \text{as} \quad \rho \to \infty \ .$

More precisely, $deg(S_p)$ can be computed from the equation

$$\deg(\mathcal{S}_p) = 3^{p-1} - \sum_{n \mid p, n < p} \deg(\mathcal{S}_n).$$

Example.

$$deg(S_1) = 3^0 - 0 = 1$$

$$deg(S_2) = 3^1 - 1 = 2$$

$$deg(S_3) = 3^2 - 1 = 8$$

$$\deg(\mathcal{S}_{\mathcal{P}}) = \mu_1 + \cdots + \mu_{N_{\mathcal{P}}} ,$$

where μ_h is the multiplicity of \mathcal{E}_h . Thus

$$1 \leq N_{p} \leq \deg(S_{p})$$
.

Here the degree grows exponentially fast with p,

 $\deg(\mathcal{S}_{\rho}) \sim \mathbf{3}^{p-1} \quad \text{as} \quad \rho \to \infty \ .$

More precisely, $deg(S_p)$ can be computed from the equation

$$\deg(\mathcal{S}_p) = 3^{p-1} - \sum_{n \mid p, n < p} \deg(\mathcal{S}_n).$$

Example.

$$deg(S_1) = 3^0 - 0 = 1$$

$$deg(S_2) = 3^1 - 1 = 2$$

$$deg(S_3) = 3^2 - 1 = 8$$

$$deg(S_4) = 3^3 - 2 - 1 = 24.$$

Local Parametrization of $\mathcal{S}_{\rho} \subset \mathbb{C}^2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Define $\phi_p : \mathbb{C}^2 \to \mathbb{C}$ by $\phi_p(a, v) = F^{\circ p}(a) - a$, where $F = F_{a,v}$.

Define $\phi_p : \mathbb{C}^2 \to \mathbb{C}$ by

 $\phi_{p}(a, v) = F^{\circ p}(a) - a$, where $F = F_{a,v}$.

(日)

This vanishes everywhere on S_p , with $d\phi_p \neq 0$ on S_p .

Define $\phi_p : \mathbb{C}^2 \to \mathbb{C}$ by $\phi_p(a, v) = F^{\circ p}(a) - a$, where $F = F_{a,v}$. This vanishes everywhere on S_p , with $d\phi_p \neq 0$ on S_p . Let $t \mapsto (a, v)$ be any solution to the Hamiltonian differential equation $\frac{da}{dt} = \frac{\partial \phi_p}{\partial v}, \qquad \frac{dv}{dt} = -\frac{\partial \phi_p}{\partial a}.$

Define $\phi_p : \mathbb{C}^2 \to \mathbb{C}$ by $\phi_{\mathcal{D}}(a, v) = F^{\circ \mathcal{P}}(a) - a$, where $F = F_{a,v}$. This vanishes everywhere on S_p , with $d\phi_p \neq 0$ on S_p . Let $t \mapsto (a, v)$ be any solution to the Hamiltonian differential equation $\frac{da}{dt} = \frac{\partial \phi_p}{\partial v}, \qquad \frac{dv}{dt} = -\frac{\partial \phi_p}{\partial a}.$ The local solutions $t \mapsto (a, v) = (a(t), v(t))$ are holomorphic, with $\frac{d\phi_p}{dt} = \frac{\partial\phi_p}{\partial a}\frac{da}{dt} + \frac{\partial\phi_p}{\partial v}\frac{dv}{dt} \equiv 0.$
Local Parametrization of $S_p \subset \mathbb{C}^2$.

Define $\phi_p : \mathbb{C}^2 \to \mathbb{C}$ by $\phi_{\mathcal{D}}(a, v) = F^{\circ \mathcal{P}}(a) - a$, where $F = F_{a,v}$. This vanishes everywhere on S_p , with $d\phi_p \neq 0$ on S_p . Let $t \mapsto (a, v)$ be any solution to the Hamiltonian differential equation $\frac{da}{dt} = \frac{\partial \phi_p}{\partial v}, \qquad \frac{dv}{dt} = -\frac{\partial \phi_p}{\partial a}.$ The local solutions $t \mapsto (a, v) = (a(t), v(t))$ are holomorphic, with $\frac{d\phi_p}{dt} = \frac{\partial\phi_p}{\partial a}\frac{da}{dt} + \frac{\partial\phi_p}{\partial v}\frac{dv}{dt} \equiv 0.$ Hence they lie in curves $\phi_{p} = \text{constant}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Local Parametrization of $S_p \subset \mathbb{C}^2$.

Define $\phi_p : \mathbb{C}^2 \to \mathbb{C}$ by $\phi_{\mathcal{D}}(a, v) = F^{\circ \mathcal{P}}(a) - a$, where $F = F_{a,v}$. This vanishes everywhere on S_p , with $d\phi_p \neq 0$ on S_p . Let $t \mapsto (a, v)$ be any solution to the Hamiltonian differential equation $\frac{da}{dt} = \frac{\partial \phi_p}{\partial v}, \qquad \frac{dv}{dt} = -\frac{\partial \phi_p}{\partial a}.$ The local solutions $t \mapsto (a, v) = (a(t), v(t))$ are holomorphic, with $\frac{d\phi_p}{dt} = \frac{\partial\phi_p}{\partial a}\frac{da}{dt} + \frac{\partial\phi_p}{\partial v}\frac{dv}{dt} \equiv 0.$ Hence they lie in curves $\phi_p = \text{constant}$.

Those solutions which lie in S_p provide a local holomorphic parametrization, unique up to a translation, $t \mapsto t + \text{constant}$.

Local Parametrization of $S_p \subset \mathbb{C}^2$.

Define $\phi_p : \mathbb{C}^2 \to \mathbb{C}$ by $\phi_{\mathcal{D}}(a, v) = F^{\circ \mathcal{P}}(a) - a$, where $F = F_{a,v}$. This vanishes everywhere on S_p , with $d\phi_p \neq 0$ on S_p . Let $t \mapsto (a, v)$ be any solution to the Hamiltonian differential equation $\frac{da}{dt} = \frac{\partial \phi_p}{\partial v}, \qquad \frac{dv}{dt} = -\frac{\partial \phi_p}{\partial a}.$ The local solutions $t \mapsto (a, v) = (a(t), v(t))$ are holomorphic, with $\frac{d\phi_p}{dt} = \frac{\partial\phi_p}{\partial a}\frac{da}{dt} + \frac{\partial\phi_p}{\partial v}\frac{dv}{dt} \equiv 0.$ Hence they lie in curves $\phi_{p} = \text{constant}$.

