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Examples of shocks

Shock on aircraft:



Examples of shocks

Explosion:



Shock reflection by a wedge: Regular reflection



Shock reflection by a wedge: Mach reflection



Shock reflection by a wedge: Irregular Mach

reflection.

Self-similar flow: (~u, p, ρ)(x, t) = (~u, p, ρ)(x
t
).



Systems of conservation laws

∂tu+ divF (u) = 0 in Ω× R
1,

Ω ⊂ R
n, u : Ω× R

1 → R
m, F : Rm → R

m×n.
System: m > 1.

Systems in one dimensions, n = 1: Starting from 1950’s,
works by P. Lax, O.Oleinik, J. Glimm, and many other works.
Long-time existence, uniqueness of weak solutions with small
data (in BV), convergence of viscosity approximations, ....

Systems in multiple dimensions, n > 1: Very little is known
about general time-dependent solutions. Thus study special
solutions: Riemann problem.



Riemann Problem in Multi-D
System of conservation laws:

∂tu+ divF (u) = 0 in Ω× R
1,

Ω ⊂ R
n, u : Ω× R

1 → R
m, F : Rm → R

m×n, m > 1 ,n > 1.
Riemann problem: piecewize-constant initial data
Ω = Ω1 ∪ Ω2 · · · ∪ Ωs ,

u|Ωk×{t=0} = u0k − constant vector, k = 1, . . . , s.

For appropriate Ωk and boundary cond. (BC), expect
self-similar solutions u(x, t) = U(ξ), where ξ = x

t
∈ Ω.

Self-similar system in Ω, for U(ξ) = U(x
t
):

divF (U) + (ξ · ∇)U = 0 in Ω

plus BC, and conditions at infinity (from initial condition)

Solution may have some additional discontinuities – shocks,
contact discontinuities, i.e. new subdomains: Free Boundary
Problem



Shock reflection as a Riemann problem

t = 0 t > 0

(0)(0) (1)(1)

Incident Shock

Reflected Shock

ρ0, p0

ρ1, p1

~u1 = (u1, 0)

~u0 = (0, 0)

~u
· ν

=
0

Constant (uniform) states (0) and (1):
State (0): velocity ~u0 = (0, 0), density ρ0, pressure p0.
State (1): velocity ~u1 = (u1, 0), density ρ1, pressure p1.

Self-similar solution: (~u, ρ, p) = (~u, ρ, p)(~ξ), where ~ξ =
~x

t
.



Shock reflection

First described by E. Mach 1878. Reflection patterns: Regular
reflection, Mach reflection.

J. von Neumann, 1940s: on transition between patterns

Later works: experimental, computational. Asymptotic
analysis: Lighthill, Keller, Blank, Hunter, Harabetian,
Morawetz.
Reference: book by J. Glimm and A. Majda.

Analysis: Special models (Transonic small disturbance eq.,
pressure-gradient system): Gamba, Rosales, Tabak, Canic,
Keyfitz, Kim, Lieberman, Zheng.
Local results: S.-X. Chen.

Recent works on global shock reflection solutions for potential
flow: G.-Q.Chen-F., Elling-Liu, Elling, Bae-G.-Q.Chen-F.



Regular reflection in self-similar coordinates

P0

(0)(1)

Incident Shock

Reflected
Shock

~u1

Given:
State (0): velocity ~u0 = (0, 0), density ρ0, pressure p0.
State (1): velocity ~u1 = (u1, 0), density ρ1, pressure p1.

Problem: Find self-similar solution: (~u, ρ, p) = (~u, ρ, p)(~ξ),

where ~ξ =
~x

t
, with asymptotic conditions at infinity

determined by states (0) and (1), and satisfying u · ν = 0 on
the boundary.



Compressible Euler system
Isentropic case:

∂tρ+ div(ρ~u) = 0,

∂t(ρ~u) + div(ρ~u⊗ ~u) +∇p = 0

where:
~u = (u1, u2) – velocity
ρ – density
p = ργ – pressure
γ > 1 – adiabatic exponent (it is a given constant)

Potential flow model: ~u = ∇xΦ.

ρt + div(ρ∇Φ) = 0,

Φt +
1

2
|∇Φ|2 + ργ−1 − 1

γ − 1
= const



Potential flow: self-similar case
Φ(~x, t) = tψ(ξ, η), ρ(~x, t) = ρ(ξ, η) with (ξ, η) = ~x

t
∈ R

2.

Pseudo-potential: ϕ = ψ − 1
2
(ξ2 + η2).

Equation for ϕ:

div
(

ρ(|∇ϕ|2, ϕ)∇ϕ
)

+ 2ρ(|∇ϕ|2, ϕ) = 0,

with ρ(|∇ϕ|2, ϕ) =
(

K− (γ − 1)(ϕ+
1

2
|∇ϕ|2)

)
1

γ−1 .

Equation is of mixed type:

elliptic |∇ϕ| < c(|∇ϕ|2, ϕ,K),

hyperbolic |∇ϕ| > c(|∇ϕ|2, ϕ,K),

where sonic speed c is:

c2 = ργ−1 = K − (γ − 1)(ϕ+
1

2
|∇ϕ|2).



Shocks, RH conditions, Entropy condition

Shocks are discontinuities in the pseudo-velocity ∇ϕ:
if Ω+ and Ω− := Ω \ Ω+ are nonempty and open, and
S := ∂Ω+ ∩ Ω is a C1 curve where ∇ϕ has a jump, then
ϕ ∈ C1(Ω± ∪ S) ∩ C2(Ω±) is a global weak solution in Ω if
and only if ϕ satisfies potential flow equation in Ω± and the
Rankine-Hugoniot (RH) condition on S:

[ϕ]S = 0,
[

ρ(|∇ϕ|2, ϕ)∇ϕ · ν
]

S
= 0,

where [·]S is jump across S.

Entropy Condition on S: density increases across S in the flow
direction.



Uniform states

Solutions with constant (physical) velocity (u, v):

ϕ(ξ, η) = −ξ
2 + η2

2
+ uξ + vη + const.

Any such function is a solution.
Also (from formula) density ρ(∇ϕ, ϕ) = const, thus sonic

speed c = ρ
γ−1

2 = const. Then ellipticity region

|∇ϕ(ξ, η)| = |(u, v)− (ξ, η)| < c

is circle, centered at (u, v), radius c.



Regular reflection, state (2)

P0

(0)(1)

Incident Shock

Reflected
Shock

~u1

ϕ = pseudo-potential between the reflected shock and the wall
ϕ1 = pseudo-potential of state (1)

Denote ∇ϕ(P0) = (u2, v2). Since ϕν = 0 on wedge, then
v2 = u2 tan θw.

Rankine-Hugoniot conditions at reflection point P0, for ϕ and
ϕ1: algebraic equations for u2, ϕ(P0)



Regular reflection, state (2), detachment angle

If solution exists: Let

ϕ2(ξ, η) = −(ξ2 + η2)/2 + u2ξ + v2η + C,

where C determined by ϕ2(P0) = ϕ1(P0).

Existence of state (2) is necessary condition for existence of
regular reflection

Given γ, ρ0, ρ1, there exists θdetach ∈ (0, π
2
) such that:

state (2) exists for θw ∈ (θdetach,
π
2
),

state (2) does not exist for θw ∈ (0, θdetach).

If ϕ2 exist, then RH is satisfied along the line
S1 := {ϕ1 = ϕ2}.



Sonic angle

P0

S0

S1

Σ

(0)(1)

(2)

Sonic circle
of state (2)

O2

There exist θsonic ∈ (θdetach,
π
2
) such that:

State 2 is supersonic at P0 for θw ∈ (θsonic,
π
2
).

State 2 is subsonic at P0 for θw ∈ (θdetach, θsonic).



Von Neumann’s conjectures on transition between

different reflection patterns

Recall: sonic angle θsonic and detachment angle θd satisfy
0 < θd < θsonic <

π
2
.

Sonic conjecture:
Regular reflection for θw ∈ (θsonic,

π
2
)

Von Neumann’s detachment conjecture:
Regular reflection for θw ∈ (θd,

π
2
), Mach reflection for

θw ∈ (0, θd).

We discuss existence of regular reflection for θw ∈ (θsonic,
π
2
).

Also a recent work indicates existence in case θw < θsonic
close to θsonic.
We use self-similar potential flow equation.



