

Incidences

- Szemerédi and Trotter '83. The maximum number of incidences between m points and n lines is $O(m^{2/3}n^{2/3} + m + n)$.
- Most of the other variants are still open:
 - Point-circle incidences.
 - Point-parabola incidences.

Namedropping

- Incidences have MANY applications.
- Examples from the last few years:
 - Guth and Katz used them to solve Erdős' distinct distances problem.
 - Brougain and Demeter used them to solve restriction problems in harmonic analysis.
 - Bombieri and Bourgain used them in a recent number theory paper.
 - Raz, Sharir, and Solymosi used them to study expanding polynomials.

More Namedropping

- More applications of incidences:
 - Many applications in additive combinatorics, including Elekes' Sum-Product bound.
 - Dvir, Saraf, Wigderson and others use them in a family of papers about coding theory.
 - Farber, Ray, and Smorodinsky used them to study minors of totally positive matrices.
 - Other uses involve extractors, point covering problems, range searching algorithms, and more.

Sumsets

- $A = \{a_1, a_2, \dots, a_n\} \subset \mathbb{R}.$
- $A + A = \{a + b \mid a, b \in A\}.$
- Can A + A contain only O(n) elements?
 - 0
 - 0
 - 0
- 0

Product Sets

- $A = \{a_1, a_2, \dots, a_n\} \subset \mathbb{R}.$
- $AA = \{a \cdot b \mid a, b \in A\}.$
- Can AA contain only O(n) elements?
 - 0
 - 0
 - 0
 - 0

Sum-Product

- $A = \{a_1, a_2, \dots, a_n\} \subset \mathbb{R}.$
- $A + A = \{a + b \mid a, b \in A\}.$
- $AA = \{a \cdot b \mid a, b \in A\}.$
- Can both A + A and AA be small?

The Sum-Product Conjecture

 Conjecture (Erdős and Szemerédi `83).
 For any ε > 0, every sufficiently large set A satisfies

 $\max\{|A+A|, |AA|\} = \Omega(|A|^{2-\varepsilon}).$

Endre Szemerédi

The Sum-Product Conjecture

• Solymosi `09. $\max\{|A + A|, |AA|\} = \Omega^*(|A|^{4/3}).$

- Konyagin and Shkredov `16. $\max\{|A + A|, |AA|\} = \Omega^* \left(|A|^{\frac{4}{3} + \frac{5}{9813}}\right).$
- We will prove an older bound of Elekes. $\max\{|A + A|, |AA|\} = \Omega(|A|^{5/4}).$

Elekes's Proof (2)

• *A* – a set of *n* real numbers.

$$P = \{(a, b) \mid a \in A + A \quad b \in AA\} \\ L = \{y = c(x - d) \mid c, d \in A\}$$

• By the Szemerédi–Trotter theorem: $I(P,L) = O(|P|^{2/3}|L|^{2/3} + |P| + |L|)$ $= O(|A + A|^{2/3}|AA|^{2/3}n^{4/3}).$

Elekes's Proof (3)

- *A* a set of *n* real numbers.
 - $P = \{(a, b) \mid a \in A + A \quad b \in AA\} \\ L = \{y = c(x d) \mid c, d \in A\}$
- Every line y = c(x d) contains exactly the *n* points of *P* of the form (d + a', ca')where $a' \in A$.

$$I(P,L) = |A|^3 = n^3$$

Elekes's Proof (end)

• We obtained the two bounds:

 $I(P,L)=n^3,$

 $I(P,L) = O(|A + A|^{2/3}|AA|^{2/3}n^{4/3}).$

• Combining the two implies $|A + A||AA| = \Omega(n^{5/2}).$

Incidence for Algebraic Curves

• Pach and Sharir `92.

- P set of m points in \mathbb{R}^2 .
- Γ set of *n* constant-degree polynomial curves.
- No K_{s,t} in the incidence graph.

$I(P,\Gamma) = O(m^{s/(2s-1)}n^{(2s-2)/(2s-1)} + m + n)$

János Pach

The Case of \mathbb{R}^3

• Zahl `13.

- P set of m points in \mathbb{R}^3 .
- *S* set of *n* constant-degree polynomial *surfaces* in \mathbb{R}^3 .
- No $K_{s,t}$ in the incidence graph.
- Every three surfaces have a zero-dimensional intersection.

$$I(P,S) = O(m^{2s/(3s-1)}n^{(3s-3)/(3s-1)} + m + n)$$

The Case of \mathbb{R}^4

• Basu and Sombra.

- P set of m points in \mathbb{R}^4 .
- *S* set of *n* constant-degree polynomial *hyper-surfaces* in \mathbb{R}^4 .
- No $K_{s,t}$ in the incidence graph.
- Every four surfaces have a zero-dimensional intersection.

$$I(P,S) = O(m^{3s/(4s-1)}n^{(4s-4)/(4s-1)} + m + n)$$

General Result

Fox, Pach, Suk, S', and Zahl:

- P set of m points in \mathbb{R}^d .
- V − set of n constant-degree varieties in ^R^d.
- No $K_{s,t}$ in the incidence graph.
- Any $\varepsilon > 0$.