Those solutions which lie in S_p provide a local holomorphic parametrization, unique up to a translation, $t \mapsto t + \text{constant}$.

Equivalently, the holomorphic 1-form dt is well defined and non-zero everywhere on S_p .

Sample parametrization: A small part of S_4 .

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Sample parametrization: A small part of S_4 .

ъ

 \mathcal{S}_4 has genus fifteen with twenty punctures

Sample parametrization: A small part of S_4 .

 S_4 has genus fifteen with twenty punctures (5 visible here).

◆ロ → ◆聞 → ◆臣 → ◆臣 → ○臣

For each escape region $\mathcal{E}_h \subset \mathcal{S}_p$ the projection map

$$(a, v) \mapsto a$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

has a pole of order $\mu \ge 1$ at the ideal point ∞_h .

For each escape region $\mathcal{E}_h \subset \mathcal{S}_p$ the projection map

$$(a, v) \mapsto a$$

has a pole of order $\mu \geq 1$ at the ideal point ∞_h .

We will work with the variable

$$\xi = \frac{1}{a}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

For each escape region $\mathcal{E}_h \subset \mathcal{S}_p$ the projection map

 $(a, v) \mapsto a$

has a pole of order $\mu \geq 1$ at the ideal point ∞_h .

We will work with the variable

$$\xi = \frac{1}{a}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

which is a bounded holomorphic function throughout a neighborhood of ∞_h in S_p .

For each escape region $\mathcal{E}_h \subset \mathcal{S}_p$ the projection map

 $(a, v) \mapsto a$

has a pole of order $\mu \geq 1$ at the ideal point ∞_h .

We will work with the variable

$$\xi = \frac{1}{a}$$

which is a bounded holomorphic function throughout a neighborhood of ∞_h in S_p .

Since ξ has a zero of order μ at ∞_h , we can choose some μ -th root $\eta = \xi^{1/\mu}$ as a local uniformizing parameter near the ideal point.

In any escape region, the residue $\oint dt$ is zero, so that *t* is locally a meromorphic function.

In any escape region, the residue $\oint dt$ is zero, so that *t* is locally a meromorphic function. After adjusting by an additive constant we can write

$$t = c \eta^{w} + (\text{higher order terms})$$

 $\sim c \eta^{w} \quad \text{with} \quad c \neq 0$

where $w = w_h \in \mathbb{Z} \setminus \{0\}$ is a new invariant called the winding number.

In any escape region, the residue $\oint dt$ is zero, so that *t* is locally a meromorphic function. After adjusting by an additive constant we can write

$$t = c \eta^{w} + (\text{higher order terms})$$

 $\sim c \eta^{w} \quad \text{with} \quad c \neq 0$

where $w = w_h \in \mathbb{Z} \setminus \{0\}$ is a new invariant called the winding number. As we wind once around the ideal point in S_p , we wind *w* times around zero in the *t* plane.

In any escape region, the residue $\oint dt$ is zero, so that t is locally a meromorphic function. After adjusting by an additive constant we can write

$$t = c \eta^{W} + (\text{higher order terms})$$

 $\sim c \eta^{W} \text{ with } c \neq 0$

where $w = w_h \in \mathbb{Z} \setminus \{0\}$ is a new invariant called the winding number. As we wind once around the ideal point in S_p , we wind *w* times around zero in the *t* plane. Hence,

 $\frac{dt}{d\eta} \sim c' \eta^{w-1} + (\text{higher order terms}).$

In any escape region, the residue $\oint dt$ is zero, so that *t* is locally a meromorphic function. After adjusting by an additive constant we can write

$$t = c \eta^{W} + (\text{higher order terms})$$

 $\sim c \eta^{W} \text{ with } c \neq 0$

where $w = w_h \in \mathbb{Z} \setminus \{0\}$ is a new invariant called the winding number. As we wind once around the ideal point in S_p , we wind *w* times around zero in the *t* plane. Hence,

$$\frac{dt}{d\eta} \sim c' \eta^{w-1} + (\text{higher order terms}).$$

Thus, dt has a zero of order $w - 1$ or a pole of order $1 - w$ at the ideal point ∞_h .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proposition. The Euler characteristic of the compact curve \overline{S}_p can be expressed as

$$\chi(\overline{\mathcal{S}}_{\rho}) = \sum_{h} (1 - w_{h}),$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Here w_h is the winding number of \mathcal{E}_h .

Proposition. The Euler characteristic of the compact curve \overline{S}_p can be expressed as

$$\chi(\overline{\mathcal{S}}_p) = \sum_h (1 - w_h),$$

Here w_h is the winding number of \mathcal{E}_h .

It follows that the Euler characteristic of the affine curve \mathcal{S}_{p} is given by

$$\chi(\mathcal{S}_p) = -\sum_h w_h.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proposition. The Euler characteristic of the compact curve $\overline{\mathcal{S}}_p$ can be expressed as

$$\chi(\overline{\mathcal{S}}_p) = \sum_h (1 - w_h),$$

Here w_h is the winding number of \mathcal{E}_h .

It follows that the Euler characteristic of the affine curve \mathcal{S}_{ρ} is given by

$$\chi(\mathcal{S}_p) = -\sum_h w_h.$$

If S_p is connected, then

genus
$$(\mathcal{S}_{\rho}) = \text{genus}(\overline{\mathcal{S}}_{\rho}) = 1 - \chi(\overline{\mathcal{S}}_{\rho})/2$$
.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Euler characteristic and the degree d_p of S_p

Main Theorem. The Euler characteristic of the affine curve \mathcal{S}_p is given by

 $\chi(\mathcal{S}_p) = (2 - p) d_p.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The Euler characteristic and the degree d_p of S_p

Main Theorem. The Euler characteristic of the affine curve S_p is given by

 $\chi(\mathcal{S}_p) = (2 - p) d_p.$

Hence the Euler characteristic of $\overline{\mathcal{S}_p}$ is

$$\chi(\overline{\mathcal{S}_{p}}) = N_{p} + (2 - p) d_{p},$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where N_p is the number of escape regions (= number of puncture points) and $1 \le N_p \le d_p$.