Existence for θw near π/2

 shock
Incident

Sonic circle

of state (2)

Reflected shock

Curved

(1) (0)

(2)

Ω

Ω0Ω1

Ω2
P0

P1

P2 P3

P4

Σ

Theorem 1. (G.-Q. Chen-F., PNAS 2005; Ann. of
Math. 2010). There exist θc = θc(ρ0, ρ1, γ) ∈ (0, π/2) and
α = α(ρ0, ρ1, γ) ∈ (0, 1/2) such that, when θw ∈ [θc, π/2),
there exists a global self-similar solution ϕ ∈ C0,1(Λ),
satisfying:



Existence for θw near π/2

 shock
Incident

Sonic circle

of state (2)

Reflected shock

Curved

(1) (0)

(2)

Ω

Ω0Ω1

Ω2
P0

P1

P2 P3

P4

Σ

1) ϕ is a weak solution of Eq. in Λ = R
2
+ \ Obstacle,

2) ∂νϕ = 0 on ∂Wedge and Σ;

3) ϕ = ϕi (state (i)) in Ωi for i = 0, 1, 2;

4) Equation is elliptic in Ω, ellipticity degenerates near sonic
arc P1P4.



Existence for θw near π/2

 shock
Incident

Sonic circle

of state (2)

Reflected shock

Curved

(1) (0)

(2)

Ω

Ω0Ω1

Ω2
P0

P1

P2 P3

P4

Σ

Moreover,
a) ϕ is C1,1 near and across the sonic arc P1P4;

b) Reflected shock is C2,β curve for all β ∈ (0, 1
2
), a graph for

a cone of directions between S0 and S1;

c) ϕ2 ≤ ϕ ≤ ϕ1 in Ω



Stability of normal reflection as θw → π/2

 shock
Incident

Sonic circle

of state (2)

Reflected shock

Curved

(1) (0)

(2)

Ω

Ω0Ω1

Ω2
P0

P1

P2 P3

P4

Σ

Furthermore,
the solutions ϕ converge in W 1,1

loc to the solution of the normal
refection as θw → π/2.



Further related work
V. Elling, T.P. Liu
- Ellipticity principle for potential flow (JHDU 2005)
- Supersonic flow onto wedge (Prandtl reflection): existence of
weak solutions, (CPAM, 2008)

M. Bae, G.-Q. Chen, F. Regularity near sonic arc, (Invent.
Math. 2009)

D. Serre. Shock interactions/reflection for Chaplygin gas,
(ARMA 2009)

V. Elling Regular reflection: existence of weak solutions under
condition of existence of a barrier for the shock (Commun.
Math. Anal., 2010)

G.-Q. Chen, F. Regular reflection: existence of solutions with
regularity as in Th. 1 for θw ∈ (θsonic,

π
2
), under condition

u1 ≤ c1 on parameters of states (1) and (2). In the case
u1 > c1: possibility of ”attached shock” (Preprint 2011)



Existence for θw ∈ (θsonic,
π
2
)
Incident
 shock

(0)(1)

(2)

Sonic circle
of state (1)

Sonic circle
of  state (2)

Ω P0

P1

P2

P3

P4

ΣO1(u1, 0)

c1 ≥ u1

Theorem 2. (G.-Q. Chen-F., Preprint 2011). If
ρ1 > ρ0 > 0, γ > 1 satisfy u1 ≤ c1, then a regular reflection
solution ϕ described in Th. 1 exists for all wedge angles
θw ∈ (θsonic,

π
2
).

Solution satisfies all properties stated in Th. 1. In particular,
ϕ is C1,1 near and across the sonic arc P1P4, and shock is
C2,β curve for all β ∈ (0, 1

2
), and ϕ2 ≤ ϕ ≤ ϕ1 in Ω.



Attached reflected shock

For irregular Mach reflection attached case appears to be
possible, see Fig. 238 (page 144) of
M. Van Dyke,An Album of Fluid Motion, The Parabolic Press:
Stanford, 1982.



