Geometric Incidences and the Polynomial Method

Adam Sheffer
Caltech

Incidences

- P - a set of m points.
- $L-$ a set of n lines.
- An incidence: $(p, \ell) \in P \times L$ such that $p \in L$.

15 incidences

Incidences

- Szemerédi and Trotter '83. The number of incidences between any m points and n lines is $O\left(m^{2 / 3} n^{2 / 3}+m+n\right)$.

Incidences

- Szemerédi and Trotter '83. The maximum number of incidences between m points and n lines is $O\left(m^{2 / 3} n^{2 / 3}+m+n\right)$.
- Most of the other variants are still open:
- Point-circle incidences.
- Point-parabola incidences.
\qquad

Namedropping

- Incidences have MANY applications.
- Examples from the last few years:
- Guth and Katz used them to solve Erdős’ distinct distances problem.
- Brougain and Demeter used them to solve restriction problems in harmonic analysis.
- Bombieri and Bourgain used them in a recent number theory paper.
- Raz, Sharir, and Solymosi used them to study expanding polynomials.

More Namedropping

- More applications of incidences:
- Many applications in additive combinatorics, including Elekes' Sum-Product bound.
- Dvir, Saraf, Wigderson and others use them in a family of papers about coding theory.
- Farber, Ray, and Smorodinsky used them to study minors of totally positive matrices.
- Other uses involve extractors, point covering problems, range searching algorithms, and more.

Sumsets

- $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subset \mathbb{R}$.
- $A+A=\{a+b \mid a, b \in A\}$.
- Can $A+A$ contain only $O(n)$ elements?

Product Sets

- $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subset \mathbb{R}$.
- $A A=\{a \cdot b \mid a, b \in A\}$.
- Can $A A$ contain only $O(n)$ elements?

Sum-Product

- $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subset \mathbb{R}$.
- $A+A=\{a+b \mid a, b \in A\}$.
- $A A=\{a \cdot b \mid a, b \in A\}$.
- Can both $A+A$ and $A A$ be small?

The Sum-Product Conjecture

- Conjecture (Erdős and Szemerédi `83).

For any $\varepsilon>0$, every sufficiently large set A satisfies

$$
\max \{|A+A|,|A A|\}=\Omega\left(|A|^{2-\varepsilon}\right)
$$

Paul Erdős

Endre Szemerédi

The Sum-Product Conjecture

- Solymosi 09.

$$
\max \{|A+A|,|A A|\}=\Omega^{*}\left(|A|^{4 / 3}\right)
$$

- Konyagin and Shkredov `16.
$\max \{|A+A|,|A A|\}=\Omega^{*}\left(|A|^{\frac{4}{3}+\frac{5}{9813}}\right)$.
- We will prove an older bound of Elekes.

$$
\max \{|A+A|,|A A|\}=\Omega\left(|A|^{5 / 4}\right)
$$

Elekes's Proof

- A - a set of n real numbers.

$$
\begin{gathered}
P=\{(a, b) \mid a \in A+A \quad b \in A A\} \\
L=\{y=c(x-d) \mid c, d \in A\}
\end{gathered}
$$

Elekes's Proof (2)

- A - a set of n real numbers.

$$
\begin{gathered}
P=\{(a, b) \mid a \in A+A \quad b \in A A\} \\
L=\{y=c(x-d) \mid c, d \in A\}
\end{gathered}
$$

- By the Szemerédi-Trotter theorem:

$$
\begin{aligned}
& I(P, L)=O\left(|P|^{2 / 3}|L|^{2 / 3}+|P|+|L|\right) \\
& \quad=O\left(|A+A|^{2 / 3}|A A|^{2 / 3} n^{4 / 3}\right)
\end{aligned}
$$

Elekes's Proof (3)

- A - a set of n real numbers.

$$
\begin{gathered}
P=\{(a, b) \mid a \in A+A \quad b \in A A\} \\
L=\{y=c(x-d) \mid c, d \in A\}
\end{gathered}
$$

- Every line $y=c(x-d)$ contains exactly the n points of P of the form $\left(d+a^{\prime}, c a^{\prime}\right)$ where $a^{\prime} \in A$.