Examples $p \le 4$

р	d p	$\chi(S_{p})$	Np	$\chi(\overline{\mathcal{S}}_p)$
1	1	1 × 1	1	2
2	2	0 imes 2	2	2
3	8	-1 imes 8	8	0
4	24	-2×24	20	-28

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Examples $p \le 4$

р	d p	$\chi(S_{p})$	Np	$\chi(\overline{\mathcal{S}}_p)$
1	1	1 × 1	1	2
2	2	0 imes 2	2	2
3	8	-1 imes 8	8	0
4	24	-2 imes 24	20	-28

(Using the equation $\chi(S_p) = (2-p) d_p$.)

Some Euler Characteristics of \overline{S}_{ρ} (DeMarco)

- Period 5: -184
- Period 6: -784
- Period 7: -3236
- Period 8: -11848
- Period 9: -42744
- Period 10: -147948
- Period 11: -505876
- Period 12: -1694848
- Period 13: -5630092
- Period 14: -18491088
- Period 15: -60318292
- Period 16: -195372312
- Period 17: -629500300
- Period 18: -2018178780
- Period 19: -6443997852
- Period 20: -20498523320

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Step 1. The Branner-Hubbard Puzzle for maps in \mathcal{E}_h .

Step 1. The Branner-Hubbard Puzzle for maps in \mathcal{E}_h .

In order to understand asymptotic behavior near ∞_h , we must first study the dynamics of maps $F \in \mathcal{E}_h$.

(ロ) (同) (三) (三) (三) (○) (○)

Step 1. The Branner-Hubbard Puzzle for maps in \mathcal{E}_h .

In order to understand asymptotic behavior near ∞_h , we must first study the dynamics of maps $F \in \mathcal{E}_h$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Step 2. The Kiwi Puzzle: Non-Archimedean Dynamics.

Step 1. The Branner-Hubbard Puzzle for maps in \mathcal{E}_h . In order to understand asymptotic behavior near ∞_h , we must first study the dynamics of maps $F \in \mathcal{E}_h$.

Step 2. The Kiwi Puzzle: Non-Archimedean Dynamics. This will convert the Branner-Hubbard dynamic information into asymptotic information about the differences $a - F^{\circ j}(a)$.

(ロ) (同) (三) (三) (三) (○) (○)

Step 1. The Branner-Hubbard Puzzle for maps in \mathcal{E}_h . In order to understand asymptotic behavior near ∞_h , we must first study the dynamics of maps $F \in \mathcal{E}_h$.

Step 2. The Kiwi Puzzle: Non-Archimedean Dynamics. This will convert the Branner-Hubbard dynamic information into asymptotic information about the differences $a - F^{\circ j}(a)$.

Step 3. Local Computation: The contribution of each ∞_h to $\chi(\overline{\mathcal{S}}_p)$.

Step 1. The Branner-Hubbard Puzzle for maps in \mathcal{E}_h . In order to understand asymptotic behavior near ∞_h , we must first study the dynamics of maps $F \in \mathcal{E}_h$.

Step 2. The Kiwi Puzzle: Non-Archimedean Dynamics. This will convert the Branner-Hubbard dynamic information into asymptotic information about the differences $a - F^{\circ j}(a)$.

Step 3. Local Computation: The contribution of each ∞_h to $\chi(\overline{\mathcal{S}}_p)$.

・ロト・日本・日本・日本・日本

Step 4. A Global Identity.

Step 1. The Branner-Hubbard Puzzle for maps in \mathcal{E}_h . In order to understand asymptotic behavior near ∞_h , we must first study the dynamics of maps $F \in \mathcal{E}_h$.

Step 2. The Kiwi Puzzle: Non-Archimedean Dynamics. This will convert the Branner-Hubbard dynamic information into asymptotic information about the differences $a - F^{\circ j}(a)$.

Step 3. Local Computation: The contribution of each ∞_h to $\chi(\overline{\mathcal{S}}_p)$.

Step 4. A Global Identity. This will help piece the complicated local information together into a relatively simple formula.

▲□▶▲□▶▲□▶▲□▶ □ のへで

The local computation and the global identity Local computation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Local computation

For each \mathcal{E}_h there exists $c_h > 0$ and $q_h \in \mathbb{Q}$ such that, we get the asymptotic formula,

 $|(a-a_1)\cdots(a-a_{p-1})|\sim c_h|a|^{q_h}$ as $|a| \to \infty$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Local computation

For each \mathcal{E}_h there exists $c_h > 0$ and $q_h \in \mathbb{Q}$ such that, we get the asymptotic formula,

 $|(a-a_1)\cdots(a-a_{p-1})|\sim c_h|a|^{q_h}$ as $|a|\to\infty$

and prove that

 $w_n/\mu_h = p - 2 + q_h.$

(日) (日) (日) (日) (日) (日) (日)

Local computation

For each \mathcal{E}_h there exists $c_h > 0$ and $q_h \in \mathbb{Q}$ such that, we get the asymptotic formula,

 $|(a-a_1)\cdots(a-a_{p-1})|\sim c_h|a|^{q_h}$ as $|a|\to\infty$

and prove that

$$w_n/\mu_h = p - 2 + q_h.$$

Global identity

$$\sum_{h} \mu_h q_h = 0.$$

(日) (日) (日) (日) (日) (日) (日)

Local computation

For each \mathcal{E}_h there exists $c_h > 0$ and $q_h \in \mathbb{Q}$ such that, we get the asymptotic formula,

 $|(a-a_1)\cdots(a-a_{p-1})|\sim c_h|a|^{q_h}$ as $|a|\to\infty$

and prove that

$$w_n/\mu_h = p - 2 + q_h.$$

Global identity

$$\sum_{h} \mu_h q_h = 0.$$

Therefore

$$\sum_{h} w_{h} = (p-2) \sum_{h} \mu_{h} = (p-2) d_{p}.$$

(日) (日) (日) (日) (日) (日) (日)
Sketch of the dynamical plane

Here $\theta \in \mathbb{R}/\mathbb{Z}$ is the co-critical angle.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Since

 $a = a_0 \mapsto a_1 = v \mapsto a_2 \mapsto \cdots \mapsto a_p = a$

then each a_j , can be expressed as a meromorphic function of $\xi^{1/\mu}$ with a pole at the ideal point ∞_h .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Since

 $a = a_0 \mapsto a_1 = v \mapsto a_2 \mapsto \cdots \mapsto a_p = a$

then each a_j , can be expressed as a meromorphic function of $\xi^{1/\mu}$ with a pole at the ideal point ∞_h .

