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Geometric Incidences and the 
Polynomial Method

Adam Sheffer

Caltech

Incidences

 𝑃 – a set of 𝑚 points.

 𝐿 – a set of 𝑛 lines. 

 An incidence: 𝑝, ℓ ∈ 𝑃 × 𝐿 such that         
𝑝 ∈ 𝐿.

15
incidences
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Incidences

 Szemerédi and Trotter ’83. The number 
of incidences between any 𝑚 points and 

𝑛 lines is 𝑂 𝑚2/3𝑛2/3 +𝑚 + 𝑛 .

Incidences

 Szemerédi and Trotter ’83. The maximum 
number of incidences between 𝑚 points 

and 𝑛 lines is 𝑂 𝑚2/3𝑛2/3 +𝑚 + 𝑛 .

 Most of the other variants are still open:

◦ Point-circle incidences.

◦ Point-parabola incidences.

◦ Hyperplanes in ℝ𝑑.

◦ Incidences in ℂ𝑑 and 𝔽𝑞
𝑑.

◦ And so on…
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Namedropping

 Incidences have MANY applications. 

 Examples from the last few years:

◦ Guth and Katz used them to solve Erdős’ 
distinct distances problem. 

◦ Brougain and Demeter used them to solve 
restriction problems in harmonic analysis.

◦ Bombieri and Bourgain used                        
them in a recent number                            
theory paper.

◦ Raz, Sharir, and Solymosi used                        
them to study expanding                
polynomials.

More Namedropping

 More applications of incidences:

◦ Many applications in additive combinatorics, 
including Elekes’ Sum-Product bound.

◦ Dvir, Saraf, Wigderson and others use them in 
a family of papers about coding theory.

◦ Farber, Ray, and Smorodinsky used them to 
study minors of totally positive matrices.

◦ Other uses involve extractors, point 
covering problems, range                          
searching algorithms, and more.
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Sumsets

 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 ⊂ ℝ.

 𝐴 + 𝐴 = 𝑎 + 𝑏 | 𝑎, 𝑏 ∈ 𝐴 .

 Can 𝐴 + 𝐴 contain only 𝑂 𝑛 elements?

◦ Yes.

◦ 𝐴 = 1,2,3,… , 𝑛 .

◦ 𝐴 + 𝐴 = 2𝑛 − 1.

◦ Similarly for any arithmetic progression.

Product Sets

 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 ⊂ ℝ.

 𝐴𝐴 = 𝑎 ⋅ 𝑏 | 𝑎, 𝑏 ∈ 𝐴 .

 Can 𝐴𝐴 contain only 𝑂(𝑛) elements?

◦ Yes.

◦ 𝐴 = 2,4,8… , 2𝑛 .

◦ 𝐴𝐴 = 2𝑛 − 1.

◦ Similarly for any geometric progression.
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Sum-Product

 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 ⊂ ℝ.

 𝐴 + 𝐴 = 𝑎 + 𝑏 | 𝑎, 𝑏 ∈ 𝐴 .

 𝐴𝐴 = 𝑎 ⋅ 𝑏 | 𝑎, 𝑏 ∈ 𝐴 .

 Can both 𝐴 + 𝐴 and 𝐴𝐴 be small?

The Sum-Product Conjecture

 Conjecture (Erdős and Szemerédi `83).
For any 𝜀 > 0, every sufficiently large 
set 𝐴 satisfies

max 𝐴 + 𝐴 , 𝐴𝐴 = Ω |𝐴|2−𝜀 .

Paul Erdős Endre Szemerédi
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The Sum-Product Conjecture

 Solymosi `09. 

max 𝐴 + 𝐴 , 𝐴𝐴 = Ω∗ |𝐴|4/3 .

 Konyagin and Shkredov `16.

max 𝐴 + 𝐴 , 𝐴𝐴 = Ω∗ |𝐴|
4
3
+

5
9813 .

