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Symplectic manifold definition

I Suppose we have some physical system with position
coordinates q1, · · · ,qn and momentum coordinates
p1, · · · ,pn.

I We have some function H(q1, · · · ,qn,p1, · · · ,pn) called the
Hamiltonian which tells us the energy of the system at
each state.

I The system given by a path
(q1(t), · · · ,qn(t),p1(t), · · · ,pn(t)) satisfies:

∂H
∂q1

= −dp1
dt

...
∂H
∂qn

= −dp1
dt

∂H
∂p1

= dq1
dt

...
∂H
∂pn

= dqn
dt

These are called Hamilton’s equations.Mark McLean Symplectic geometry of Stein manifolds and affine varieties
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Hq1
...

Hqn

Hp1
...

Hpn


= −


0

1 0
. . .

0 1
−1 0

. . .
0 −1

0





dq1
dt
...

dqn
dt

dp1
dt
...

dpn
dt
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Example: A single bead on a wire

Click to Animate http://math.mit.edu/~mclean/beadonwire/manybeadsonawire. html
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I A symplectic manifold is a manifold with a 2-form ω which
locally looks like:

n∑
j=1

dpj ∧ dqj =


0

1 0
. . .

0 1
−1 0

. . .
0 −1

0


I (Darboux) Equivalently it is a manifold with a closed

non-degenerate 2-form.
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I To construct a cotangent bundle T ∗M of some manifold M
you think of a bead constrained to that manifold.

I If M is the circle S1 then our phase space is a cylinder
T ∗S1:
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Definition
A smooth affine variety is a complex submanifold of CN given
by the zero locus of some polynomial equations. This has a
symplectic form given by restricting the standard one∑

j dpj ∧ dqj on CN = R2N .

Examples

1.
{

(z1, z2, z3) ∈ C3
∣∣z2

1 + z2
2 + z2

3 = 1
} ∼=

symp
T ∗(S2).

2.
{

(z1, z2, z3, z4) ∈ C4
∣∣∣∣ z2

1 + z2
2 = 1

z2
3 + z2

4 = 1

}
∼=

symp
T ∗(T 2)

3.
{

(z1z3+1)2−(z2z3+1)3

z3
= 0

}
This smooth affine variety is not symplectomorphic to any
cotangent bundle. It is in fact contractible.
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I Smooth affine varieties and cotangent bundles are both
examples of Stein manifolds.

I A Stein manifold is a properly embedded complex
submanifold of CN . This has a symplectic form given by
restricting the standard one

∑n
j=1 dpj ∧ dqj on CN = R2N .

Mark McLean Symplectic geometry of Stein manifolds and affine varieties
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Some questions about Stein manifolds and affine
varieties

I What are good ways of describing Stein manifolds
symplectically?

I What is the relationship between algebraic/analytic
properties of the affine variety and the symplectic
structure?

I Dynamical questions.
I e.g. how many 1-periodic orbits does a Hamiltonian system

on this affine variety have?
I Mirror Symmetry questions.

Mark McLean Symplectic geometry of Stein manifolds and affine varieties
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Theorem
(Weinstein). Every Stein manifold has an explicit handle
decomposition. Each handle has an explicit symplectic
structure on it.

Mark McLean Symplectic geometry of Stein manifolds and affine varieties
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Theorem
(Eliashberg) If there is a diffeomorphism between Stein
manifolds A and B (satisfying an additional topological
condition) then C× A is symplectomorphic to C× B.

Theorem
(Seidel-Smith) There are at least two non-symplectomorphic
smooth affine varieties diffeomorphic to R2n for each n ≥ 3.

Mark McLean Symplectic geometry of Stein manifolds and affine varieties
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Theorem
(Eliashberg) If there is a diffeomorphism between affine
varieties A and B (satisfying an additional topological condition)
then C× A is symplectomorphic to C× B.

Theorem
(Seidel-Smith, M) There are infinitely many pairwise
non-symplectomorphic smooth affine varieties diffeomorphic to
R2n for each n ≥ 3.
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Theorem
(M). There is no algorithm telling us in general if two Weinstein
handle presentations diffeomorphic to R2N (N > 7) are
symplectomorphic or not.

I There is an earlier result by Seidel where R2N is replaced
by a more complicated manifold.