$$
I(P, L)=|A|^{3}=n^{3}
$$

Elekes's Proof (end)

- We obtained the two bounds:

$$
\begin{gathered}
I(P, L)=n^{3}, \\
I(P, L)=O\left(|A+A|^{2 / 3}|A A|^{2 / 3} n^{4 / 3}\right) .
\end{gathered}
$$

- Combining the two implies

$$
|A+A||A A|=\Omega\left(n^{5 / 2}\right) .
$$

The Incidence Graph

- A bipartite graph with a vertex for every point and for any "object".
- Every incidence yields an edge between the corresponding point and "object".

The Incidence Graph: Lines

- Two lines intersect in at most one point.

- The incidence graph has no copy of $K_{2,2}$.

The Incidence Graph: Circles

Incidence for Algebraic Curves

- Pach and Sharir '92.
- P - set of m points in \mathbb{R}^{2}.
- Γ - set of n constant-degree polynomial curves.
- No $K_{S, t}$ in the incidence graph.
$I(P, \Gamma)=O\left(m^{s /(2 s-1)} n^{(2 s-2) /(2 s-1)}+m+n\right)$

The Case of \mathbb{R}^{3}

- Zahl `13.

- P - set of m points in \mathbb{R}^{3}.
- S - set of n constant-degree polynomial surfaces in \mathbb{R}^{3}.
- No $K_{s, t}$ in the incidence graph.
- Every three surfaces have a zero-dimensional intersection.

$$
I(P, S)=O\left(m^{2 s /(3 s-1)} n^{(3 s-3) /(3 s-1)}+m+n\right)
$$

The Case of \mathbb{R}^{4}

- Basu and Sombra.

- $P-$ set of m points in \mathbb{R}^{4}.
- S - set of n constant-degree polynomial hyper-surfaces in \mathbb{R}^{4}.
- No $K_{s, t}$ in the incidence graph.
- Every four surfaces have a zero-dimensional intersection.

$$
I(P, S)=O\left(m^{3 s /(4 s-1)} n^{(4 s-4) /(4 s-1)}+m+n\right)
$$

$$
\begin{aligned}
& \text { Find the Pattern } \\
& \bullet \mathbb{R}^{2}: \\
& I(P, S)=O\left(m^{s /(2 s-1)} n^{(2 s-2) /(2 s-1)}+m+n\right) \\
& \bullet \mathbb{R}^{3}: \\
& I(P, S)=O\left(m^{2 s /(3 s-1)} n^{(3 s-3) /(3 s-1)}+m+n\right) \\
& \bullet \mathbb{R}^{4}: \\
& I(P, S)=O\left(m^{3 s /(4 s-1)} n^{(4 s-4) /(4 s-1)}+m+n\right)
\end{aligned}
$$

General Result

Fox, Pach, Suk, S', and Zahl:

- P - set of m points in \mathbb{R}^{d}.
- V - set of n constant-degree varieties in \mathbb{R}^{d}.
- No $K_{s, t}$ in the incidence graph.
- Any $\varepsilon>0$.
$I(P, V)=O\left(m^{(d-1) s /(d s-1)+\varepsilon} n^{d(s-1) /(d s-1)}+m+n\right)$

Lower Bounds

- Theorem ($S^{\prime} 16$).
- Matching lower bounds for up to an extra ε in the exponent for hypersurfaces in \mathbb{R}^{d}, where $d \geq 4$.
- Works for many types of varieties but tight only for no $K_{2, t}$.
- Almost the first time that an incidence problem is nearly settled.
- Proof combines Fourier transform, basic number theory, and probability.

Szemerédi-Trotter: Proof Sketch

- Consider m points and n lines in \mathbb{R}^{2}.
- The incidence graph contains no $K_{2,2}$.
- A bipartite graph with vertex sets of size m and n and no $K_{2,2}$ contains $O(m \sqrt{n}+n)$ edges.
- So $O(m \sqrt{n}+n)$ incidences.
- Worse than the Szemerédi-Trotter $O\left(m^{2 / 3} n^{2 / 3}+m+n\right)$.