 We will prove an older bound of Elekes.

max 𝐴 + 𝐴 , 𝐴𝐴 = Ω |𝐴|5/4 .

Elekes’s Proof

 𝐴 – a set of 𝑛 real numbers.

𝑃 = 𝑎, 𝑏 | 𝑎 ∈ 𝐴 + 𝐴 𝑏 ∈ 𝐴𝐴
𝐿 = 𝑦 = 𝑐 𝑥 − 𝑑 | 𝑐, 𝑑 ∈ 𝐴
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Elekes’s Proof (2)

 𝐴 – a set of 𝑛 real numbers.

𝑃 = 𝑎, 𝑏 | 𝑎 ∈ 𝐴 + 𝐴 𝑏 ∈ 𝐴𝐴
𝐿 = 𝑦 = 𝑐 𝑥 − 𝑑 | 𝑐, 𝑑 ∈ 𝐴

 By the Szemerédi–Trotter theorem:

𝐼 𝑃, 𝐿 = 𝑂 𝑃 2/3 𝐿 2/3 + 𝑃 + 𝐿

= 𝑂 𝐴 + 𝐴 2/3 𝐴𝐴 2/3𝑛4/3 .

Elekes’s Proof (3)

 𝐴 – a set of 𝑛 real numbers.

𝑃 = 𝑎, 𝑏 | 𝑎 ∈ 𝐴 + 𝐴 𝑏 ∈ 𝐴𝐴
𝐿 = 𝑦 = 𝑐 𝑥 − 𝑑 | 𝑐, 𝑑 ∈ 𝐴

 Every line 𝑦 = 𝑐 𝑥 − 𝑑 contains exactly 
the 𝑛 points of 𝑃 of the form 𝑑 + 𝑎′, 𝑐𝑎′
where 𝑎′ ∈ 𝐴.

𝐼 𝑃, 𝐿 = 𝐴 3 = 𝑛3
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Elekes’s Proof (end)

 We obtained the two bounds:

𝐼 𝑃, 𝐿 = 𝑛3,

𝐼 𝑃, 𝐿 = 𝑂 𝐴 + 𝐴 2/3 𝐴𝐴 2/3𝑛4/3 .

 Combining the two implies

𝐴 + 𝐴 𝐴𝐴 = Ω 𝑛5/2 .

The Incidence Graph

 A bipartite graph with a vertex for every 
point and for any “object”. 

 Every incidence yields an edge between 
the corresponding point and “object”. 
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The Incidence Graph: Lines

 Two lines intersect in at most                                
one point.

◦ The incidence graph has no copy of 𝐾2,2.
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The Incidence Graph: Circles

 Three points determine at                      
most one circle.

◦ The incidence graph has no copy of 𝐾3,2.
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Incidence for Algebraic Curves

 Pach and Sharir `92.

◦ 𝑃 – set of 𝑚 points in ℝ2.

◦ Γ – set of 𝑛 constant-degree polynomial 
curves.

◦ No 𝐾𝑠,𝑡 in the incidence graph.

𝐼 𝑃, Γ = 𝑂 𝑚𝑠/(2𝑠−1)𝑛(2𝑠−2)/(2𝑠−1) +𝑚 + 𝑛

Micha 
SharirJános Pach

The Case of ℝ3

 Zahl `13.

◦ 𝑃 – set of 𝑚 points in ℝ3.

◦ 𝑆 – set of 𝑛 constant-degree polynomial 
surfaces in ℝ3.

◦ No 𝐾𝑠,𝑡 in the incidence graph.

◦ Every three surfaces have a zero-dimensional 
intersection.

𝐼 𝑃, 𝑆 = 𝑂 𝑚2𝑠/(3𝑠−1)𝑛(3𝑠−3)/(3𝑠−1) +𝑚 + 𝑛
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The Case of ℝ4

 Basu and Sombra.

◦ 𝑃 – set of 𝑚 points in ℝ4.