Mark McLean Symplectic geometry of Stein manifolds and affine varieties
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Cotangent bundles and smooth affine varieties

Theorem
(M) Most cotangent bundles are not symplectomorphic to
smooth affine varieties.
Here ‘most’ means that these cotangent bundles T ∗Q have
complicated topology.

I If π1(Q) grows exponentially.
I If π1(Q) = 0 and the sum of the Betti numbers is greater

than 2dimQ.

Mark McLean Symplectic geometry of Stein manifolds and affine varieties
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The previous theorem is similar to a result by Kulkarni.
I Let Q be a compact manifold described by the zero locus

of some polynomial equations with real variables:(x1, · · · , xN) ∈ RN

∣∣∣∣∣∣∣
p1(x1, · · · , xN) = 0

...
pk (x1, · · · , xN) = 0


I Now replace the real coordinates xi with complex ones zi :

Q(C) :=

(z1, · · · , zN) ∈ CN

∣∣∣∣∣∣∣
p1(z1, · · · , zN) = 0

...
pk (z1, · · · , zN) = 0


I Theorem

(Kulkarni) Suppose that the inclusion Q ↪→ Q(C) is a homotopy
equivalence. Then Q has nonnegative Euler characteristic.
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The main tool used to prove this is called the growth rate of
symplectic cohomology. This assigns to any Stein manifold M a
number Γ(M) := {−∞} ∪ [0,∞].

Theorem
(M) For smooth affine varieties A, Γ(A) < dimCA.

Theorem
(Abbondandolo-Schwartz,Salamon-Weber,Viterbo)
Γ(T ∗Q) =∞ for sufficiently complicated compact manifolds Q.

Mark McLean Symplectic geometry of Stein manifolds and affine varieties
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Hamiltonian Floer cohomology

I For any Hamiltonian H, we get: HF ∗(H).
I Chain complex freely generated by fixed points of the time

1 Hamiltonian flow of H.
I The differential is given by a matrix (with respect to the

basis of fixed points). Each entry is a count of solutions to:
∂su + J∂tu = JXH

Mark McLean Symplectic geometry of Stein manifolds and affine varieties
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Defining growth rate

I For a Stein manifold M ⊂ CN , we choose a Hamiltonian
H = r2 where r is the distance from the origin in CN .

I The growth rate Γ(M) (roughly) is the rate at which the
rank of HF ∗(λH) grows as λ tends to infinity.

I One can use other Hamiltonians H (satisfying certain
properties) and still get the same invariant Γ(M).

Mark McLean Symplectic geometry of Stein manifolds and affine varieties
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Bounding growth rate of affine varieties

For an affine variety A, we can find a nice Hamiltonian H so that
the number of fixed points of λH grows like a polynomial of
degree dimCA.
This bounds HF ∗(λH) and hence Γ(A) ≤ dimC(A).

Mark McLean Symplectic geometry of Stein manifolds and affine varieties
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I X = compactification of A.
I D = X \ A = smooth normal crossing.
I log Kodaira dimension κ(A) = rate at which
ρm := rank(H0(m(KX + D))) grows.

Mark McLean Symplectic geometry of Stein manifolds and affine varieties
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Theorem
(M)

I Log Kodaira dimension is a symplectic invariant for acyclic
smooth affine varieties of dimension 2.

I Partial results in dimension 3.
I (Work in progress): If A,B are symplectomorphic affine

varieties and κ(A) < 1 + technical conditions then
κ(B) < 1.

Mark McLean Symplectic geometry of Stein manifolds and affine varieties
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Theorem
(M) Suppose A is uniruled (i.e. there is a rational curve
passing through every point) and B is symplectomorphic to A
then B is also uniruled.
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We use Gromov-Witten invariants to prove these results:
I Embed A as an open subset of a projective variety X .
I Count holomorphic maps P1 → X .
I Relate log Kodaira dimension to these counts of curves.

Mark McLean Symplectic geometry of Stein manifolds and affine varieties
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further directions

I What other algebraic structures are remembered by the
symplectic structure? (rational connectedness?). What
about log general type affine varieties?

I Relationship between dynamical properties and algebraic
properties.

I What can symplectic/contact topology say about
singularities?

Mark McLean Symplectic geometry of Stein manifolds and affine varieties
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