The Polynomial Method

- The polynomial method: Collections of objects that exhibit extremal behavior often have hidden algebraic structure.
- Once this algebraic structure has been found, it can be exploited to gain a better understanding of the original problem.

Polynomial Partitioning

- P - a set of m points in \mathbb{R}^{d}.
- A polynomial $f \in \mathbb{R}[x, y]$ is an
r-partitioning polynomial for P if no connected component of $\mathbb{R}^{d} \backslash \boldsymbol{Z}(f)$ contains more than m / r^{d} points of P.

Polynomial Partitioning Theorem

- Theorem (Guth and Katz `10). For every $r>1$ and every set of points in \mathbb{R}^{d}, there exists an r-partitioning polynomial of degree $O(r)$.

Larry Guth

Nets Katz

Incidences in the Cells

- We apply the weak bound $O(m \sqrt{n}+n)$ separately in each cell:

$$
\sum_{j} O\left(m_{j} \sqrt{n_{j}}+n\right)=O\left(\frac{m}{r^{2}} \sum_{j} \sqrt{n_{j}}+\sum_{j} n_{i}\right) .
$$

- By setting $r=m^{2 / 3} / n^{1 / 3}$, we obtain

$$
O\left(m^{2 / 3} n^{2 / 3}+m+n\right)
$$

Still not done...

- What is still missing in the proof?

Recap: Incidences via Partitioning

- Obtain a weaker incidence bound.
- Using a standard combinatorial trick.
- Partition the space into cells.
- Using polynomial partitioning.
- "Amplify" the weaker bound by applying it in every cell.
- Bound the number of incidences on the partition itself.

A Problem

- When using polynomial partitioning in \mathbb{R}^{d} with $d \geq 3$, how do we handle incidences on the partition?
- Already in \mathbb{R}^{3} we might get a complicated surface with many curves fully contained in it.

The Plan

- S_{1} - our partition in \mathbb{R}^{d}.
- Still need to deal with incidences on the (d -1)-dimensional variety S_{1}.
- S_{2} - a second partition.
- r-partitioning of the points of $P \cap S_{1}$ but does not fully contain any components of S_{1}.

The Plan

- S_{1} - our partition in \mathbb{R}^{d}.
- S_{2} - a second partition.
- r-partitioning of the points of $P \cap S_{1}$ but does not fully contain any components of S_{1}.
- Still need to deal with incidences on the $(d-2)$-dimensional variety $S_{1} \cap S_{2}$.

The Plan

- S_{1} - our partition in \mathbb{R}^{d}.
- S_{2} - a second partition.
- Partitions the points of $P \cap S_{1}$ but does not fully contain S_{1}.
- S_{3} - a third partition.
- r-partitioning of the points of $P \cap S_{1} \cap S_{2}$ but does not fully contain any components of $S_{1} \cap S_{2}$.
- ...

Multiple Partitions

- After j partitionings, it remains to deal with points on a $(d-j)$-dimensional variety.

Multiple Partitions

- After j partitionings, it remains to deal with points on a $(d-j)$-dimensional variety.
- Problem. Given an irreducible ($d-j$)-dimensional variety V_{j}, find a polynomial f_{j+1} so that:
? ${ }^{\circ} f_{j+1}$ is an r-partitioning for $P \cap V_{j}$.
? $\circ f_{j+1}$ does not vanish identically on V_{j}.
? ${ }^{\circ}$ The degree of f_{j+1} is not too large.

Polynomial Partitioning Theorem

- Theorem (Guth and Katz `10). For every $r>1$ and every set of points in \mathbb{R}^{d}, there exists an r-partitioning polynomial of degree $O(r)$.

Larry Guth

Nets Katz

Bisecting Hyperplanes

- A hyperplane h bisects a finite set A if each of the open half-spaces defined by h contains at most $\lfloor|A| / 2\rfloor$ points of A.

Finding a Polynomial Partition

- $m=19$ points and $r=3$.
- Goal. Every cell should contain at most $\left\lfloor\frac{m}{r^{2}}\right\rfloor=\left\lfloor\frac{19}{9}\right\rfloor=2$ points.