◦ 𝑆 – set of 𝑛 constant-degree polynomial 
hyper-surfaces in ℝ4.

◦ No 𝐾𝑠,𝑡 in the incidence graph.

◦ Every four surfaces have a zero-dimensional 
intersection.

𝐼 𝑃, 𝑆 = 𝑂 𝑚3𝑠/(4𝑠−1)𝑛(4𝑠−4)/(4𝑠−1) +𝑚 + 𝑛

Find the Pattern

 ℝ2:

 ℝ3:

 ℝ4:

𝐼 𝑃, 𝑆 = 𝑂 𝑚𝑠/(2𝑠−1)𝑛(2𝑠−2)/(2𝑠−1) +𝑚 + 𝑛

𝐼 𝑃, 𝑆 = 𝑂 𝑚2𝑠/(3𝑠−1)𝑛(3𝑠−3)/(3𝑠−1) +𝑚 + 𝑛

𝐼 𝑃, 𝑆 = 𝑂 𝑚3𝑠/(4𝑠−1)𝑛(4𝑠−4)/(4𝑠−1) +𝑚 + 𝑛
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General Result

Fox, Pach, Suk, S’, and Zahl:

 𝑃 – set of 𝑚 points in ℝ𝑑.

 𝑉 – set of 𝑛 constant-degree varieties in 
ℝ𝑑.

 No 𝐾𝑠,𝑡 in the incidence graph.

 Any 𝜀 > 0.

𝐼 𝑃, 𝑉 = 𝑂 𝑚 𝑑−1 𝑠/ 𝑑𝑠−1 +𝜀𝑛𝑑(𝑠−1)/(𝑑𝑠−1) +𝑚 + 𝑛

Lower Bounds

 Theorem (S’ 16). 

◦ Matching lower bounds for up to an extra 𝜀 in 
the exponent for hypersurfaces in ℝ𝑑, where 
𝑑 ≥ 4.

◦ Works for many types of varieties but tight 
only for no 𝐾2,𝑡.

 Almost the first time that an incidence 
problem is nearly settled.

 Proof combines Fourier transform, basic 
number theory, and probability.
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Szemerédi-Trotter: Proof Sketch

 Consider 𝑚 points and 𝑛 lines in ℝ2.

◦ The incidence graph contains no 𝐾2,2.

◦ A bipartite graph with vertex sets of size 𝑚
and 𝑛 and no 𝐾2,2 contains 𝑂 𝑚 𝑛 + 𝑛
edges.

◦ So 𝑂 𝑚 𝑛 + 𝑛 incidences.

◦ Worse than the Szemerédi-Trotter  

𝑂 𝑚2/3𝑛2/3 +𝑚 + 𝑛 .

◦ We hardly used any geometry!

The Polynomial Method

 The polynomial method: Collections of 
objects that exhibit extremal behavior 
often have hidden algebraic structure. 

◦ Once this algebraic structure has been found, 
it can be exploited to gain a better 
understanding of the original problem. 
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Polynomial Partitioning

 𝑃 – a set of 𝑚 points in ℝ𝑑. 

 A polynomial 𝑓 ∈ ℝ[𝑥, 𝑦] is an                  
𝑟-partitioning polynomial for 𝑃 if no 
connected component of ℝ𝑑\𝒁 𝑓
contains more than 𝑚/𝑟𝑑 points of 𝑃.

Polynomial Partitioning Theorem

 Theorem (Guth and Katz `10). For every  
𝑟 > 1 and every set of points in ℝ𝑑, there 
exists an 𝑟-partitioning polynomial of 
degree 𝑂(𝑟).

Larry Guth Nets Katz
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Incidences in the Cells

 We apply the weak bound 𝑂(𝑚 𝑛 + 𝑛)
separately in each cell:



𝑗

𝑂 𝑚𝑗 𝑛𝑗 + 𝑛 = 𝑂
𝑚

𝑟2


𝑗

𝑛𝑗 +

𝑗

𝑛𝑖 .

 By setting 𝑟 = 𝑚2/3/𝑛1/3, we obtain 

𝑂 𝑚2/3𝑛2/3 +𝑚 + 𝑛 incidences.

Still not done…

 What is still missing in the proof?

◦ Counting incidences with points on the 
partition.
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Recap: Incidences via Partitioning

 Obtain a weaker incidence bound. 

◦ Using a standard combinatorial trick. 

 Partition the space into cells.

◦ Using polynomial partitioning.

 “Amplify” the weaker bound by applying 
it in every cell.

 Bound the number of                      
incidences on the                              
partition itself.

A Problem

 When using polynomial partitioning in ℝ𝑑

with 𝑑 ≥ 3, how do we handle incidences 
on the partition?

◦ Already in ℝ3 we might get a complicated 
surface with many curves fully contained in it.
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The Plan

 𝑆1 – our partition in ℝ𝑑.

 Still need to deal with incidences on the 
(𝑑 − 1)-dimensional variety 𝑆1.

 𝑆2 – a second partition. 

◦ 𝑟-partitioning of the points of 𝑃 ∩ 𝑆1 but does 
not fully contain any components of 𝑆1.

The Plan

 𝑆1 – our partition in ℝ𝑑.

 𝑆2 – a second partition. 

◦ 𝑟-partitioning of the points of 𝑃 ∩ 𝑆1 but does 
not fully contain any components of 𝑆1.

 Still need to deal with incidences on the 
(𝑑 − 2)-dimensional variety 𝑆1 ∩ 𝑆2.
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The Plan

 𝑆1 – our partition in ℝ𝑑.

 𝑆2 – a second partition. 

◦ Partitions the points of 𝑃 ∩ 𝑆1 but does not 
fully contain 𝑆1.

 𝑆3 – a third partition. 

◦ 𝑟-partitioning of the points of 𝑃 ∩ 𝑆1 ∩ 𝑆2 but 
does not fully contain any components of      
𝑆1 ∩ 𝑆2.

 … 

Multiple Partitions

 After 𝑗 partitionings, it remains to deal 
with points on a 𝑑 − 𝑗 -dimensional 
variety.



12/6/2016

19

Multiple Partitions

 After 𝑗 partitionings, it remains to deal 
with points on a 𝑑 − 𝑗 -dimensional 
variety.

 Problem. Given an irreducible                  
𝑑 − 𝑗 -dimensional variety 𝑉𝑗, find a 

polynomial 𝑓𝑗+1 so that:

◦ 𝑓𝑗+1 is an 𝑟-partitioning for 𝑃 ∩ 𝑉𝑗.

◦ 𝑓𝑗+1 does not vanish identically on 𝑉𝑗.

◦ The degree of 𝑓𝑗+1 is not too large.

?
?
?

Polynomial Partitioning Theorem

 Theorem (Guth and Katz `10). For every  
𝑟 > 1 and every set of points in ℝ𝑑, there 
exists an 𝑟-partitioning polynomial of 
degree 𝑂(𝑟).

Larry Guth Nets Katz
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Bisecting Hyperplanes

 A hyperplane ℎ bisects a finite set 𝐴 if 
each of the open half-spaces defined by ℎ
contains at most |𝐴|/2 points of 𝐴.

Finding a Polynomial Partition

 𝑚 = 19 points and 𝑟 = 3.

 Goal. Every cell should contain at most 
𝑚

𝑟2
=

19

9
= 2 points.
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Finding a Polynomial Partition

 Step 1. Bisect the set into two sets, each 

with at most 
19

2
= 9 points. 

Finding a Polynomial Partition

 Step 2. Bisect each of the two sets into 

two subsets, each with at most 
19

4
= 4

points. 



12/6/2016

22

Finding a Polynomial Partition

 Step 3. Bisect each of the four sets into 

two subsets, each with at most 
19

8
= 2

points. 

Discrete Ham Sandwich Theorem

 Theorem. Any 𝑑 finite sets in ℝ𝑑 can be 
simultaneously bisected by a hyperplane. 

(Proved by using the Borsuk–Ulam theorem).
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Using Discrete Ham Sandwich

 In ℝ𝑑, we can perform ~ log2 𝑑
partitioning steps by using the discrete 
ham sandwich theorem.

 Then what? 

Point sets 𝑃1, …𝑃𝑘 ⊂ ℝ𝑑.

Proof Outline
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The Veronese Map

 Veronese map 𝜈𝐷: ℝ
𝑑 → ℝ𝑚 is defined as

𝜈𝐷 𝑥1, … , 𝑥𝑑 = 𝑥1
𝑢1𝑥2

𝑢2 ⋯𝑥𝑑
𝑢𝑑

𝑢∈𝑈𝐷

where
𝑈𝐷 = 𝑖1, … , 𝑖𝑑 | 1 ≤ 𝑖1 +⋯+ 𝑖𝑑 ≤ 𝐷 .

 Consider the map 𝜈2: ℝ
2 → ℝ5:

𝜈2 𝑥1, 𝑥2 = 𝑥1
2, 𝑥2

2, 𝑥1𝑥2, 𝑥1, 𝑥2 .

Veronese Map + Ham Sandwich

 If we need to bisect 𝑘 sets, we choose 𝐷
such that the number 𝑚𝐷 of monomials 
of degree ≤ 𝐷 is at least 𝑘.

◦ Every point set 𝑃𝑖 is mapped to a point set 
𝑃𝑖
′ in ℝ𝑚𝐷 .

◦ Ham sandwich theorem: there exists a 
hyperplane ℎ ⊂ ℝ𝑚𝐷 that bisects each 𝑃𝑖

′.

+



12/6/2016

25

Point sets 𝑃1, …𝑃𝑘 ⊂ ℝ𝑑.

Point sets 𝑃1
′, … ,𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Hyperplane ℎ bisects 𝑃1
′, … ,𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Ham sandwich in ℝ𝑚𝐷

Proof Outline

𝜈𝐷: ℝ
𝑑 → ℝ𝑚𝐷

Point sets 𝑃1, …𝑃𝑘 ⊂ ℝ𝑑.

Point sets 𝑃1
′, … ,𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Hyperplane ℎ bisects 𝑃1
′, … ,𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Ham sandwich in ℝ𝑚𝐷

Proof Outline

A variety 𝑍 𝑓 of degree ≤ 𝐷 in ℝ𝑑.

𝜈𝐷
−1: ℝ𝑚𝐷 → ℝ𝑑

𝜈𝐷: ℝ
𝑑 → ℝ𝑚𝐷
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Point sets 𝑃1, …𝑃𝑘 ⊂ ℝ𝑑.

𝜈𝐷: ℝ
𝑑 → ℝ𝑚𝐷

Point sets 𝑃1
′, … ,𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Hyperplane ℎ bisects 𝑃1
′, … ,𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Ham sandwich in ℝ𝑚𝐷

The variety 𝑍 𝑓 of degree ≤ 𝐷
bisects 𝑃1, …𝑃𝑘 ⊂ ℝ𝑑.

𝜈𝐷
−1: ℝ𝑚𝐷 → ℝ𝑑

Proof Outline

Recall: Multiple Partitions

 Problem. Given an irreducible                  
𝑑 − 𝑗 -dimensional variety 𝑉𝑗 in ℝ𝑑, find 

a polynomial 𝑓𝑗+1 so that:

◦ 𝑓𝑗+1 is an 𝑟-partitioning for 𝑃 ∩ 𝑉𝑗.

◦ 𝑓𝑗+1 does not vanish identically on 𝑉𝑗.

◦ The degree of 𝑓𝑗+1 is not too large.