 $I(P,V) = O(m^{(d-1)s/(ds-1)+\varepsilon}n^{d(s-1)/(ds-1)} + m + n)$

Lower Bounds

- Theorem (S' 16).
 - Matching lower bounds for up to an extra ε in the exponent for hypersurfaces in \mathbb{R}^d , where $d \ge 4$.
 - Works for many types of varieties but tight only for no $K_{2,t}$.
- Almost the first time that an incidence problem is nearly settled.
- Proof combines Fourier transform, basic number theory, and probability.

● A

 $\circ B$

o C

D

The Polynomial Method

- The polynomial method: Collections of objects that exhibit extremal behavior often have hidden algebraic structure.
 - Once this algebraic structure has been found, it can be exploited to gain a better understanding of the original problem.

Polynomial Partitioning Theorem

 Theorem (Guth and Katz `10). For every r > 1 and every set of points in ℝ^d, there exists an r-partitioning polynomial of degree O(r).

Larry Guth

Nets Katz

• We apply the weak bound $O(m\sqrt{n} + n)$ separately in each cell:

$$\sum_{j} O\left(m_{j}\sqrt{n_{j}}+n\right) = O\left(\frac{m}{r^{2}}\sum_{j}\sqrt{n_{j}}+\sum_{j}n_{i}\right).$$

Recap: Incidences via Partitioning

- Obtain a weaker incidence bound.
 - Using a standard combinatorial trick.
- Partition the space into cells.
 - Using polynomial partitioning.
- "Amplify" the weaker bound by applying it in every cell.
- Bound the number of incidences on the partition itself.

A Problem

- When using polynomial partitioning in ℝ^d with d ≥ 3, how do we handle incidences on the partition?
 - $\,\circ\,$ Already in \mathbb{R}^3 we might get a complicated surface with many curves fully contained in it.

The Plan

- S_1 our partition in \mathbb{R}^d .
- Still need to deal with incidences on the (d-1)-dimensional variety S_1 .
- S₂ a second partition.
 - *r*-partitioning of the points of $P \cap S_1$ but does not fully contain any components of S_1 .

The Plan

- S_1 our partition in \mathbb{R}^d .
- S_2 a second partition.
 - *r*-partitioning of the points of $P \cap S_1$ but does not fully contain any components of S_1 .
- Still need to deal with incidences on the (d-2)-dimensional variety $S_1 \cap S_2$.

The Plan

- S_1 our partition in \mathbb{R}^d .
- S₂ a second partition.
 - Partitions the points of $P \cap S_1$ but does not fully contain S_1 .
- S_3 a third partition.
 - *r*-partitioning of the points of $P \cap S_1 \cap S_2$ but does not fully contain any components of $S_1 \cap S_2$.

• ...

Multiple Partitions

 After j partitionings, it remains to deal with points on a (d – j)-dimensional variety.

Multiple Partitions

- After *j* partitionings, it remains to deal with points on a (*d* - *j*)-dimensional variety.
- Problem. Given an irreducible
 (d j)-dimensional variety V_j, find a polynomial f_{j+1} so that:
- ? f_{j+1} is an *r*-partitioning for *P* ∩ *V*_j.
- ?° f_{j+1} does not vanish identically on V_j .
- ? The degree of f_{j+1} is not too large.

Polynomial Partitioning Theorem

 Theorem (Guth and Katz `10). For every r > 1 and every set of points in ℝ^d, there exists an r-partitioning polynomial of degree O(r).

Larry Guth

Nets Katz

Bisecting Hyperplanes

 A hyperplane h bisects a finite set A if each of the open half-spaces defined by h contains at most [|A|/2] points of A.

• **Theorem.** Any d finite sets in \mathbb{R}^d can be simultaneously bisected by a hyperplane.

(Proved by using the *Borsuk–Ulam theorem*).

Using Discrete Ham Sandwich

 In R^d, we can perform ~ log₂ d partitioning steps by using the discrete ham sandwich theorem.

Then what?

The Veronese Map

• Veronese map $\nu_D \colon \mathbb{R}^d \to \mathbb{R}^m$ is defined as

$$v_D(x_1, ..., x_d) = (x_1^{u_1} x_2^{u_2} \cdots x_d^{u_d})_{u \in U_D}$$

where

 $U_D = \{(i_1, \dots, i_d) | 1 \le i_1 + \dots + i_d \le D\}.$

• Consider the map $\nu_2 \colon \mathbb{R}^2 \to \mathbb{R}^5$:

$$v_2(x_1, x_2) = (x_1^2, x_2^2, x_1x_2, x_1, x_2).$$

- If we need to bisect k sets, we choose D such that the number m_D of monomials of degree ≤ D is at least k.
 - Every point set P_i is mapped to a point set P'_i in \mathbb{R}^{m_D} .
 - Ham sandwich theorem: there exists a hyperplane h ⊂ ℝ^{m_D} that bisects each P_i'.