(ロ) (同) (三) (三) (三) (三) (○) (○)

The periodic critical orbit elements are "asymptotic" to the periodic critical point +a or to the cocritical point -2a.

Since

 $a = a_0 \mapsto a_1 = v \mapsto a_2 \mapsto \cdots \mapsto a_p = a$

then each a_j , can be expressed as a meromorphic function of $\xi^{1/\mu}$ with a pole at the ideal point ∞_h .

The periodic critical orbit elements are "asymptotic" to the periodic critical point +a or to the cocritical point -2a. The cocritical point satisfies the property of also being a preimage of the marked critical value i.e.,

$$F_{a,v}(-2a) = v = F_{a,v}(+a).$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Since

 $a = a_0 \mapsto a_1 = v \mapsto a_2 \mapsto \cdots \mapsto a_p = a$

then each a_j , can be expressed as a meromorphic function of $\xi^{1/\mu}$ with a pole at the ideal point ∞_h .

The periodic critical orbit elements are "asymptotic" to the periodic critical point +a or to the cocritical point -2a. The cocritical point satisfies the property of also being a preimage of the marked critical value i.e.,

$$F_{a,v}(-2a)=v=F_{a,v}(+a).$$

We have

 $a_j = \begin{cases} a + O(1), & \text{if} \quad a_j \in P_1(a) \quad (\sigma_j = \mathbf{0}) \\ -2a + O(1), & \text{if} \quad a_j \in P_1(-2a) \quad (\sigma_j = \mathbf{1}). \end{cases}$

where each O(1) term represents a holomorphic function of $\xi^{1/\mu}$ which is bounded for small $|\xi|$.

The Branner-Hubbard Puzzle. Let $a_j = F^{\circ j}(a)$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

The Branner-Hubbard Puzzle for a polynomial with kneading sequence $\overline{010010}$.

The Branner-Hubbard Puzzle for a polynomial with kneading sequence

010010.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Branner-Hubbard Puzzle for a polynomial with kneading sequence

010010.

If the critical point $+a \in \mathcal{E}_h$ then it determines a periodic sequence $\sigma(a) \in \{0, 1\}$, with $\sigma_{j+\rho}(a) = \sigma_j(a)$, and with $\sigma_0(a) = 0$.

If the critical point $+a \in \mathcal{E}_h$ then it determines a periodic sequence $\sigma(a) \in \{0, 1\}$, with $\sigma_{j+\rho}(a) = \sigma_j(a)$, and with $\sigma_0(a) = 0$.

The **kneading sequence** of an orbit $a_0 \mapsto a_1 \mapsto \cdots$ in K_F is the sequence

 $\sigma(\mathbf{a}_0) \sigma(\mathbf{a}_1) \sigma(\mathbf{a}_2) \cdots$

of zeros and ones, where

$$\sigma(a_j) = \begin{cases} 0 & \text{if } P_1(a_o) = P_1(a_j), \\ 1 & \text{if } P_1(a_o) \neq P_1(a_j). \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If the critical point $+a \in \mathcal{E}_h$ then it determines a periodic sequence $\sigma(a) \in \{0, 1\}$, with $\sigma_{j+\rho}(a) = \sigma_j(a)$, and with $\sigma_0(a) = 0$.

The **kneading sequence** of an orbit $a_0 \mapsto a_1 \mapsto \cdots$ in K_F is the sequence

 $\sigma(\mathbf{a}_0) \sigma(\mathbf{a}_1) \sigma(\mathbf{a}_2) \cdots$

of zeros and ones, where

$$\sigma(a_j) = \begin{cases} 0 & \text{if } P_1(a_0) = P_1(a_j), \\ 1 & \text{if } P_1(a_0) \neq P_1(a_j). \end{cases}$$

The kneading sequence is briefly denoted as $\sigma_1 \dots \sigma_{p-1} 0$, where the overline indicates infinite repetition.

If the critical point $+a \in \mathcal{E}_h$ then it determines a periodic sequence $\sigma(a) \in \{0, 1\}$, with $\sigma_{j+\rho}(a) = \sigma_j(a)$, and with $\sigma_0(a) = 0$.

The **kneading sequence** of an orbit $a_0 \mapsto a_1 \mapsto \cdots$ in K_F is the sequence

 $\sigma(\mathbf{a}_0) \sigma(\mathbf{a}_1) \sigma(\mathbf{a}_2) \cdots$

of zeros and ones, where

$$\sigma(a_j) = \begin{cases} 0 & \text{if } P_1(a_o) = P_1(a_j), \\ 1 & \text{if } P_1(a_o) \neq P_1(a_j). \end{cases}$$

The kneading sequence is briefly denoted as $\sigma_1 \dots \sigma_{p-1} 0$, where the overline indicates infinite repetition.

The (minimal) period q of this kneading sequence is always a divisor of the period p of +a.

To replace the a_j by locally holomorphic functions on $\overline{\mathcal{S}}_p$, we introduce the new variables

$$u_j = \frac{a-a_j}{3a}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

To replace the a_j by locally holomorphic functions on \overline{S}_p , we introduce the new variables

$$u_j = \frac{a-a_j}{3a}$$

More precisely, each u_i has a power series of the form

$$u_{j} = \sigma_{j} + c_{\mu} \xi + c_{\mu+1} \xi^{1+1/\mu} + c_{\mu+2} \xi^{1+2/\mu} + \cdots$$

which converges for small $|\xi|$. Notice that $\sigma_i \in \{0, 1\}$.

