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The setting

Any cubic polynomial map with marked critical point is affinely
conjugate to one of the form

F (z) = Fa,v (z) = z3 − 3a2z + (2a3 + v)

where
I a is the marked critical point
I v = F (a) is the marked critical value
I −a is the free critical point

The set of all such maps F = Fa,v will be identified
with the parameter space, consisting of all pairs
(a, v) ∈ C2.
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The Period p Curve, Sp

Definition: The period p curve

Sp =
{
(a, v) ∈ C2 ; F ◦p(a) = a

}
with p minimal

Theorem (Milnor 1991). Sp is a smooth affine algebraic
curve in C2 (conjecturally always connected).

For most periods p, Sp is a many times punctured surface of
high genus.
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S1 has genus zero with one puncture ( ∼= C)



S2 has genus zero with two punctures



S3 has genus one with eight punctures
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Escape Regions Eh ⊂ Sp

Definition. An escape region Eh ⊂ Sp is a connected
component of the open set consisting of maps F ∈ Sp

for which the orbit of the critical point −a escapes to ∞.

Lemma (Milnor 1991). Each escape region Eh is canonically
diffeomorphic to the µ-fold covering of the complement CrD,
where µ = µh ≥ 1 is an integer called the multiplicity of Eh.
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Compactification of Sp

The curve Sp can be compactified by adding finitely many
ideal points ∞h,

one for each escape region Eh ,
thus yielding a smooth complex 1-manifold Sp .

Caution. Sp is NOT the closure of Sp in the projective space
CP2. (The closure has singular points at infinity.)

With this compactification, each escape region, together with its
ideal point, is conformally isomorphic to the open unit disk.
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Degree and the number Np of escape regions.

The degree of Sp is equal to the sum

deg(Sp) = µ1 + · · ·+ µNp
,

where µh is the multiplicity of Eh . Thus

1 ≤ Np ≤ deg(Sp) .

Here the degree grows exponentially fast with p ,

deg(Sp) ∼ 3p−1 as p →∞ .

More precisely, deg(Sp) can be computed from the equation

deg(Sp) = 3p−1 −
∑

n|p, n<p

deg(Sn).

Example. deg(S1) = 30 − 0 = 1
deg(S2) = 31 − 1 = 2
deg(S3) = 32 − 1 = 8
deg(S4) = 33 − 2− 1 = 24.
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Local Parametrization of Sp ⊂ C2.

Define φp : C2 → C by

φp(a, v) = F ◦p(a)− a , where F = Fa,v .

This vanishes everywhere on Sp, with dφp 6= 0 on Sp .

Let t 7→
(
a, v

)
be any solution to the Hamiltonian differential

equation
da
dt

=
∂φp

∂v
,

dv
dt

= −
∂φp

∂a
.

The local solutions t 7→ (a, v) =
(
a(t), v(t)

)
are

holomorphic, with dφp
dt =

∂φp
∂a

da
dt +

∂φp
∂v

dv
dt ≡ 0.

Hence they lie in curves φp = constant .

Those solutions which lie in Sp provide a local holomorphic
parametrization, unique up to a translation, t 7→ t + constant.

Equivalently, the holomorphic 1-form dt is well
defined and non-zero everywhere on Sp .
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Sample parametrization: A small part of S4 .

S4 has genus fifteen with twenty punctures (5 visible here).
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Local Uniformizing Parameter near ∞h

For each escape region Eh ⊂ Sp the projection map

(a, v) 7→ a

has a pole of order µ ≥ 1 at the ideal point ∞h.

We will work with the variable

ξ =
1
a

which is a bounded holomorphic function throughout a
neighborhood of ∞h in Sp.

Since ξ has a zero of order µ at ∞h, we can choose some
µ-th root η = ξ1/µ as a local uniformizing parameter near the
ideal point.
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The Winding Number w

In any escape region, the residue
∮

dt is zero, so that t is
locally a meromorphic function.

After adjusting by an additive
constant we can write

t = c ηw + (higher order terms)

∼ c ηw with c 6= 0

where w = wh ∈ Z r {0} is a new invariant called the winding
number. As we wind once around the ideal point in Sp, we
wind w times around zero in the t plane. Hence,

dt
dη
∼ c′ηw−1 + (higher order terms).

Thus, dt has a zero of order w − 1 or a pole of order 1− w
at the ideal point ∞h .
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Euler Characteristic of Sp
Given any meromorphic 1-form on an smooth compact curve
S,

χ(S) = #(poles) − #(zeros)

Proposition. The Euler characteristic of the compact curve
Sp can be expressed as

χ(Sp) =
∑

h

(1 − wh) ,

Here wh is the winding number of Eh.

It follows that the Euler characteristic of the affine curve Sp is
given by

χ(Sp) = −
∑

h

wh .

If Sp is connected, then

genus(Sp) = genus(Sp) = 1 − χ(Sp)/2 .
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The Euler characteristic and the degree dp of Sp

Main Theorem. The Euler characteristic of the affine curve
Sp is given by

χ(Sp) = (2 − p)dp .

Hence the Euler characteristic of Sp is

χ(Sp) = Np + (2 − p)dp ,

where Np is the number of escape regions ( = number of
puncture points) and 1 ≤ Np ≤ dp.
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Examples p ≤ 4

p dp χ(Sp) Np χ(Sp)

1 1 1× 1 1 2
2 2 0× 2 2 2
3 8 −1× 8 8 0
4 24 −2× 24 20 -28

(Using the equation χ(Sp) = (2− p)dp . )
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Some Euler Characteristics of Sp (DeMarco)
I Period 5: -184
I Period 6: -784
I Period 7: -3236
I Period 8: -11848
I Period 9: -42744
I Period 10: -147948
I Period 11: -505876
I Period 12: -1694848
I Period 13: -5630092
I Period 14: -18491088
I Period 15: -60318292
I Period 16: -195372312
I Period 17: -629500300
I Period 18: -2018178780
I Period 19: -6443997852
I Period 20: -20498523320



Computation of the Euler characteristic

Step 1. The Branner-Hubbard Puzzle for maps in Eh.

In order to understand asymptotic behavior near ∞h , we must
first study the dynamics of maps F ∈ Eh.
Step 2. The Kiwi Puzzle: Non-Archimedean Dynamics.
This will convert the Branner-Hubbard dynamic information into
asymptotic information about the differences a− F ◦j(a) .
Step 3. Local Computation: The contribution of each ∞h to
χ(Sp).
Step 4. A Global Identity. This will help piece the
complicated local information together into a relatively simple
formula.
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The local computation and the global identity
Local computation

For each Eh there exists ch > 0 and qh ∈ Q such that, we
get the asymptotic formula,

|(a− a1) · · · (a− ap−1)| ∼ ch|a|qh as |a| → ∞

and prove that
wn/µh = p − 2 + qh.

Global identity ∑
h

µh qh = 0.

Therefore ∑
h

wh = (p − 2)
∑

h

µh = (p − 2)dp .
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Local computation
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Sketch of the dynamical plane

Here θ ∈ R/Z is the co-critical angle.



More on Escape Regions
Since a = a0 7→ a1 = v 7→ a2 7→ · · · 7→ ap = a

then each aj , can be expressed as a meromorphic function of
ξ1/µ with a pole at the ideal point ∞h.

The periodic critical orbit elements are “asymptotic” to the
periodic critical point +a or to the cocritical point −2a. The
cocritical point satisfies the property of also being a preimage
of the marked critical value i.e.,

Fa,v (−2a) = v = Fa,v (+a).

We have

aj =

{
a + O(1) , if aj ∈ P1(a) (σj = 0)
−2a + O(1) , if aj ∈ P1(−2a) (σj = 1) .

where each O(1) term represents a holomorphic function of
ξ1/µ which is bounded for small |ξ|.
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The Branner-Hubbard Puzzle. Let aj = F ◦j(a)



The Branner-Hubbard Puzzle for a polynomial with kneading sequence

010010.
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Kneading sequence
If the critical point +a ∈ Eh then it determines a periodic
sequence σ(a) ∈ {0,1}, with σj+p(a) = σj(a), and with
σ0(a) = 0.

The kneading sequence of an orbit a0 7→ a1 7→ · · · in KF is
the sequence

σ(a0)σ(a1)σ(a2) · · ·

of zeros and ones, where

σ(aj) =

{
0 if P1(ao) = P1(aj),

1 if P1(ao) 6= P1(aj) .

The kneading sequence is briefly denoted as σ1 . . . σp−10 ,
where the overline indicates infinite repetition.

The (minimal) period q of this kneading sequence is always a
divisor of the period p of +a.
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Escape Regions and Puiseux series
To replace the aj by locally holomorphic functions on Sp , we
introduce the new variables

uj =
a− aj

3 a
.

More precisely, each uj has a power series of the form

uj = σj + cµ ξ + cµ+1 ξ
1+1/µ + cµ+2 ξ

1+2/µ + · · ·

which converges for small |ξ|. Notice that σj ∈ {0, 1}.

We will refer to this as the Puiseux expansion of uj .

The Puiseux series depends on the choice of µ-th. root of ξ,
but different choices give series which are conjugate to each
other by the Galois automorphism

ξ1/µ 7→ α ξ1/µ

where α is an arbitrary µ-th root of unity.
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Characterization of Escape regions by Puiseux series

Theorem [BKM]. Each escape region Eh of Sp is
characterized by an essentially unique Puiseux series.
Passing to formal Puiseux series we can rewrite

uj =
∑

k≥k0≥0

ck ξ
k/µ ∈ C[[ξ1/µ]], with k0 = 0 or k ≥ µ.

Assuming that ck0 6= 0, define the leading monomial m(uj)

of uj as ck0 ξ
k0/µ.

We say that ~u = (u1, . . . , up−1, 0) is a vector of Puiseux
series associated to the escape region Eh.
The asymptotic behavior of aj − a is encoded by

m(~u) =
(

m(~u1), . . . , m(~up−1), 0
)
.

Theorem [Kiwi]. Let ~u′ and ~u′′ be vectors of Puiseux
series associated to escape regions of Sp .

If m(~u′) = m( ~u′′), then ~u′ = ~u′′ .
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Non-Archimedean fields, –the basics

Let Qa be the algebraic closure of the set of rational numbers
Q , and

let L = L(ξ) be the completion of the field of Puiseux
series in ξ with coefficients in Qa. By definition, this set
consists of all finite or infinite series of the form

z = c0 ξ
q0 + c1ξ

q1 + · · · with cj ∈ Qar{0} , qj ∈ Q ,

and with q0 < q1 < q2 < . . . , where limj→∞ qj = +∞ in the
case of an infinite sum. This field is algebraically closed, and
complete under the norm

‖z‖ = e−q0 , with log ‖z‖ = −q0 ,

for z as above, z 6= 0; with ‖0‖ = 0 . Note the ultrametric
inequality

‖α+ β‖ ≤ max( ‖α‖ , ‖β‖ ) ,

with equality except possibly when ‖α‖ = ‖β‖ .
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z = c0 ξ
q0 + c1ξ

q1 + · · · with cj ∈ Qar{0} , qj ∈ Q ,

and with q0 < q1 < q2 < . . . , where limj→∞ qj = +∞ in the
case of an infinite sum. This field is algebraically closed, and
complete under the norm

‖z‖ = e−q0 , with log ‖z‖ = −q0 ,

for z as above, z 6= 0; with ‖0‖ = 0 .

Note the ultrametric
inequality

‖α+ β‖ ≤ max( ‖α‖ , ‖β‖ ) ,

with equality except possibly when ‖α‖ = ‖β‖ .
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Open balls and annulus

For any r ∈ eQ, a set of the form {z ; ‖z− z0‖ < r} is called
an open ball of radius r .

If r1 < r2 in eQ, then

{z ; r1 < ‖z− z0‖ < r2}

is called an annulus of modulus log(r2/r1). Thus all balls and
annuli in L are round by definition, and all moduli are rational.
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Dynamics setting in non-Archimedean field

Identify the marked critical point a ∈ C with the constant
a = ξ−1 ∈ L , where log ‖a‖ = +1 .

For any v ∈ L we have a
polynomial map fv : L→ L defined by

fv(z) = z3 − 3 a2z + (2 a3 + v) ,

so that fv(a) = v . We will assume that the Puiseux series v
is chosen so that f◦pv (a) = a .

The associated Green’s function G : L→ [0, ∞) is defined
by

G(z) = lim
n→∞

1
3n log+ ‖f◦nv (z)‖ ,

so that G
(
fv(z)

)
= 3 G(z) . For example G(z) = 0 whenever

z is periodic. Thus G(a) = G(v) = 0, but it is easy to check
that G(z) = log ‖z‖ whenever log ‖z‖ > 1 . For example
G
(
fv(−a)

)
= 3 , hence G(−a) = 1.
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The Kiwi Puzzle

The puzzle piece P0 is the open ball consisting of all z ∈ L
with

G(z) < 3 ⇐⇒ log ‖z‖ < 3 .

Kiwi Lemma. For each n > 0, the set of all z ∈ L such that

f◦n(z) ∈ P0 ⇐⇒ G(z) < 31−n

is a union of finitely many disjoint open balls.

By definition, each of these balls is a puzzle piece Pn of level
n.

Kiwi Theorem. If v is the Puiseux series associated with the
escape region Eh, then the marked grid for the corresponding
Kiwi puzzle is identical with the marked grid for the
Branner-Hubbard puzzle for any map f ∈ Eh.
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Corollary. The Branner-Hubbard puzzle determines the norm
‖aj − a‖ for each point in the periodic orbit a 7→ a1 7→ · · · .

On the other hand, if

log ‖aj−a‖ = q so that a−aj = cj ξ
−q+(higher order terms) ,

then it follows easily that

a− aj = cj aq + o(aq) as |a| → ∞ .

In particular, it follows that

log |aj − a| = q log |a| + O(1)

as (a, v) ∈ Eh tends to the ideal point ∞h .
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