Finding a Polynomial Partition

- Step 1. Bisect the set into two sets, each with at most $\left\lfloor\frac{19}{2}\right\rfloor=9$ points.

Finding a Polynomial Partition
Step 2. Bisect each of the two sets into two subsets, each with at most $\left\lfloor\frac{19}{4}\right\rfloor=4$ points.

Finding a Polynomial Partition

- Step 3. Bisect each of the four sets into two subsets, each with at most $\left[\frac{19}{8}\right\rfloor=2$ points.

Discrete Ham Sandwich Theorem

- Theorem. Any d finite sets in \mathbb{R}^{d} can be simultaneously bisected by a hyperplane.
(Proved by using the Borsuk-Ulam theorem).

Using Discrete Ham Sandwich

- In \mathbb{R}^{d}, we can perform $\sim \log _{2} d$ partitioning steps by using the discrete ham sandwich theorem.
- Then what?

Proof Outline

The Veronese Map

- Veronese map $v_{D}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ is defined as

$$
v_{D}\left(x_{1}, \ldots, x_{d}\right)=\left(x_{1}^{u_{1}} x_{2}^{u_{2}} \cdots x_{d}^{u_{d}}\right)_{u \in U_{D}}
$$

where

$$
U_{D}=\left\{\left(i_{1}, \ldots, i_{d}\right) \mid 1 \leq i_{1}+\cdots+i_{d} \leq D\right\} .
$$

- Consider the map $v_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{5}$:

$$
v_{2}\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}, x_{1}, x_{2}\right)
$$

Veronese Map + Ham Sandwich

- If we need to bisect k sets, we choose D such that the number m_{D} of monomials of degree $\leq D$ is at least k.
- Every point set P_{i} is mapped to a point set P_{i}^{\prime} in $\mathbb{R}^{m_{D}}$.
- Ham sandwich theorem: there exists a hyperplane $h \subset \mathbb{R}^{m_{D}}$ that bisects each P_{i}^{\prime}.

Proof Outline

Proof Outline

Proof Outline

Recall: Multiple Partitions

- Problem. Given an irreducible $(d-j)$-dimensional variety V_{j} in \mathbb{R}^{d}, find a polynomial f_{j+1} so that:
$? \circ f_{j+1}$ is an r-partitioning for $P \cap V_{j}$.
? $\circ f_{j+1}$ does not vanish identically on V_{j}.
? \circ The degree of f_{j+1} is not too large.

The Quotient Ring

- $\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]_{\leq D}$ - the set of polynomials in x_{1}, \ldots, x_{d} of degree $\leq D$.
- $I=I\left(V_{j}\right)$ - the ideal of polynomials that vanish on V_{j}.
- $I_{\leq D}$ - the set of polynomials in I of degree $\leq D$.

$$
R=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]_{\leq D} / I_{\leq D}
$$

- We consider only polynomials in R.

What We Already Know

- Problem. Given an irreducible ($d-j$)-dimensional variety V_{j}, find a polynomial f_{j+1} so that:
? ${ }^{\circ} f_{j+1}$ is an r-partitioning for $P \cap V_{j}$.
$\checkmark \circ f_{j+1}$ does not vanish identically on V_{j}.
? ${ }^{\circ}$ The degree of f_{j+1} is not too large.

Quotient Ring + "Veronese" Map

$$
R=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]_{\leq D} / I_{\leq D}
$$

- R is a vector space of dimension m_{D}.
- To bisect $P_{1}, \ldots, P_{k} \subset V_{i}$:
- Choose D such that $m_{D} \geq k$.
- $b_{1}, \ldots, b_{m_{D}}$ - a basis for R.
- Map $v_{D}^{R}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m_{D}}$ is defined as

$$
v_{D}^{R}\left(x_{1}, \ldots, x_{d}\right)=\left(b_{1}(x), \ldots, b_{m_{D}}(x)\right)
$$

Proof Outline

What We Already Know

- Problem. Given an irreducible ($d-j$)-dimensional variety V_{j}, find a polynomial f_{j+1} so that:
$\checkmark \circ f_{j+1}$ is an r-partitioning for $P \cap V_{j}$.
$\checkmark \circ f_{j+1}$ does not vanish identically on V_{j}.
? \circ The degree of f_{j+1} is not too large.