To replace the a_j by locally holomorphic functions on \overline{S}_p , we introduce the new variables

$$u_j = \frac{a-a_j}{3a}$$

More precisely, each u_i has a power series of the form

$$U_{j} = \sigma_{j} + c_{\mu} \xi + c_{\mu+1} \xi^{1+1/\mu} + c_{\mu+2} \xi^{1+2/\mu} + \cdots$$

which converges for small $|\xi|$. Notice that $\sigma_j \in \{0, 1\}$. We will refer to this as the *Puiseux expansion* of u_j .

To replace the a_j by locally holomorphic functions on \overline{S}_p , we introduce the new variables

$$u_j = \frac{a-a_j}{3a}$$

More precisely, each u_j has a power series of the form

$$u_{j} = \sigma_{j} + c_{\mu} \xi + c_{\mu+1} \xi^{1+1/\mu} + c_{\mu+2} \xi^{1+2/\mu} + \cdots$$

which converges for small $|\xi|$. Notice that $\sigma_j \in \{0, 1\}$.

We will refer to this as the **Puiseux expansion** of u_i .

The Puiseux series depends on the choice of μ -th. root of ξ , but different choices give series which are conjugate to each other by the Galois automorphism

$$\xi^{1/\mu} \mapsto \alpha \; \xi^{1/\mu}$$

where α is an arbitrary μ -th root of unity.

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ■ のへで

Theorem [BKM]. Each escape region \mathcal{E}_h of \mathcal{S}_p is characterized by an essentially unique Puiseux series.

Theorem [BKM]. Each escape region \mathcal{E}_h of \mathcal{S}_p is characterized by an essentially unique Puiseux series.

Passing to formal Puiseux series we can rewrite

$$\mathbf{u}_{\mathbf{j}} = \sum_{k \ge k_0 \ge 0} c_k \, \boldsymbol{\xi}^{k/\mu} \in \mathbb{C}[[\boldsymbol{\xi}^{1/\mu}]], \quad \text{with} \quad k_0 = 0 \quad \text{or} \quad k \ge \mu.$$

(ロ) (同) (三) (三) (三) (○) (○)

Theorem [BKM]. Each escape region \mathcal{E}_h of \mathcal{S}_p is characterized by an essentially unique Puiseux series.

Passing to formal Puiseux series we can rewrite

$$\mathbf{u}_{\mathbf{j}} = \sum_{k \ge k_0 \ge 0} c_k \, \boldsymbol{\xi}^{k/\mu} \in \mathbb{C}[[\boldsymbol{\xi}^{1/\mu}]], \quad \text{with} \quad k_0 = 0 \quad \text{or} \quad k \ge \mu.$$

Assuming that $c_{k_0} \neq 0$, define the **leading monomial** $\mathbf{m}(\mathbf{u}_j)$ of \mathbf{u}_j as $c_{k_0} \xi^{k_0/\mu}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem [BKM]. Each escape region \mathcal{E}_h of \mathcal{S}_p is characterized by an essentially unique Puiseux series.

Passing to formal Puiseux series we can rewrite

$$\mathbf{u}_{\mathbf{j}} = \sum_{k \geq k_0 \geq 0} c_k \, \boldsymbol{\xi}^{k/\mu} \in \mathbb{C}[[\boldsymbol{\xi}^{1/\mu}]], \quad \text{with} \quad k_0 = 0 \quad \text{or} \quad k \geq \mu.$$

Assuming that $c_{k_0} \neq 0$, define the **leading monomial** $\mathbf{m}(\mathbf{u}_j)$ of \mathbf{u}_j as $c_{k_0} \xi^{k_0/\mu}$.

We say that $\vec{u} = (u_1, \ldots, u_{p-1}, 0)$ is a vector of Puiseux series associated to the escape region \mathcal{E}_h .

Theorem [BKM]. Each escape region \mathcal{E}_h of \mathcal{S}_p is characterized by an essentially unique Puiseux series.

Passing to formal Puiseux series we can rewrite

$$\mathbf{u}_{\mathbf{j}} = \sum_{k \ge k_0 \ge 0} c_k \, \boldsymbol{\xi}^{k/\mu} \in \mathbb{C}[[\boldsymbol{\xi}^{1/\mu}]], \quad \text{with} \quad k_0 = 0 \quad \text{or} \quad k \ge \mu.$$

Assuming that $c_{k_0} \neq 0$, define the **leading monomial** $\mathbf{m}(\mathbf{u}_j)$ of \mathbf{u}_j as $c_{k_0} \xi^{k_0/\mu}$.

We say that $\vec{u} = (u_1, ..., u_{p-1}, 0)$ is a vector of Puiseux series associated to the escape region \mathcal{E}_h .

The asymptotic behavior of $a_j - a$ is encoded by

$$\mathbf{m}(\vec{\mathbf{u}}) = (\mathbf{m}(\vec{\mathbf{u}}_1), \ldots, \mathbf{m}(\vec{\mathbf{u}}_{p-1}), \mathbf{0}).$$

Theorem [BKM]. Each escape region \mathcal{E}_h of \mathcal{S}_p is characterized by an essentially unique Puiseux series.

Passing to formal Puiseux series we can rewrite

$$\mathbf{u}_{\mathbf{j}} = \sum_{k \ge k_0 \ge 0} c_k \, \boldsymbol{\xi}^{k/\mu} \in \mathbb{C}[[\boldsymbol{\xi}^{1/\mu}]], \quad \text{with} \quad k_0 = 0 \quad \text{or} \quad k \ge \mu.$$

Assuming that $c_{k_0} \neq 0$, define the **leading monomial** $\mathbf{m}(\mathbf{u}_j)$ of \mathbf{u}_j as $c_{k_0} \xi^{k_0/\mu}$.