Existence for θw ∈ (θsonic,
π
2
)
Incident
 shock

(0)(1)

Sonic circle
of state (1)

Sonic circle
of  state (2)

Ω P0

P1

P2

P3

P4

ΣO1

c1 < u1

Theorem 3. (G.-Q. Chen-F., Preprint 2011). If
ρ1 > ρ0 > 0, γ > 1 satisfy u1 > c1, then a regular reflection
solution ϕ described in Th. 1 exists for all wedge angles
θw ∈ (θc,

π
2
), where

-either θc = θsonic,

-or θc > θsonic and for θw = θc there exists an attached
weak solution of regular reflection problem.



Subsonic regular reflection for θw < θsonic near

θsonic

Incident
 shock

P
0

P

P

2

3

Reflected
shock

(1) (0)

Theorem 2’-3’. (G.-Q. Chen-F., 2012.) In the conditions
of Theorem 2, or Theorem 3 with θc < θsonic, there exists
θ∗w ∈ [θdetach, θsonic) such that for all θw ∈ [θ∗w, θsonic] there
exists a subsonic regular reflection solution, i.e. with
P0 = P1 = P4.



Regularity across sonic arc

 shock
Incident

Sonic circle

of state (2)

Reflected shock

Curved

(1) (0)

(2)

Ω

Ω0Ω1

Ω2
P0

P1

P2 P3

P4

Σ

Theorem 4. (Bae-Chen-F., Invent. Math. 2009) Let ϕ
be a global regular reflection solution, supersonic at P0, and
ϕ2 ≤ ϕ on curved reflected shock (and thus in Ω).
Then ϕ is not C2 across the sonic arc P1P4.

Solutions constructed in Th. 1–3 satisfy condition of Th.4.
Thus C1,1 regularity across P1P4 in Th. 1–3 is optimal.



Regularity in Ω near sonic arc
 shock
Incident

Sonic circle

of state (2)

Reflected shock

Curved

(1) (0)

(2)

Ω

P0
P1

P2 P3

P4

Σ

O2

r

Theorem 5. (Bae-Chen-F., Invent. Math. 2009) Assume
the solution ϕ satisfies:

a) ϕ2 ≤ ϕ on curved reflected shock (and thus in Ω)
b) ϕ ∈ C1,1 near sonic arc P1P4.

Then:
1) For every P in sonic arc (P1P4] (i.e. excluding P1)

ϕ ∈ C2,α(Ω∩BR(P )), for some small R > 0, any α ∈ (0, 1).



Regularity in Ω near sonic arc

 shock
Incident

Sonic circle

of state (2)

Reflected shock

Curved

(1) (0)

(2)

Ω

P0
P1

P2 P3

P4

Σ

r

O2

2) D2ϕ has a jump across sonic arc P1P4:

Drrϕ|Ω −Drrϕ2 =
1

γ+1
on arc(P1P4]

Thus ϕ is C1,1 but not C2 across sonic arc,

3) D2ϕ in Ω does not have a limit at P1.

Remark: Solutions constructed in Th. 1–3 satisfy condition of
Th.5.



Approach: Free boundary problem

 shock
Incident

Sonic circle

of state (2)

Reflected shock

Curved

(1) (0)

(2)

Ω

Ω0Ω1

Ω2
P0

P1

P2 P3

P4

Σ

Unknowns: elliptic region Ω, its boundary part P1P2, and ϕ in
Ω.

Free boundary problem for elliptic (?) equation:



Approach: Free boundary problem

 shock
Incident

Sonic circle

of state (2)

Reflected shock

Curved

(1) (0)

(2)

Ω

Ω0Ω1

Ω2
P0

P1

P2 P3

P4

Σ

div
(

ρ(|∇ϕ|2, ϕ)∇ϕ
)

+ 2ρ(|∇ϕ|2, ϕ) = 0 in Ω,

ρ(|∇ϕ|2, ϕ)∇ϕ · ν = ρ(|∇ϕ1|2, ϕ1)∇ϕ1 · ν
ϕ = ϕ1

}

on P1P2

ϕ = ϕ2 on P1P4 (and prove Dνϕ = Dνϕ2 on P1P4)

ϕν = 0 on Wedge P3P4, Symmetry line P2P3,



Solving FBP
Admissible solutions: satisfy ellipticity in Ω, nonstrict
monotonicity ∂e(ϕ1 − ϕ) ≤ 0 in Ω for any e ∈ cone(eη, eS1

).

I Prove strict monotonicity of ϕ1 − ϕ for each
e ∈ cone(eη, eS1

). =⇒ Γshock is a graph, Lip[Γshock] ≤ C.
I Derive uniform basic estimates for admissible solutions:
‖ϕ‖C0,1(Ω) ≤ C, diam(Ω) ≤ C,
0 < ρmin ≤ ρ(∇ϕ, ϕ) ≤ ρmax.

I Prove geometric properties of the free boundary Γshock:
Uniform estimates on separation of shock with wedge and
the symmetry line, uniform lower bound
dist(Γshock, Bc1(O1)) ≥ 1

C
.

I Prove ”ellipticity”(ξ, η) ≥ 1
C
dist((ξ, η),Γsonic).

I Derive estimates for ϕ in weighted/scaled C2,α in Ω.
I Use method of continuity/degree theory to prove

existence of admissible solutions for each wedge angle up
to the sonic angle (if u1 ≤ c1....)



Estimates near sonic arc

Flatten sonic arc: introduce coordinates

x = c2 − r, y = θ − θw,

where (r, θ) are polar coordinates centered at O2 = (u2, v2).

Ω

Ω

P1

P1 P4

O2

c2

P4

x

y

Then Ω ∩ N (Γsonic) ⊂ {x > 0} and Γsonic ⊂ {x = 0}, where
Γsonic is arc P1P4.



Estimates near sonic arc

Let ψ = ϕ− ϕ2. Self-similar potential flow equation rewritten
for ψ in (x, y)-coordinates is:

[2x− (γ + 1)ψx]ψxx +
1

c2
ψyy − ψx = 0 in Ω ⊂ {x > 0}.

plus ”small” terms. Full equation is homogeneous.
Also,

ψ > 0 in Ω, ← recall: ϕ ≥ ϕ2

ψ = 0 on Γsonic = ∂Ω ∩ {x = 0}.
Equation is elliptic in x > 0 if

ψx <
2

γ + 1
x.



Estimates near sonic arc
Thus expect ψ, ψx small: consider linearization near ψ = 0:

xψxx +
1

2c2
ψyy −

1

2
ψx = 0 in {x > 0}.

Related works: P. Daskalopoulos - R. Hamilton, and F.-H.
Lin - L. Wang

For ODE (in x > 0)

xuxx − αux = 0, u(0) = 0,

solutions are u = Cx1+α.

Thus, in order to have |ux| ≤ Cx, need α ≥ 1.

But in our case α = 1
2
, thus linearization near ψ = 0 does not

work.



Estimates near sonic arc

Use nonlinear term: let

wε =
1 + ε

2(γ + 1)
x2.

Then w0 is a solution of the nonlinear (main terms) equation

[2x− (γ + 1)ψx]ψxx +
1

c2
ψyy − ψx = 0

and wε for ε > 0 is a strict supersolution of the full equation.
Note: we do not have a lower barrier, but we know ψ ≥ 0.

Using this (and boundary conditions....), get

0 ≤ ψ ≤ Cx2.



Estimates near sonic arc

Further estimates: use parabolic scaling.

From monotonicities (and other estimates) of ψ = ϕ− ϕ2

near sonic arc, 0 ≤ ψx ≤ Cx, |ψy| ≤ Cx. Allows to control
coefficients of equation.

Then for simplicity, consider

xuxx + uyy − αux = 0 in {x > 0}
and assume that

|u| ≤ Cx2.

Note: this estimate has been proved in our ”real” case.



Estimates near sonic arc

Let x0 = 2d > 0, consider rectangle

Qd(x0, y0) = {(x, y) | |x− x0| < d, |y − y0| ≤
√
d}.

Note Qd(x0, y0) ⊂ {x > 0}.

x0

y0

d √
d

x

y



Estimates near sonic arc
Map Qd(x0, y0) to the unit square Q1(0, 0) by

X =
x− x0
d

, Y =
y − y0√

d
.

Define function v(X, Y ) on Q1(0, 0) by

1

d2
u(x, y) = v(X, Y )≡ v

(

x− x0
d

,
y − y0√

d

)

.

Then |u| ≤ Cx2 implies |v| ≤ 9C in Q1(0, 0).

Equation for u translates into:

(2 +X)vXX + vY Y − αvX = 0,

which is uniformly elliptic in Q1(0, 0).