The Hilbert Function

$$
\begin{aligned}
& Z\left(x^{25} y^{12}+5 x^{19} y^{8}+3.5 x^{18} y^{11}\right. \\
& +39 x^{11} y+x^{9} y^{20}+3 x^{5} y^{26}
\end{aligned}
$$

The Hilbert Function (really!)

- An ideal $I=\boldsymbol{I}\left(V_{j}\right) \subset \mathbb{R}\left[x_{1}, \ldots x_{d}\right]$.
- Hilbert function of ideal I :

$$
h_{l}(D)=\operatorname{dim}\left(\mathbb{R}\left[x_{1}, \ldots x_{d}\right]_{\leq D} / I_{\leq D}\right)
$$

- That is: $\boldsymbol{m}_{\boldsymbol{D}}=\boldsymbol{h}_{\boldsymbol{I}}(\boldsymbol{D})$!
-

And That's It!

- Problem. Given an irreducible ($d-j$)-dimensional variety V_{j}, find a polynomial f_{j+1} so that:
$\checkmark \circ f_{j+1}$ is an r-partitioning for $P \cap V_{j}$.
$\checkmark{ }^{\circ} f_{j+1}$ does not vanish identically on V_{j}.
\checkmark The degree of f_{j+1} is not too large.

Incidences in \mathbb{C}^{2}

- Solymosi and Tao `12. The number of incidences between m points and n lines in \mathbb{C}^{2} is $O\left(m^{2 / 3+\varepsilon} n^{2 / 3}+m+n\right)$ for every $\varepsilon>0$.
- Holds for other types of curves, but under very strict restrictions.

Terence Tao

Incidences in \mathbb{C}^{2}

- S', Szabo, and Zahl 16.

。 P - set of m points in \mathbb{C}^{2}.

- Γ - set of n constant-degree polynomial curves.
- No $K_{s, t}$ in the incidence graph.
- Any $\varepsilon>0$.
$I(P, \Gamma)$

$$
=O\left(m^{s /(2 s-1)+\varepsilon} n^{(2 s-2) /(2 s-1)}+m+n\right)
$$

Incidences in \mathbb{C}^{2}

－In \mathbb{C}^{2} this strategy fails．
－The zero set of a polynomial does not divide \mathbb{C}^{2} into connected components．
－Think of \mathbb{C}^{2} as \mathbb{R}^{4} ．
。
。

。

The Problem

－We are in \mathbb{R}^{4} ．
－The partition is a 3－dim variety V ．
－We need to handle the incidences between points and 2－dim varieties inside of V ．

The Cauchy-Riemann Equations

- Consider the complex coordinates $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$.
- For $f \in \mathbb{C}\left[z_{1}, z_{2}\right]$ write $f=u+i v$ where $u, v \in \mathbb{R}\left[x_{1}, y_{1}, x_{2}, y_{2}\right]$.
- u and v satisfy the Cauchy-Riemann equations if
$\frac{\partial u}{\partial x_{k}}=\frac{\partial v}{\partial y_{k}}, \quad \frac{\partial u}{\partial y_{k}}=-\frac{\partial v}{\partial x_{k}}, \quad k \in\{1,2\}$.

The Problem

- We are in \mathbb{R}^{4}.
- The partition is a 3-dim variety V.
- We need to handle the incidences between points and 2-dim varieties inside of V.
- By the Cauchy-Riemann equations:
- For a generic point $p \in V$, there is a 2-dim plane Π such that every 2-dim variety that is incident to p has Π as its tangent plane at p.

Completing the Proof Sketch

- We are in \mathbb{R}^{4}.
- The partition is a 3-dim variety V.
- For a generic point $p \in V$, there is a 2-dim plane Π associated with it.
- Finding a 2-dim variety in V that is incident to p is an initial value problem.
-

A Foliation

- Intuitively, the relevant parts of the partition are foliated:

P00 B $\operatorname{BON} 18$