We say that $\vec{\mathbf{u}} = (\mathbf{u}_1, \dots, \mathbf{u}_{p-1}, 0)$ is a vector of Puiseux series associated to the escape region \mathcal{E}_h . The asymptotic behavior of $a_i - a$ is encoded by

$$\mathbf{m}(\vec{\mathbf{u}}) = (\mathbf{m}(\vec{\mathbf{u}}_1), \ldots, \mathbf{m}(\vec{\mathbf{u}}_{p-1}), \mathbf{0}).$$

Theorem [Kiwi]. Let $\vec{u'}$ and $\vec{u''}$ be vectors of **Puiseux** series associated to escape regions of S_p . If $\mathbf{m}(\vec{u'}) = \mathbf{m}(\vec{u''})$, then $\vec{u'} = \vec{u''}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Non-Archimedean fields, --the basics

Let $\,\mathbb{Q}^a\,$ be the algebraic closure of the set of rational numbers $\mathbb{Q}\,,\,$ and

Non-Archimedean fields, --the basics

Let \mathbb{Q}^a be the algebraic closure of the set of rational numbers \mathbb{Q} , and let $\mathbb{L} = \mathbb{L}(\xi)$ be the completion of the field of Puiseux series in ξ with coefficients in \mathbb{Q}^a .

Non-Archimedean fields, -the basics

Let \mathbb{Q}^a be the algebraic closure of the set of rational numbers \mathbb{Q} , and let $\mathbb{L} = \mathbb{L}(\boldsymbol{\xi})$ be the completion of the field of Puiseux series in $\boldsymbol{\xi}$ with coefficients in \mathbb{Q}^a . By definition, this set consists of all finite or infinite series of the form

$$\mathbf{z} = c_0 \boldsymbol{\xi}^{q_0} + c_1 \boldsymbol{\xi}^{q_1} + \cdots \quad \text{with} \quad c_j \in \mathbb{Q}^a \setminus \{\mathbf{0}\}, \ q_j \in \mathbb{Q},$$

and with $q_0 < q_1 < q_2 < \dots$, where $\lim_{j\to\infty} q_j = +\infty$ in the case of an infinite sum.

Non-Archimedean fields, -the basics

Let \mathbb{Q}^a be the algebraic closure of the set of rational numbers \mathbb{Q} , and let $\mathbb{L} = \mathbb{L}(\boldsymbol{\xi})$ be the completion of the field of Puiseux series in $\boldsymbol{\xi}$ with coefficients in \mathbb{Q}^a . By definition, this set consists of all finite or infinite series of the form

$$\mathbf{z} \;=\; \boldsymbol{c_0} \, \boldsymbol{\xi^{q_0}} \;+\; \boldsymbol{c_1} \boldsymbol{\xi^{q_1}} \;+\; \cdots \quad \text{with} \quad \boldsymbol{c_j} \in \mathbb{Q}^{\boldsymbol{a}} \smallsetminus \{\mathbf{0}\} \,, \;\; \boldsymbol{q_j} \in \mathbb{Q} \,,$$

and with $q_0 < q_1 < q_2 < \dots$, where $\lim_{j\to\infty} q_j = +\infty$ in the case of an infinite sum. This field is algebraically closed, and complete under the norm

 $||z|| = e^{-q_0}$, with $\log ||z|| = -q_0$,

for **z** as above, $\mathbf{z} \neq \mathbf{0}$; with $\|\mathbf{0}\| = \mathbf{0}$.

Non-Archimedean fields, --the basics

Let \mathbb{Q}^a be the algebraic closure of the set of rational numbers \mathbb{Q} , and let $\mathbb{L} = \mathbb{L}(\boldsymbol{\xi})$ be the completion of the field of Puiseux series in $\boldsymbol{\xi}$ with coefficients in \mathbb{Q}^a . By definition, this set consists of all finite or infinite series of the form

$$\mathbf{z} \;=\; \boldsymbol{c_0} \, \boldsymbol{\xi^{q_0}} \;+\; \boldsymbol{c_1} \boldsymbol{\xi^{q_1}} \;+\; \cdots \quad \text{with} \quad \boldsymbol{c_j} \in \mathbb{Q}^{\boldsymbol{a}} \smallsetminus \{\mathbf{0}\} \,, \;\; \boldsymbol{q_j} \in \mathbb{Q} \,,$$

and with $q_0 < q_1 < q_2 < \dots$, where $\lim_{j\to\infty} q_j = +\infty$ in the case of an infinite sum. This field is algebraically closed, and complete under the norm

$$||z|| = e^{-q_0}$$
, with $\log ||z|| = -q_0$,

for **z** as above, $\mathbf{z} \neq \mathbf{0}$; with $\|\mathbf{0}\| = 0$. Note the ultrametric inequality

 $\| \boldsymbol{\alpha} + \boldsymbol{\beta} \| \leq \max(\| \boldsymbol{\alpha} \|, \| \boldsymbol{\beta} \|),$

with equality except possibly when $\|\alpha\| = \|\beta\|$.

Open balls and annulus

For any $r \in e^{\mathbb{Q}}$, a set of the form $\{z ; ||z - z_0|| < r\}$ is called an **open ball** of radius *r*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Open balls and annulus

For any $r \in e^{\mathbb{Q}}$, a set of the form $\{\mathbf{z} ; \|\mathbf{z} - \mathbf{z}_0\| < r\}$ is called an **open ball** of radius *r*. If $r_1 < r_2$ in $e^{\mathbb{Q}}$, then

$$\{\mathbf{z} ; r_1 < \|\mathbf{z} - \mathbf{z}_0\| < r_2\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is called an **annulus** of modulus $\log(r_2/r_1)$.

Open balls and annulus

For any $r \in e^{\mathbb{Q}}$, a set of the form $\{\mathbf{z} ; \|\mathbf{z} - \mathbf{z}_0\| < r\}$ is called an **open ball** of radius *r*. If $r_1 < r_2$ in $e^{\mathbb{Q}}$, then

$$\{z ; r_1 < \|z - z_0\| < r_2\}$$

is called an **annulus** of modulus $\log(r_2/r_1)$. Thus all balls and annuli in \mathbb{L} are round by definition, and all moduli are rational.

Identify the marked critical point $a \in \mathbb{C}$ with the constant $\mathbf{a} = \boldsymbol{\xi}^{-1} \in \mathbb{L}$, where $\log \|\mathbf{a}\| = +1$.

Identify the marked critical point $a \in \mathbb{C}$ with the constant $\mathbf{a} = \boldsymbol{\xi}^{-1} \in \mathbb{L}$, where $\log \|\mathbf{a}\| = +1$. For any $\mathbf{v} \in \mathbb{L}$ we have a polynomial map $\mathbf{f}_{\mathbf{v}} : \mathbb{L} \to \mathbb{L}$ defined by

$${f_{\nu}}(z) \;=\; z^3 - 3\,a^2z + (2\,a^3 + \nu)\;,$$

(ロ) (同) (三) (三) (三) (○) (○)

so that $\mathbf{f}_{\mathbf{v}}(\mathbf{a}) = \mathbf{v}$.

Identify the marked critical point $a \in \mathbb{C}$ with the constant $a = \xi^{-1} \in \mathbb{L}$, where $\log \|a\| = +1$. For any $\mathbf{v} \in \mathbb{L}$ we have a polynomial map $f_{\mathbf{v}} : \mathbb{L} \to \mathbb{L}$ defined by

$${\sf f}_{\sf V}({\sf z}) \;=\; {\sf z}^3 - 3\,{\sf a}^2{\sf z} + (2\,{\sf a}^3 + {\sf v})\;,$$

so that $f_v(a) = v$. We will assume that the Puiseux series v is chosen so that $f_v^{\circ p}(a) = a$.

Identify the marked critical point $a \in \mathbb{C}$ with the constant $a = \xi^{-1} \in \mathbb{L}$, where $\log \|a\| = +1$. For any $\mathbf{v} \in \mathbb{L}$ we have a polynomial map $f_{\mathbf{v}} : \mathbb{L} \to \mathbb{L}$ defined by

$${\sf f}_{\sf V}({\sf z}) \;=\; {\sf z}^3 - 3\,{\sf a}^2{\sf z} + (2\,{\sf a}^3 + {\sf v})\;,$$

so that $f_v(a) = v$. We will assume that the Puiseux series v is chosen so that $f_v^{\circ p}(a) = a$.

The associated **Green's function** $G : \mathbb{L} \to [0, \infty)$ is defined by $G(\mathbf{z}) = \lim_{n \to \infty} \frac{1}{n!} \log^+ \|\mathbf{f}_{\mathbf{r}}^{\circ,n}(\mathbf{z})\|$

$$G(\mathbf{z}) = \lim_{n \to \infty} \frac{1}{3^n} \log^+ \|\mathbf{f}_{\mathbf{v}}^{\circ n}(\mathbf{z})\|$$

so that $G(\mathbf{f}_{\mathbf{v}}(\mathbf{z})) = 3 G(\mathbf{z})$.
Dynamics setting in non-Archimedean field

Identify the marked critical point $a \in \mathbb{C}$ with the constant $a = \xi^{-1} \in \mathbb{L}$, where $\log \|a\| = +1$. For any $\mathbf{v} \in \mathbb{L}$ we have a polynomial map $f_{\mathbf{v}} : \mathbb{L} \to \mathbb{L}$ defined by

$$f_{\mathbf{v}}(\mathbf{z}) \;=\; \mathbf{z}^3 - 3\,\mathbf{a}^2\mathbf{z} + (2\,\mathbf{a}^3 + \mathbf{v}) \;,$$

so that $f_v(a) = v$. We will assume that the Puiseux series v is chosen so that $f_v^{\circ p}(a) = a$.

The associated **Green's function** $G : \mathbb{L} \to [0, \infty)$ is defined by $G(\mathbf{z}) = \lim_{n \to \infty} \frac{1}{n} \log^+ \|\mathbf{f}_{\mathbf{v}}^{\circ,n}(\mathbf{z})\|$.

$$G(\mathbf{z}) = \lim_{n \to \infty} \frac{1}{3^n} \log^+ \|\mathbf{f}_{\mathbf{v}}^{\circ n}(\mathbf{z})\|,$$

so that $G(f_v(z)) = 3 G(z)$. For example G(z) = 0 whenever z is periodic.

Dynamics setting in non-Archimedean field

Identify the marked critical point $a \in \mathbb{C}$ with the constant $a = \xi^{-1} \in \mathbb{L}$, where $\log \|a\| = +1$. For any $\mathbf{v} \in \mathbb{L}$ we have a polynomial map $f_{\mathbf{v}} : \mathbb{L} \to \mathbb{L}$ defined by

$$f_{\mathbf{v}}(\mathbf{z}) \;=\; \mathbf{z}^3 - 3\,\mathbf{a}^2\mathbf{z} + (2\,\mathbf{a}^3 + \mathbf{v}) \;,$$

so that $f_v(a) = v$. We will assume that the Puiseux series v is chosen so that $f_v^{\circ p}(a) = a$.

The associated **Green's function** $G : \mathbb{L} \to [0, \infty)$ is defined by $G(\mathbf{z}) = \lim_{n \to \infty} \frac{1}{n!} \log^+ \|\mathbf{f}_{\mathbf{r}}^{\circ,n}(\mathbf{z})\|$.

$$G(\mathbf{z}) = \lim_{n \to \infty} \frac{1}{3^n} \log^+ \|\mathbf{f}_{\mathbf{v}}^{\circ n}(\mathbf{z})\|,$$

so that $G(\mathbf{f_v}(\mathbf{z})) = 3 G(\mathbf{z})$. For example $G(\mathbf{z}) = 0$ whenever \mathbf{z} is periodic. Thus $G(\mathbf{a}) = G(\mathbf{v}) = 0$, but it is easy to check that $G(\mathbf{z}) = \log \|\mathbf{z}\|$ whenever $\log \|\mathbf{z}\| > 1$.

Dynamics setting in non-Archimedean field

Identify the marked critical point $a \in \mathbb{C}$ with the constant $a = \xi^{-1} \in \mathbb{L}$, where $\log \|a\| = +1$. For any $\mathbf{v} \in \mathbb{L}$ we have a polynomial map $f_{\mathbf{v}} : \mathbb{L} \to \mathbb{L}$ defined by

$$f_{\mathbf{v}}(\mathbf{z}) \;=\; \mathbf{z}^3 - 3\,\mathbf{a}^2\mathbf{z} + (2\,\mathbf{a}^3 + \mathbf{v}) \;,$$

so that $f_v(a) = v$. We will assume that the Puiseux series v is chosen so that $f_v^{\circ p}(a) = a$.

The associated **Green's function** $G: \mathbb{L} \to [0, \infty)$ is defined by $G(\mathbf{z}) = \lim_{n \to \infty} \frac{1}{n!} \log^+ \|\mathbf{f}^{\circ n}(\mathbf{z})\|$

$$G(\mathbf{z}) = \lim_{n \to \infty} \frac{1}{3^n} \log^+ \|\mathbf{f}_{\mathbf{v}}^{\circ n}(\mathbf{z})\|,$$

so that $G(\mathbf{f_v}(\mathbf{z})) = 3 G(\mathbf{z})$. For example $G(\mathbf{z}) = 0$ whenever \mathbf{z} is periodic. Thus $G(\mathbf{a}) = G(\mathbf{v}) = 0$, but it is easy to check that $G(\mathbf{z}) = \log ||\mathbf{z}||$ whenever $\log ||\mathbf{z}|| > 1$. For example $G(\mathbf{f_v}(-\mathbf{a})) = 3$, hence $G(-\mathbf{a}) = 1$.

The puzzle piece P_0 is the open ball consisting of all $z \in \mathbb{L}$ with $G(z) < 3 \iff \log \|z\| < 3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The puzzle piece P_0 is the open ball consisting of all $z \in \mathbb{L}$ with $Q(z) \leq 2$

 $G(\mathbf{z}) < 3 \iff \log \|\mathbf{z}\| < 3$.

Kiwi Lemma. For each n > 0, the set of all $z \in \mathbb{L}$ such that $\mathbf{f}^{\circ n}(\mathbf{z}) \in P_0 \iff G(\mathbf{z}) < 3^{1-n}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is a union of finitely many disjoint open balls.

The puzzle piece P_0 is the open ball consisting of all $z \in \mathbb{L}$ with $Q(z) \leq 2$

 $G(\mathbf{z}) < 3 \iff \log \|\mathbf{z}\| < 3$.

Kiwi Lemma. For each n > 0, the set of all $z \in \mathbb{L}$ such that $f^{\circ n}(z) \in P_0 \iff G(z) < 3^{1-n}$

is a union of finitely many disjoint open balls.

By definition, each of these balls is a **puzzle piece** P_n of level n.

The puzzle piece P_0 is the open ball consisting of all $z \in \mathbb{L}$ with $Q(z) \leq 2$

 $G(\mathbf{z}) < 3 \iff \log \|\mathbf{z}\| < 3$.

Kiwi Lemma. For each n > 0, the set of all $z \in \mathbb{L}$ such that $f^{\circ n}(z) \in P_0 \iff G(z) < 3^{1-n}$

is a union of finitely many disjoint open balls.

By definition, each of these balls is a **puzzle piece** P_n of level n.

Kiwi Theorem. If **v** is the Puiseux series associated with the escape region \mathcal{E}_h , then the marked grid for the corresponding Kiwi puzzle is identical with the marked grid for the Branner-Hubbard puzzle for any map $f \in \mathcal{E}_h$.

Corollary. The Branner-Hubbard puzzle determines the norm $\|\mathbf{a}_j - \mathbf{a}\|$ for each point in the periodic orbit $\mathbf{a} \mapsto \mathbf{a}_1 \mapsto \cdots$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Corollary. The Branner-Hubbard puzzle determines the norm $\|\mathbf{a}_{i} - \mathbf{a}\|$ for each point in the periodic orbit $\mathbf{a} \mapsto \mathbf{a}_{1} \mapsto \cdots$.

On the other hand, if

 $\log \|\mathbf{a}_j - \mathbf{a}\| = q$ so that $\mathbf{a} - \mathbf{a}_j = c_j \xi^{-q} + (\text{higher order terms})$, then it follows easily that

$$a-a_j = c_j a^q + o(a^q)$$
 as $|a| \to \infty$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Corollary. The Branner-Hubbard puzzle determines the norm $\|\mathbf{a}_i - \mathbf{a}\|$ for each point in the periodic orbit $\mathbf{a} \mapsto \mathbf{a}_1 \mapsto \cdots$.

On the other hand, if

 $\log \|\mathbf{a}_j - \mathbf{a}\| = q$ so that $\mathbf{a} - \mathbf{a}_j = c_j \xi^{-q} + (\text{higher order terms})$, then it follows easily that

$$a-a_j = c_j a^q + o(a^q)$$
 as $|a| \to \infty$.

In particular, it follows that

 $\log |a_j - a| = q \log |a| + O(1)$

as $(a, v) \in \mathcal{E}_h$ tends to the ideal point ∞_h .

References

B. Branner and J.H. Hubbard, *The iteration of cubic polynomials II, patterns and parapatterns*, Acta Math. **169** (1992) 229–325.

J. Kiwi,

 Puiseux series polynomial dynamics and iteration of complex cubic polynomials, Ann. Inst. Fourier (Grenoble) 56 (2006) 1337–1404.

• Leading monomials of escape regions. To appear in: "Frontiers in Complex Dynamics: a volume in honor of John Milnor's 80th birthday", (A. Bonifant, M. Lyubich, S. Sutherland, editors). In press, 2013, Princeton University Press.

Cubic Polynomial Maps with Periodic Critical Orbit:

J. Milnor, *Part I.* In "Complex Dynamics Families and Friends", ed. D. Schleicher, A. K. Peters 2009, pp. 333-411.

A. Bonifant, J. Kiwi and J. Milnor, *Part II: Escape Regions*, Journal of Conformal Geometry and Dynamics **14** (2010) 68–112 and 190–193.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A. Bonifant and J. Milnor, Part III: External rays. In preparation.