?
?
?
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The Quotient Ring

 ℝ 𝑥1, … , 𝑥𝑑 ≤𝐷 – the set of polynomials 
in 𝑥1, … , 𝑥𝑑 of degree ≤ 𝐷.

 𝐼 = 𝑰 𝑉𝑗 – the ideal of polynomials that 

vanish on 𝑉𝑗.

 𝐼≤𝐷 – the set of polynomials in 𝐼 of   
degree ≤ 𝐷. 

𝑅 = ℝ 𝑥1, … , 𝑥𝑑 ≤𝐷/𝐼≤𝐷

 We consider only polynomials in 𝑅.

What We Already Know

 Problem. Given an irreducible                  
𝑑 − 𝑗 -dimensional variety 𝑉𝑗, find a 

polynomial 𝑓𝑗+1 so that:

◦ 𝑓𝑗+1 is an 𝑟-partitioning for 𝑃 ∩ 𝑉𝑗.

◦ 𝑓𝑗+1 does not vanish identically on 𝑉𝑗.

◦ The degree of 𝑓𝑗+1 is not too large.



?

?
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Quotient Ring + “Veronese” Map

𝑅 = ℝ 𝑥1, … , 𝑥𝑑 ≤𝐷/𝐼≤𝐷

 𝑅 is a vector space of dimension 𝑚𝐷.

 To bisect 𝑃1, … , 𝑃𝑘 ⊂ 𝑉𝑖: 

◦ Choose 𝐷 such that 𝑚𝐷 ≥ 𝑘.

◦ 𝑏1, … , 𝑏𝑚𝐷
– a basis for 𝑅.

 Map 𝜈𝐷
𝑅: ℝ𝑑 → ℝ𝑚𝐷 is defined as

𝜈𝐷
𝑅 𝑥1, … , 𝑥𝑑 = 𝑏1 𝑥 ,… , 𝑏𝑚𝐷

𝑥

Point sets 𝑃1, …𝑃𝑘 ⊂ 𝑉𝑗 ⊂ ℝ𝑑.

𝜈𝐷
𝑅: ℝ𝑑 → ℝ𝑚𝐷

Point sets 𝑃1
′, …𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Hyperplane ℎ bisects 𝑃1
′, …𝑃𝑘

′ ⊂ ℝ𝑚𝐷.

Ham sandwich in ℝ𝑚𝐷

The variety 𝑍 𝑓 of degree ≤ 𝐷
bisects 𝑃1, …𝑃𝑘 ⊂ 𝑉.

𝜈𝐷
𝑅 −1: ℝ𝑚𝐷 → ℝ𝑑

Proof Outline
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What We Already Know

 Problem. Given an irreducible                  
𝑑 − 𝑗 -dimensional variety 𝑉𝑗, find a 

polynomial 𝑓𝑗+1 so that:

◦ 𝑓𝑗+1 is an 𝑟-partitioning for 𝑃 ∩ 𝑉𝑗.

◦ 𝑓𝑗+1 does not vanish identically on 𝑉𝑗.

◦ The degree of 𝑓𝑗+1 is not too large.



?



The Hilbert Function

𝒁(𝑥25𝑦12 + 5𝑥19𝑦8 + 3.5𝑥18𝑦11

+ 39𝑥11𝑦 + 𝑥9𝑦20 + 3𝑥5𝑦26
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The Hilbert Function (really!)

 An ideal 𝐼 = 𝑰 𝑉𝑗 ⊂ ℝ 𝑥1, … 𝑥𝑑 .

 Hilbert function of ideal 𝐼:

ℎ𝐼 𝐷 = dim ℝ 𝑥1, … 𝑥𝑑 ≤𝐷/𝐼≤𝐷

 That is: 𝒎𝑫 = 𝒉𝑰 𝑫 ! 

 From properties of the Hilbert function: 
To get to a 𝑘-dim space, we need 

𝐷 ≈
𝑘

deg 𝐼

1/𝑒

.

And That’s It!

 Problem. Given an irreducible                  
𝑑 − 𝑗 -dimensional variety 𝑉𝑗, find a 

polynomial 𝑓𝑗+1 so that:

◦ 𝑓𝑗+1 is an 𝑟-partitioning for 𝑃 ∩ 𝑉𝑗.

◦ 𝑓𝑗+1 does not vanish identically on 𝑉𝑗.

◦ The degree of 𝑓𝑗+1 is not too large.
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Incidences in ℂ2

 Solymosi and Tao `12. The number of 
incidences between 𝑚 points and 𝑛 lines 

in ℂ2 is 𝑂 𝑚2/3+𝜀𝑛2/3 +𝑚 + 𝑛 for 

every  𝜀 > 0.

◦ Holds for other types of curves, but under 
very strict restrictions.

Jozsef Solymosi Terence Tao

Incidences in ℂ2

 S’, Szabo, and Zahl 16. 

◦ 𝑃 – set of 𝑚 points in ℂ2.

◦ Γ – set of 𝑛 constant-degree polynomial 
curves.

◦ No 𝐾𝑠,𝑡 in the incidence graph.

◦ Any 𝜀 > 0.

𝐼 𝑃, Γ

= 𝑂 𝑚𝑠/(2𝑠−1)+𝜀𝑛(2𝑠−2)/(2𝑠−1) +𝑚 + 𝑛
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Incidences in ℂ2

 In ℂ2 this strategy fails. 

◦ The zero set of a polynomial does not divide 
ℂ2 into connected components.

 Think of ℂ2 as ℝ4.

◦ Incidence problem with 2-dim varieties in ℝ4 .

◦ Use polynomial partitioning and bound 
incidences in each cell separately.

◦ But there is a problem!

The Problem

 We are in ℝ4.

◦ The partition is a 3-dim variety 𝑉.

◦ We need to handle the incidences between 
points and 2-dim varieties inside of 𝑉.

 These are special varieties.

◦ They originate from curves in ℂ2.
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The Cauchy-Riemann Equations

 Consider the complex coordinates           
𝑧1 = 𝑥1 + 𝑖𝑦1 and 𝑧2 = 𝑥2 + 𝑖𝑦2.

 For 𝑓 ∈ ℂ[𝑧1, 𝑧2] write 𝑓 = 𝑢 + 𝑖𝑣 where 
𝑢, 𝑣 ∈ ℝ[𝑥1, 𝑦1, 𝑥2, 𝑦2].

 𝑢 and 𝑣 satisfy the Cauchy-Riemann 
equations if
𝜕𝑢

𝜕𝑥𝑘
=

𝜕𝑣

𝜕𝑦𝑘
,

𝜕𝑢

𝜕𝑦𝑘
= −

𝜕𝑣

𝜕𝑥𝑘
, 𝑘 ∈ 1, 2 .

The Problem

 We are in ℝ4.

◦ The partition is a 3-dim variety 𝑉.

◦ We need to handle the incidences between 
points and 2-dim varieties inside of 𝑉.

 By the Cauchy-Riemann equations:

◦ For a generic point 𝑝 ∈ 𝑉, there is a 2-dim 
plane Π such that every 2-dim variety that is 
incident to 𝑝 has Π as its tangent plane at 𝑝.
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Completing the Proof Sketch

 We are in ℝ4.

◦ The partition is a 3-dim variety 𝑉.

◦ For a generic point 𝑝 ∈ 𝑉, there is a 2-dim 
plane Π associated with it.

 Finding a 2-dim variety in 𝑉 that is 
incident to 𝑝 is an initial value problem. 

 The Picard–Lindelöf theorem: There is a 
unique solution to such a problem.

◦ A generic point of 𝑉 is contained in at most 
one 2-dim variety!

A Foliation

 Intuitively, the relevant parts of the 
partition are foliated:
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