Estimates near sonic arc

Thus
‖v‖C2,α(Q1/2) ≤ C‖v‖L∞(Q1) ≤ Ĉ.

Writing this in terms of u(x, y) at (x, y) = (x0, y0), get

|ux| ≤ Cx, |uy| ≤ Cx3/2,

|uxx| ≤ C, |uxy| ≤ Cx1/2, |uyy| ≤ Cx.

Thus we get C1,1 estimates up to {x = 0}.

In fact, we obtained more precise estimates. We call them
estimates in parabolic norms (defined as supremum over
(x0, y0) of C

2,α(Q1/2) norms of the rescaled functions
v(X, Y )).



Estimates near sonic arc P1P4

Note: essentially, we used linearization near w0 =
1

2(γ+1)
x2 and

showed that it controls nonlinear equation up to C1,1. In the
further regularity work (Theorem 5), we show that this control
extends to C2,α near P1P4 away from shock (i.e. away from
point P1), but cannot be better than C1,1 near P1.

 shock
Incident

Sonic circle

of state (2)

Reflected shock

Curved

(1) (0)

(2)

P0
P1

P2 P3

P4



Subsonic reflection: θw < θsonic near θsonic:

Estimates near P0
First: Uniform estimates for θw ≥ θsonic up to θsonic.
Let x0 = 2d > 0. Can only have rectangle size Cd in
y-direction (and note: Cd <<

√
d if d is small).

Then consider rectangle

Qd(x0, y0) = {(x, y) | |x− x0| < d3/2, |y − y0| ≤ Cd}.
Note Qd(x0, y0) fits into Ω if (x0, y0) is a sufficiently interior
point.

x0

y0

d3/2

d

x

y



Subsonic reflection: Estimates near P0

Map Qd(x0, y0) to the unit square Q1(0, 0) by

X =
x− x0
d3/2

, Y =
y − y0
d

.

Define function v(X, Y ) on Q1(0, 0) by

1

d2
u(x, y) = v(X, Y )≡ v

(

x− x0
d3/2

,
y − y0
d

)

.

Then |u| ≤ Cx2 implies |v| ≤ 9C in Q1(0, 0).

Equation for u translates into:

(2 +Xd1/2)vXX + vY Y − d1/2αvX = 0,

which is uniformly elliptic in Q1(0, 0). Get weighted/scaled
C1,α for u.



Negative solutions near sonic circle

Arise in the proof ”shock does not hit sonic circle of state (1)”.
Let ψ = ϕ− ϕ1. Then ψ < 0. In the (x, y)-coordinates
related to sonic circle of state (1), equation as before:

[2x− (γ + 1)ψx]ψxx +
1

c1
ψyy − ψx = 0 in Ω ⊂ {x > 0}

plus ”small” terms.
Define u = −ψ. Then u > 0 in {x > 0}, and satisfies:

[2x+(γ + 1)ux]uxx +
1

c1
uyy − ux = 0 in Ω ⊂ {x > 0}.



Negative solutions near sonic circle

[2x+(γ + 1)ux]uxx +
1

c1
uyy − ux = 0 in Ω ⊂ {x > 0},

u = 0 on ∂Ω ∩ {x = 0}

Equation is uniformly elliptic on linear functions u = kx,
where k > 0. Moreover, it has a positive subsolution U in
{x > 0} of linear growth and U = 0 on {x = 0}. (Compare
with supersolution of quadratic growth in the previous case).

This implies that shock cannot hit sonic circle of state (1):

(ϕ1 − ϕ) ≥ U in Ω ∩ {x > 0}, equality on ∂Ω ∩ {x = 0}

thus there would be a gradient jump at the touching point –
contradiction to RH-conditions when one of sides is sonic.



Open problems

I Finalize the proof of existence of subsonic regular
reflection for all wedge angles θw ∈ (θsonic, θdetach), i.e.
prove von Neumann detachment conjecture;

I Uniqueness of regular reflection solution. Depends on the
geometric properties of the shock: convexity would be
sufficient.

I Prove all these results for Euler system. Difficulty:
vorticity blowup near stagnation points, noticed by D.
Serre for isentropic Euler system. It is possible that the
full Euler system does not have this singularity;

I Mach reflection...