The Quotient Ring

- $\mathbb{R}[x_1, \dots, x_d]_{\leq D}$ the set of polynomials in x_1, \dots, x_d of degree $\leq D$.
- $I = I(V_j)$ the ideal of polynomials that vanish on V_j .
- *I*_{≤D} the set of polynomials in *I* of degree ≤ *D*.

 $R = \mathbb{R}[x_1, \dots, x_d]_{\leq D} / I_{\leq D}$

• We consider only polynomials in *R*.

- Problem. Given an irreducible
 (d j)-dimensional variety V_j, find a polynomial f_{j+1} so that:
- ? f_{j+1} is an *r*-partitioning for *P* ∩ V_j .
- $\checkmark \circ f_{j+1}$ does not vanish identically on V_j .
- **?** The degree of f_{j+1} is not too large.

Quotient Ring + "Veronese" Map

 $R = \mathbb{R}[x_1, \dots, x_d]_{\leq D} / I_{\leq D}$

- R is a vector space of dimension m_D .
- To bisect $P_1, \dots, P_k \subset V_i$:
 - Choose D such that $m_D \geq k$.
 - $\circ b_1, \dots, b_{m_D}$ a basis for *R*.
- Map $\nu_D^R \colon \mathbb{R}^d \to \mathbb{R}^{m_D}$ is defined as

$$\nu_D^R(x_1,\ldots,x_d) = \left(b_1(x),\ldots,b_{m_D}(x)\right)$$

What We Already Know

Problem. Given an irreducible (d − j)-dimensional variety V_j, find a polynomial f_{j+1} so that:
 ✓ ∘ f_{j+1} is an *r*-partitioning for P ∩ V_j.
 ✓ ∘ f_{j+1} does not vanish identically on V_j.

? • The degree of f_{j+1} is not too large.

The Hilbert Function (really!)

- An ideal $I = I(V_j) \subset \mathbb{R}[x_1, ... x_d].$
- Hilbert function of ideal I:

 $h_I(D) = \dim(\mathbb{R}[x_1, \dots x_d]_{\leq D}/I_{\leq D})$

• That is: $m_D = h_I(D)$!

And That's It!

- Problem. Given an irreducible

 (d j)-dimensional variety V_j, find a
 polynomial f_{j+1} so that:
- $\checkmark \circ f_{j+1}$ is an *r*-partitioning for $P \cap V_j$.
- $\checkmark^{\circ} f_{j+1}$ does not vanish identically on V_j .
- \checkmark The degree of f_{j+1} is not too large.

Incidences in \mathbb{C}^2

- Solymosi and Tao `12. The number of incidences between *m* points and *n* lines in C² is O(m^{2/3+ε}n^{2/3} + m + n) for every ε > 0.
 - Holds for other types of curves, but under very strict restrictions.

Terence Tao

Incidences in \mathbb{C}^2

- S', Szabo, and Zahl 16.
 - P set of m points in \mathbb{C}^2 .
 - Γ set of n constant-degree polynomial curves.
 - No K_{s,t} in the incidence graph.
 - Any $\varepsilon > 0$.

$I(P,\Gamma)$

 $= 0(m^{s/(2s-1)+\varepsilon}n^{(2s-2)/(2s-1)} + m + n)$

The Problem

- We are in \mathbb{R}^4 .
 - The partition is a 3-dim variety V.
 - We need to handle the incidences between points and 2-dim varieties inside of *V*.
- •

The Cauchy-Riemann Equations

- Consider the complex coordinates
 - $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$.
- For $f \in \mathbb{C}[z_1, z_2]$ write f = u + iv where $u, v \in \mathbb{R}[x_1, y_1, x_2, y_2]$.
- u and v satisfy the Cauchy-Riemann equations if

 $\frac{\partial u}{\partial x_k} = \frac{\partial v}{\partial y_k}, \qquad \frac{\partial u}{\partial y_k} = -\frac{\partial v}{\partial x_k}, \qquad k \in \{1, 2\}.$

The Problem

- We are in \mathbb{R}^4 .
 - The partition is a 3-dim variety V.
 - We need to handle the incidences between points and 2-dim varieties inside of *V*.
- By the Cauchy-Riemann equations:
 - For a generic point $p \in V$, there is a 2-dim plane Π such that every 2-dim variety that is incident to p has Π as its tangent plane at p.

Completing the Proof Sketch

- We are in \mathbb{R}^4 .
 - The partition is a 3-dim variety V.
 - For a generic **point** $p \in V$, there is a 2-dim plane Π associated with it.
- Finding a 2-dim variety in V that is incident to p is an initial value problem.

A Foliation

 Intuitively, the relevant parts of the partition are foliated:

