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MAT656 — Topics in Dynamical Systems: Introduction
to Quantum Chaos

Spring 2011
Shimon Brooks

MWF 10:40-11:35, Physics P123

1 Introduction

Sir Michael Berry famously wrote that, “There is no quantum chaos, in the
sense of exponential sensitivity to initial conditions, but there are several novel
quantum phenomena which reflect the presence of classical chaos. The study of
these phenomena is quantum chaology.” (The name never stuck...)

It has become increasingly clear over the last few decades that there will be
no precise “dictionary” between notions of chaos in classical mechanics to equiv-
alent notions in quantum mechanics (one important exception is Shnir’lman’s
Quantum Ergodicity Theorem, which describes what the correct analogue
of ergodicity should be in quantum-mechanical systems). On the other hand,
there are some conjectures about how chaos “should be” reflected in quan-
tum systems; eg. the 1977 Berry-Tabor Conjecture and 1984 Bohigas-
Giannoni-Schmit Conjecture. More recently, there have been suggestions
regarding more specific cases, such as the 1994 Quantum Unique Ergodicity
Conjecture of Rudnick-Sarnak for the geodesic flow on a Riemannian manifold
of negative sectional curvature.

In this course, we will attempt to lay out the current state of conjectured
understanding, and also discuss some rigorous results and numerical data known
to date. In this way, we hope to open up some of the tantalizing open problems
in the field, while also explaining the tools available at present (and their limi-
tations). We will focus mainly on simpler “toy models” of quantum chaos, that
capture many of the ideas, without much of the complicated analysis of more
general settings.

2 Outline of the Course

• Introduction, some Questions, and some Pictures.

• Brief Review of Basics of Quantum Mechanics.

• Universality in Eigenvalue Statistics?

• Quantum Ergodicity and Shnir’lman’s Theorem.

• Quantum Unique Ergodicity? — Conjectures and Examples.

• Entropy of Quantum Limits.

• Further Topics: Hyperbolic Surfaces, Arithmetic QUE, . . .
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3 Course Structure

The class meets MWF 10:40-11:35AM (at least for now), in room P123 in
the Physics building. I will have office hours on Thursday 1-3PM (subject
to change), at my office in 5D-148.

There will be Problem Sets throughout the semester containing practice
exercises, along with some more elementary proofs that will be skipped during
the lectures.

I will (hopefully be able to) maintain lecture notes throughout the semester.
The lecture notes, along with problem sets, announcements, and all other course
information will be available at

http://www.math.sunysb.edu/∼sbrooks/qcSp11.html

4 Some References

There is no prescribed textbook for the course; there exist books and articles
that treat the subject from a variety of different angles and with varying degrees
of generality, but none are sufficiently suited to our approach in this course. As
mentioned above, lecture notes will be updated throughout the semester and
made available on the website.

Below is a sampling of references, approaching the theory from different
angles. It would be good to find one that suits your taste— but do not neglect
the other approaches! The beauty of the field lies in the ability to combine ideas
from the different intersecting theories.

WARNING — Beware of differing conventions and notations!

• Quantum Chaos: a Brief First Visit, by Stephan De Bièvre. Good intro-
ductory article from the mathematical physics viewpoint.

• Anatomy of Quantum Chaotic Eigenstates, by Stéphane Nonnenmacher.
More comprehensive article, closest to the spirit of this course.

• Arithmetic Quantum Chaos, by Peter Sarnak. The canonical introduction
to number-theoretic aspects.

• An Introduction to Semiclassical and Microlocal Analysis, by André Mar-
tinez. A very readable introduction to pseudo-differential operators and
quantization.

• Recent Developments in Mathematical Quantum Chaos, by Steve Zelditch.
More comprehensive, more analytic treatment.
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2 WORK IN PROGRESS — USE WITH APPROPRIATE CAUTION

1. Review of Some Fourier Analysis

For now, we will be content to review some basic facts about abelian
Fourier analysis, on the groups R, T = R/Z, and Z/NZ.

Throughout, we denote e(x) := e2πix.

1.1. Fourier Analysis on Z/NZ. We will begin with the Fourier
transform on Z/NZ. Here, since everything is nice and finite, the
analysis is simpler— later, we will take advantage of this to work with
finite-dimensional toy models of quantum chaos— so we will quickly
run through the essential facts, before we extend them to T and R.

Lemma 1.1. For any N ∈ N, and any integer m 6= 0 (mod N), we
have

N−1∑
j=0

e(mj/N) = 0

Therefore, we see that

1

N

N−1∑
j=0

e(mj/N) =

{
1 m = 0 (mod N)
0 m 6= 0 (mod N)

:= δ0

Proof: Notice that the terms e2πimj/N form a geometric series, with
common ratio e2πim/N . We have an explicit formula for the sum of a
geometric series:

N−1∑
j=0

e2πimj/N =
e2πim(0)/N − e2πim(N−1+1)/N)

1− e2πim/N

=
e0 − e2πim

1− e2πim/N

=
1− 1

1− e2πim/N
= 0

since m 6= 0 (mod N) implies that the denominator 1 − e2πim/N 6= 0.
�

Remark: It is clear that the above Lemmas can also be extended to
several dimensions; for ~m ∈ (Z/NZ)d, we have

1

Nd

N−1∑
x1,...,xd=0

e2πi~m·~x/Nd~x =

{
1 ~m = ~0

0 ~m 6= ~0
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since

1

Nd

N−1∑
x1,...,xd=0

e2πi~m·~x/N =
1

Nd

N−1∑
x1,...,xd=0

e2πim1x1/Ne2πim2x2/N · · · e2πimdxd/N

=
d∏
j=1

1

N

N−1∑
xj=1

e2πimjxj/Ndxj

=
d∏
j=1

δmj=0 = δ~0

�

Definition 1.1. If f ∈ CN is a function on Z/NZ, then we define its

Fourier transform f̂ ∈ CN to be

f̂(m) :=
1√
N

∑
x∈Z/NZ

f(x)e−2πimx/N

(the 1√
N

is a convenient normalization that will make the Fourier trans-

form unitary; see below.)

The Fourier transform would be pretty useless without the following
crucial fact:

Lemma 1.2 (Fourier Inversion). For any f ∈ CN , we have

f(x) =
1√
N

∑
m∈Z/NZ

f̂(m)e2πimx/N

Proof: Write

1√
N

∑
m∈Z/NZ

f̂(m)e2πimx/N =
1√
N

∑
m∈Z/NZ

 1√
N

∑
y∈Z/NZ

f(y)e−2πimy/N

 e2πimx/N

=
∑
y

f(y)
1

N

∑
m

e2πim(x−y)/N

=
∑
y

f(y)δ0(x− y) = f(x)

�
Put another way, this calculation shows that theN functions { 1√

N
e2πij(·)/N}N−1

j=0

form an orthonormal basis of the N -dimensional space CN of functions
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on Z/NZ, with respect to the usual inner product

〈f, g〉 =
N−1∑
j=0

f(j)g(j)

on the Hilbert space CN . The Fourier transform f̂ simply gives the
coefficients of f when expressed in this basis, given by the inner product
of f with the unit vector〈

f,
1√
N
e2πim(·)/N

〉
=

N−1∑
x=0

f(x)
1√
N
e2πimx/N

=
1√
N

N−1∑
x=0

f(x)e−2πimx/N

= f̂(m)

This also explains the 1√
N

normalizing factor; it normalizes the basis

to be unit vectors.

Lemma 1.3 (Plancherel Formula). The Fourier transform is unitary
with respect to the usual inner product on CN ; that is,

〈f, g〉 = 〈f̂ , ĝ〉

Proof: Write

〈f̂ , ĝ〉 =
N−1∑
m=0

1√
N

N−1∑
x=0

f(x)e−2πimx/N 1√
N

N−1∑
y=0

g(y)e−2πimy/N

=
N−1∑
x,y=0

f(x)g(y)
1

N

N−1∑
m=0

e2πim(y−x)/N

=
N−1∑
x,y=0

f(x)g(y)δ0(y − x)

=
N−1∑
x=0

f(x)g(y) = 〈f, g〉

In particular, ||f̂ ||22 = ||f ||22 (this is nothing more than the Pythagorean
Theorem applied to our orthonormal basis.)

We also have the following important properties of the Fourier trans-
form:

Lemma 1.4. (1) f̂ g = f̂ ∗ ĝ
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(2) f̂ ∗ g = f̂ ĝ

(3) f is real-valued iff f̂(−m) = f̂(m) for all m ∈ Z/NZ.

(4) f̂ is real valued iff f(−x) = f(x) for all x ∈ Z/NZ.

Proof:

(1) Use Fourier inversion to write

f̂ g(m) =
1√
N

N−1∑
x=0

f(x)g(x)e−2πimx/N

=
1√
N

N−1∑
x=0

f(x)
1√
N

N−1∑
n=0

ĝ(n)e2πnx/Ne−2πimx

=
1√
N

N−1∑
n=0

ĝ(n)
1√
N

N−1∑
x=0

f(x)e−2πi(m−n)/N

=
1√
N

N−1∑
n=0

ĝ(n)f̂(m− n)

=
(
ĝ ∗ f̂

)
(m)

(2) Similar to above; see also Lemma below on Z.

(3) If f is real-valued, then f(x) = f(x) for all x, so

f̂(−m) =
1√
N

N−1∑
x=0

f(x)e−2πi(−m)x/N

=
1√
N

N−1∑
x=0

f(x)e2πimx/N

=
1√
N

N−1∑
x=0

f(x)e−2πimx/N = f̂(m)

Now, if f̂(−m) = f̂(m) for all m, then in particular, we see

that f̂(0) ∈ R. We consider two cases: either N is even, or odd.
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If N is odd, then from the Fourier inversion formula we see
that

f(x) =
1√
N

∑
m∈Z/NZ

f̂(m)e2πimx/N

=
1√
N
f̂(0) +

1√
N

N/2∑
j=1

(
f̂(j)e2πijx/N + f̂(−j)e2πi(−j)x/N

)

=
1√
N
f̂(0) +

1√
N

N/2∑
j=0

(
f̂(j)e2πijx/N + f̂(j)e2πi(j)x/N

)

=
1√
N
f̂(0) +

1√
N

N/2∑
j=0

2Re
(
f̂(j)e2πijx/N

)
∈ R

If N is even, then we also have f̂(N
2

) = f̂(−N
2

) ∈ R, so we
can repeat the same argument to show that

f(x) =
1√
N
f̂(0) +

1√
N
f̂(N/2)e2πi(

N
2

)/N +
1√
N

N−1
2∑
j=0

2Re
(
f̂(j)e2πijx/N

)

=
1√
N
f̂(0) +

1√
N
f̂(N/2)eπi +

1√
N

N−1
2∑
j=0

2Re
(
f̂(j)e2πijx/N

)

=
1√
N
f̂(0)− 1√

N
f̂(N/2) +

1√
N

N−1
2∑
j=0

2Re
(
f̂(j)e2πijx/N

)
and again all terms in the sum are real.

(4) Same argument as above, using Fourier inversion in place of the
Fourier transform.

Lemma 1.5. Let e2πiyX/N be the multiplication operator[
e2πiyX/Nf

]
(x) = e2πiyx/Nf(x)

and Th be the translation operator

[Thf ] (x) = f(x+ h)

Then

̂e2πiX/Nf = T−yf̂

T̂yf = e2πiyX/N f̂
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Proof: For the first statement, write

ê2πiXf(m) =
∑

x∈Z/NZ

[
e2πiyXf

]
(x)e−2πimx/N

=
∑

x∈Z/NZ

e2πiyxf(x)e−2πimx/N

=
∑

x∈Z/NZ

f(x)e−2πi(m−y)x/N

= f̂(m− y)

For the second statement, we have

T̂yf(m) =
∑

x∈Z/NZ

[Tyf ] e−2πimx/N

=
∑

x∈Z/NZ

f(x+ y)e−2πim(x+y)/Ne2πimy/N

= e2πiym/N f̂(m)

as required. �
Remark: This Lemma shows a certain duality between multiplication

by exponentials and translations in the Fourier transform. This duality
will play a large role in understanding the Uncertainty Principle, and
its connection to the Fourier transform.

1.2. Fourier Transform on T and R. Though many of the prop-
erties of the Fourier transform are captured in the finite setting de-
scribed above, there is a much more intricate structure when we include
smoothness. We will for the most part assume that all functions we
consider are of class C∞ (though we will be forced to consider distribu-
tions as well), and so we will often assume this in place of the sharpest
possible hypotheses.

Lemma 1.6. For any m ∈ Z\0, we have∫
T
e2πimxdx = 0

Proof: This can be integrated explicitly by the Fundamental Theo-
rem of Calculus:∫ 1

0

e2πimxdx =
1

2πim

(
e2πim(1) − e2πim(0)

)
=

1

2πim
(1− 1) = 0
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since m 6= 0. �
Some care must be taken in the analogous statement for R, since the

integral
∫

R e
iξxdx does not converge absolutely. However, we will see

that this works in the sense of distributions.

Definition 1.2. • If f ∈ C∞(T), then we define its Fourier trans-

form (or Fourier series) f̂ ∈ CZ to be

f̂(m) :=

∫
T
f(x)e−2πimxdx

• If f ∈ C∞c (R) (smooth with compact support), then we define

its Fourier transform f̂ ∈ C∞(R) to be

f̂(ξ) :=

∫
R
f(x)e−2πiξxdx

Note that, since f has compact support, the integral converges
absolutely; it is also smooth since we can differentiate under the
integral sign.

The space C∞c (R) will turn out to be the wrong space to work with
over R, but for now it is convenient and will suffice. For later reference,
though, we introduce the Schwartz space

S(R) := {f ∈ C∞(R) : ∀j, k ∈ N,∀x ∈ R, |(1 + x2)j∂kf(x)| <∞}

of smooth functions that decay rapidly (faster than any polynomial)
along with all of their derivatives. It is clear that C∞c ⊂ S(R), but there
are many other important Schwartz functions, such as the Gaussians
Gα(x) := e−αx

2
.

Exercise 1.1. Show that the Gaussian Gα ∈ S(R) for any α > 0.

Exercise 1.2. Show that for f ∈ S(R), the integral f̂(ξ) =
∫

R f(x)e2πiξxdx
converges absolutely.

Lemma 1.7. ∫
R
e−πx

2

dx = 1

Proof: This is a trick (that should be!) taught in every multivariable
calculus class. Consider the square of the integral(∫

R
e−πx

2

dx

)2

=

∫∫
R2

e−π(x2+y2)dxdy
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Now convert the integral over R2 into polar coordinates to get

∫ 2π

θ=0

∫ ∞
r=0

e−πr
2

rdrdθ = 2π

∫ ∞
r=0

e−πr
2

rdr

=

∫ ∞
u=0

e−udu = 1

by the change of variables u = πr2. �

Lemma 1.8. The Gaussian Gπ(x) = e−πx
2

is its own Fourier trans-

form; i.e., Gπ = Ĝπ.

Proof: Write

Ĝπ(ξ) =

∫
R
Gπ(x)e−2πiξxdx

=

∫
R
e−π(x2+2iξx)dx

=

∫
R
e−π(x+iξ)2e−πξ

2

dx

= Gπ(ξ)

∫
R
e−π(x+iξ)2dx

It remains to show that
∫

R e
−π(x+iξ)2dx = 1. But notice that this

is the integral of e−πz
2

over the contour Im(z) = ξ. Since e−πz
2

is
holomorphic, and decays as Re(z) → ±∞, we can shift the contour
of integration back to R without changing its value. Thus, using the
previous Lemma,

∫
R
e−π(x+iξ)2dx =

∫
R
e−πx

2

dx = 1

as required. �.

Lemma 1.9. Let f ∈ S(R), and for any λ ∈ R, set Rλf(x) = f(λx).
Then

R̂λf = λ−1Rλ−1 f̂
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Proof: Write

R̂λf =

∫
R
Rλf(x)e−2πiξxdx

=

∫
R
f(λx)e2πiξxdx

= λ−1

∫
u∈R

f(u)e2πi
ξ
λ
udu

= λ−1f̂

(
ξ

λ

)
by change of variable u = λx. �

Corollary 1.1. For α > 0,

Ĝα =

√
π

α
Gπ2/α

To see this, simply note that Gα = R√
α/π

Gπ, and recall that Gπ is

its own Fourier transform.
This is a very important theme that will recur again and again—

the more localized a function is in the “space variable” x, the more
spread out its Fourier transform will be in the “frequency variable” ξ,
and vice versa. This will be manifested in the Heisenberg Uncertianty
Principle, Theorem 1.3 below.

Lemma 1.10. For the Fourier transform on either Z or R, we have

f̂ ∗ g = f̂ ĝ

Recall that we proved the analogous fact for the discrete Fourier
transform in Lemma 1.4(2).

Proof: First, consider the Fourier transform on T. We have

f̂ ∗ g(m) =

∫ 1

0

(f ∗ g)(x)e−2πimxdx

=

∫ 1

x=0

∫ 1

y=0

f(y)g(x− y)dye−2πimxdx

=

∫ 1

y=0

∫ 1

x=0

f(y)g(x− y)e−2πimye−2πim(x−y)dxdy

=

∫ 1

y=0

f(y)e−2πmy

∫ 1

x=0

g(x− y)e−2πim(x−y)dxdy

=

∫ 1

y=0

f(y)e−2πmyĝ(m)dy = f̂(m)ĝ(m)
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by doing the change of variables x 7→ x+ y in the x integral.
For the Fourier transform on R, repeat the above argument, taking

f, g ∈ S(R) to avoid issues in the order of integration.

We now wish to prove the Fourier inversion formulae for these Fourier
transforms. However, convergence issues come into play, since the
Fourier transforms now live on non-compact spaces Z and R. The
utility of the following fact cannot be understated:

Lemma 1.11. If f ∈ C∞(T) (resp. S(R)), then f̂(m) = O(m−2)

(resp. f̂(ξ) . (1+ξ2)−1). Therefore, the Fourier expansion
∑

m∈Z f̂(m)e2πimx

(resp.
∫

R f̂(ξ)e2πiξxdξ) converges absolutely.

Proof: Get used to integrating by parts!! It is a trick that will recur
again and again in semiclassical analysis.

For the T statement, consider

f̂(m) =

∫ 1

0

f(x)e−2πimxdx

and integrate by parts twice; we wish to differentiate f (this doesn’t
hurt too much , since f ∈ C2) while integrating the exponential term.
Integrating by parts the first time gives

f̂(m) =

∫ 1

0

f(x)e−2πimxdx =
1

2πim

∫ 1

0

f ′(x)e−2πimxdx

and integrating by parts again yields

f̂(m) =

(
1

2πim

)2 ∫ 1

0

f ′′(x)e−2πimxdx = O(m−2 · ||f ′′||∞) = Of (m
−2)

since f ∈ C∞(T) ⊂ C2(T) implies that f ′′ is uniformly bounded.
For the R statement, do the same (double) integration by parts to

get

f̂(ξ) =

∫
R
f(x)e2πiξxdx =

(
1

2πiξ

)2 ∫
R
f ′′(x)e−2πiξxdx

(here, the boundary terms vanish since f ∈ S(R) vanishes at the bound-
ary.) Now, since f ∈ S(R), we know that f ′′ ∈ L1(R), and so the inte-
gral

∫
R f
′′(x)e−2πiξxdx converges absolutely, and uniformly in ξ. Thus,

we have f̂(ξ) .f (1 + ξ2)−1, as required. �
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Definition 1.3. The Dirichlet kernel of order n on T is the function

Dn(x) :=
n∑

j=−n

e2πijx =
sin 2π(n+ 1

2
)x

sin 2π x
2

To justify the expression on the right, simply use the formula for
summing a geometric series

n∑
j=−n

e2πijx =
e2πi(−n)x − e2πi(n+1)x

1− e2πix

=
e2πi(−n−

1
2
)x − e2πi(n+ 1

2
)x

e−2πi 1
2
x − e2πi 12x

=
sin 2π(n+ 1

2
)x

sin 2π x
2

multiplying top and bottom by e−2πi 1
2
x in the second line, and recalling

that sin θ = 1
2i

(eiθ − e−iθ).
Remark: Note that by Lemma 1.6

D̂n(m) =

{
1 |m| ≤ k
0 |m| > k

Therefore, multiplying f̂ by D̂n cuts off the Fourier series of f at k
terms; by Lemma 1.10, this means that f ∗ Dn is a function whose
Fourier transform matches that of f up to the k-th terms, but then
vanishes.

We also note that
∫

TDn(x)dx = 1 for every n. On the other hand,

Dn oscillates wildly, and in fact
∫ 1

0
|Dn(x)|dx gets quite large. A better

kernel is the Fejér kernel:

Definition 1.4. The Fejér kernel of order n on T is the function

Fn(x) :=
1

n

n−1∑
k=0

Dk(x) =
n∑

j=−n

n− |j|
n

e2πijx

Remark: As with the Dirichlet kernel, we see from Lemma 1.6 that

F̂n(m) =

{
n−|m|
n

|m| ≤ n
0 |m| > n

The utility of the Fejér kernel becomes much more apparent from
the following fact:

Lemma 1.12.

Fn(x) =
1

n

(
sin(2π nx

2
)

sin(2π x
2
)

)2

≥ 0
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Moreover, for any δ > 0, we have

lim
n→∞

∫
|x|>δ

Fn(x)dx = 0

Proof: From the previous expression of Dn, we can write

nFn(x) =
n−1∑
k=0

Dk(x) =
1

sin 2π x
2

n−1∑
k=0

sin 2π(n+
1

2
)x

=
1

sin 2π x
2

Im

(
n−1∑
k=0

e2πi(n+ 1
2
)x

)

=
1

sin 2π x
2

Im

(
e2πi

1
2
x − e2πi(n+ 1

2
)x

1− e2πix

)

=
1

sin 2π(x
2
)
Im

(
1− e2πinx

−2i sin 2π x
2

)
=

1

sin 2π(x
2
)
Re

(
1− e2πinx

2 sin 2π x
2

)
=

1

sin2 2π(x
2
)

[
1

2
(1− cos 2πnx)

]
=

1

sin2 2π(x
2
)

(
sin2 2πnx

2

)
=

(
sin(2π nx

2
)

sin(2π x
2
)

)2

since 1
2
(1− cos θ) = sin2 θ

2
.

For the second property, note that Fn(x) ≤ 1
n sin 2πδ/2

for |x| > δ,

which clearly goes to 0 as n → ∞. Since T has total measure 1, this
means that

∫
|x|>δ Fn(x)dx→ 0. �

Remark: Note that we now have the Fejér kernels on T, and the
normalized Gaussian kernels on R, that are “good kernels” satisfying
the following conditions:

• ∫
T
Fn(x)dx =

∫
T
|Fn(x)|dx = 1∫

R

√
π

α
Gα(x)dx =

∫
R

∣∣∣∣√π

α
Gα(x)

∣∣∣∣ dx = 1



14 WORK IN PROGRESS — USE WITH APPROPRIATE CAUTION

• For any δ > 0, we have

lim
n→∞

∫
|x|>δ
|Fn(x)|dx = 0

lim
α→∞

∫
|x|>δ

∣∣∣∣√π

α
Gα(x)

∣∣∣∣ dx = 0

This means that for any f ∈ C(T), we have f ∗ Fn → f uniformly as
n → ∞. If f is smooth, then more is true; eg. for f ∈ S(R), we have
f ∗
√

π
α
Gα → f in the Ck-norm, for any k.

Lemma 1.13 (Uniqueness of Fourier Series). Let f ∈ C(T) such that

f̂(m) = 0 for all m. Then f ≡ 0.

Proof: Suppose not, and let x0 ∈ T such that f(x0) 6= 0. Then by
continuity, f(x) 6= 0 on a neighborhood of x0.

Consider
∫

T f(x)Fn(x− x0)dx. Since

Fn(x− x0) =
n∑

j=−n

n− |j|
n

e2πij(x−x0) =
n∑

j=−n

(
n− |j|
n

e−2πijx0

)
e2πijx

and f is orthogonal to each term in the expansion, we must have∫
f(x)Fn(x − x0)dx = 0. On the other hand, for n sufficiently large,

the convolution
∫
f(x)Fn(x − x0)dx → f(x0) 6= 0, which gives the

contradiction. �

Theorem 1.1 (Fourier Inversion on T). For f ∈ C∞(T), we have

f(x) =
∑
m∈Z

f̂(m)e2πimx

Proof: Notice that by Lemma 1.10

f̂ ∗ Fn(m) =

{
n−|m|
n

f̂(m) n ≥ m
0 n ≤ m

By Lemma 1.13, we see that

f ∗ Fn =
n∑

m=−n

n− |m|
n

f̂(m)e2πimx

Recall also by Theorem 1.11 that f̂(m) . m−2.
Since f ∗ Fn → f , we have for all ε, and n > n(ε) sufficiently large,

that

|f(x)− (f ∗ Fn)(x)| < ε
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and, therefore, ∣∣∣∣∣f(x)−
n∑

m=−n

n− |m|
n

f̂(m)e2πimx

∣∣∣∣∣ < ε

for n sufficiently large. On the other hand,∣∣∣∣∣∑
m∈Z

f̂(m)e2πimx −
n∑

m=−n

n− |m|
n

f̂(m)e2πimx

∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

m=−n

|m|
n
f̂(m)e2πimx +

∑
|m|>n

f̂(m)e2πimx

∣∣∣∣∣∣
Now, since f̂(m) . m−2 decays sufficiently fast, we can select M(ε)

such that
∑
|m|>M(ε) |f̂(m)| < ε. Now divide∣∣∣∣∣∑
m∈Z

f̂(m)e2πimx −
n∑

m=−n

n− |m|
n

f̂(m)e2πimx

∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

m=−n

|m|
n
f̂(m)e2πimx +

∑
|m|>n

f̂(m)e2πimx

∣∣∣∣∣∣
≤

∑
|m|≤M(ε)

|m|
n

∣∣∣f̂(m)
∣∣∣+

∑
|m|>M(ε)

∣∣∣f̂(m)
∣∣∣

< 2ε

if n is chosen large enough so that the first sum is less than ε (i.e.,

n > ε−1
∑
|m|≤M(ε) |m||f̂(m)).

Putting everything together, we have∣∣∣∣∣f(x)−
∑
m∈Z

f̂(m)e2πimx

∣∣∣∣∣
≤

∣∣∣∣∣f(x)−
n∑

m=−n

n− |m|
n

f̂(m)e2πimx

∣∣∣∣∣+

∣∣∣∣∣∑
m∈Z

f̂(m)e2πimx −
n∑

m=−n

n− |m|
n

f̂(m)e2πimx

∣∣∣∣∣
< ε+ 2ε = 3ε

Since this holds for any ε > 0, we are done. �

Lemma 1.14. If f, g ∈ S(R), then∫
R
f(x)ĝ(x)dx =

∫
R
f̂(y)g(y)dy



16 WORK IN PROGRESS — USE WITH APPROPRIATE CAUTION

Proof: Write∫
R
f(x)ĝ(x)dx =

∫
x∈R

f(x)

∫
y∈R

g(y)e−2πixydy

=

∫
y∈R

∫
x∈R

f(x)e−2πixyg(y)dy

=

∫
y∈R

f̂(y)g(y)dy

using the decay of f, g ∈ S(R) to interchange the order of integration.

Theorem 1.2 (Fourier Inversion on R). For f ∈ S(R), we have

f(x0) =

∫
R
f̂(ξ)e2πiξx0dξ

Proof: Take gα(y) = e2πix0yGα−1(y) ∈ S(R) in Lemma 1.14. This
gives ∫

x∈R
f(x)ĝα(x)dx =

∫
y∈R

f̂(y)g(y)

Note that ĝα(x) =
√
παGπ2α(x− x0), so that∫

x∈R
f(x)ĝα(x)dx→ f(x0)

as α → ∞, so the left hand side converges to f(x0). On the other
hand, gα(y)→ e2πix0y pointwise as α→∞, and since f ∈ S(R) decays
rapidly, we have

f̂ gα → f̂ e2πix0y

in L1(R) as well. Thus the right-hand side converges to
∫
y∈R f̂(y)e2πiyx0

and, replacing y with ξ, we are done. �
Remark: It is convenient to describe Fourier inversion as saying that∑

m∈Z

e2πimx = δ0∫
R
e2πiξxdx = δ0

as distributions on T and R, respectively. This is ubiquitous in calcu-
lations!

Lemma 1.15 (Plancherel Theorem). We have the following unitarity
properties of the Fourier transform:
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• For f, g ∈ C∞(T), we have∫ 1

0

f(x)g(x)dx =
∑
m∈Z

f̂(m)ĝ(m)

• For f, g ∈ S(R), we have∫
R
f(x)g(x)dx =

∫
R
f̂(ξ)ĝ(ξ)dξ

In particular, ||f ||L2 = ||f̂ ||L2.

Proof: For the T statement, write∑
m∈Z

f̂(m)ĝ(m) =
∑
m∈Z

∫ 1

x=0

f(x)e−2πimxdxĝ(m)

=

∫ 1

x=0

f(x)
∑
m∈Z

ĝ(m)e2πimxdx

=

∫ 1

x=0

f(x)g(x)dx

using Fourier inversion.
The R statement follows similarly. �.
Remark: Note that for this, we only required g to be smooth; of

course, we could also have reversed the roles and required only f to be
smooth. In other words, this works just as well when one of f or g is
replaced with a distribution.

Lemma 1.16. Consider the operators

[Xf ] (x) = xf(x)[
e2πiyXf

]
(x) = e2πiyxf(x)

[Df ] (x) = (2πi)−1f ′(x)

Then for f ∈ C∞(T) we have

D̂f(m) = (m)f̂(m)

̂e2πiyXf(m) = f̂(m− y)

For f ∈ S(R), we have

D̂f(ξ) = (ξ)f̂(ξ)

X̂f(ξ) = − 1

2πi
f̂ ′(ξ)

̂e2πiyXf(ξ) = f̂(ξ − y)
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Proof: Exercise.

Corollary 1.2. The Fourier transform maps S(R) into (and therefore,
by inversion, onto) itself.

This is a big reason why S(R) is the right space to consider for the
Fourier transform on R.

Lemma 1.17. With the operators X and D on S(R) as in Lemma 1.16,
we have the following commutation relation

[D,X]f = (2πi)−1f

Proof: First,

[D(Xf)](x) = [Xf ]′(x) = (2πi)−1 d

dx
(xf(x)) = (2πi)−1(f(x) + xf ′(x))

On the other hand,

[X(Df)](x) = x[Df ](x) = x(2πi)−1f ′(x) = (2πi)−1xf ′(x)

Therefore,[
[D,X]f

]
(x) = [D(Xf)](x)− [X(Df)](x)

= (2πi)−1(f(x) + xf ′(x))− (2πi)−1xf ′(x)) = (2πi)−1f(x)

A (striking) consequence of this property is the following fact:

Theorem 1.3 (Heisenberg Uncertainty Principle). With notations as
in Lemma 1.16, we have for any f ∈ S(R)

||Xf ||L2 · ||Df ||L2 ≥ 1

4π
||f ||2L2

Proof: Consider, for real numbers a, b ∈ R to be chosen later, that

0 ≤ ||(aX + ibD)f ||2L2

= a2||Xf ||2L2 + b2||Df ||2L2 + 〈aXf, ibDf〉+ 〈ibDf, aXf〉

= a2||Xf ||2L2 + b2||Df ||2L2 − iab
(
〈Xf,Df〉 − 〈Df,Xf〉

)
Noting that X and D are both self-adjoint, we can write

〈Xf,Df〉 − 〈Df,Xf〉 = 〈DXf, f〉 − 〈XDf, f〉
= 〈[D,X]f, f〉
= (2πi)−1||f ||2L2

Thus,

0 ≤ a2||Xf ||2L2 + b2||Df ||2L2 −
ab

2π
||f ||2L2
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Now set a = ||Df ||L2 and b = ||Xf ||L2 , and divide through by ab =
||Xf ||L2 ||Df ||L2 to get

0 ≤ ||Df ||L2||Xf ||L2 + ||Xf ||L2||Df ||L2 − (2π)−1||f ||2L2

and the result follows. �
Remark: Let’s interpret what this means. For simplicity, suppose

that f is a function such that both |f |2 and |f̂ |2 have mean 0; i.e., both∫
R
x|f(x)|2dx = 0∫

R
ξ|f(ξ)|2dξ = 0

Then the variances of f and f̂ are given by the second moments∫
R
x2|f(x)|2dx = ||Xf ||2L2∫

R
ξ2|f̂(ξ)|2dξ = ||D̂f ||2L2 = ||Df ||2L2

applying Lemmas 1.15 and 1.16 in the second equation. Thus Theo-
rem 1.3 says that the variance of f and f̂ cannot both be arbitrarily
small; the more one localizes f , the more widely distributed f̂ becomes,
and vice versa.

Corollary 1.3. For any ~ > 0, we have

||Xf ||L2 · ||2π~Df ||L2 ≥ ~
2
||f ||2L2

Exercise 1.3. The point of this exercise is to show that, for the Gaus-
sians Gα, equality is achieved in the Heisenberg Uncertainty Principle;
i.e., we have(∫

R
x2|Gα(x)|2dx

) 1
2
(∫

R
ξ2|Ĝα(ξ)|2dξ

) 1
2

=
1

4π
||Gα||2L2

(1) Using some changes of variable and Corollary 1.1, show that it
is sufficient to prove the case of α = π; i.e., that

||XGπ||22 =
1

4π
||Gπ||22

(2) Use an integration by parts argument to show that

||XGπ||22 =

∫
R
x2e−2πx2

dx =
1

4π
||Gπ||22

.
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Exercise 1.4. The point of this exercise is to show that f and f̂ cannot
both be compactly supported.

(1) Show that, if f has compact support, then its Fourier transform

f̂(z) =

∫
R
f(x)e−2πixzdx

can be extended to a holomorphic function of z ∈ C.
(2) Use this to show that the set {z : f̂(z) = 0} must be discrete.

(3) Deduce a contradiction from the assumption that f̂ is compactly
supported on R.

1.3. Fourier Series and Equidistribution. An important observa-
tion about Fourier coefficients is that, for f ∈ C∞(T), the 0-th coeffi-

cient f̂(0) =
∫ 1

0
f(x)dx is the average of f over T. Thus, the remaining

Fourier coefficients determine, in a sense that can be made more pre-
cise, how f deviates from its average. A classical example is Weyl’s
Equidistribution Theorem:

Theorem 1.4 (Weyl). Let α ∈ R\Q be irrational. Then the multi-
ples {nα mod 1}∞n=1 are equidistributed in T (with respect to Lebesgue
measure) as n→∞.

Proof: We write {nα} = nα mod 1 to be the fractional part of nα.
To say that the sequence {nα} is equidistributed means that, for any
interval [a, b] ⊂ [0, 1), we have

lim
N→∞

1

N
#{n ≤ N : {nα} ∈ [a, b]} = l([a, b]) = b− a

or, setting χ[a,b] to be the characteristic function of the interval [a, b]
(extended to be a 1-periodic function on R)

1

N

N∑
n=1

χ[a,b](nα) =

∫ 1

0

χ[a,b](x)dx

It is more convenient to smooth out the characteristic function, and
consider instead smooth 1-periodic functions f ∈ C∞(T) that approx-
imates χ[a,b] in L1; it is sufficient to show that

lim
N→∞

1

N

N∑
n=1

f(nα) =

∫ 1

0

f(x)dx = f̂(0)

for all smooth f ∈ C∞(T), since we can take smooth functions f+ and
f− such that f+(x) ≥ χ[a,b](x) ≥ f−(x) everywhere, while f+ and f−
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are L1-close to χ[a,b], giving∫ 1

0

χ[a,b](x)dx− ε <

∫ 1

0

f−(x)dx = lim
N→∞

1

N

N∑
n=1

f−(nα)

≤ lim
N→∞

1

N

N∑
n=1

χ[a,b](nα)

≤ lim
N→∞

1

N

N∑
n=1

f+(nα) =

∫ 1

0

f+(x)dx

<

∫ 1

0

χ[a,b](x)dx+ ε

So, consider f ∈ C∞(T). By Fourier inversion, we can write

1

N

N∑
n=1

f(nα) =
1

N

N∑
n=1

∞∑
m=−∞

f̂(m)e2πinα

=
∞∑

m=−∞

f̂(m)
1

N

N∑
n=1

e2πimnα

The term m = 0 in the sum gives us f̂(0), which is exactly what we
want; the problem is to eliminate the other terms. By the Lemma 1.11,
the Fourier coefficients f̂ decay rapidly (and thus the sum over m is
absolutely convergent, uniformly in N); therefore it is sufficient to show
that

1

N

N∑
n=1

e2πimnα → 0

as N →∞; this is known as Weyl’s criterion.
To finish, note that the above sum is a geometric series, and so∣∣∣∣∣ 1

N

N∑
n=1

e(mnα)

∣∣∣∣∣ =
1

N

|e(mα)− e((N + 1)mα)|
|1− e(mα)|

= O

(
1

N

)
for any m ∈ Z, since e(mα) 6= 1 (α is irrational!) is independent of N ,
and the numerator is bounded by 2. �

Here is another important fact, that we will use later on— informally,
it is a generalization of Weyl’s argument, to the case where there are
a few more non-zero Fourier coefficients. For a measure (or, more
generally, a distribution) µ, we define the Fourier transform of µ via

µ̂(m) :=

∫
e−2πimxdµ(x)
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Lemma 1.18. Suppose µ is a probability measure on T, such that∑
|m|≤M

|µ̂(m)| ≤ k

(think of M as being much larger than k, so that there are few sizable
Fourier coefficients).

Then for any interval I of length ≥M−1, we have

µ(I) . k · l(I)

where l(I) is the (Lebesgue) length of I. In other words, up to a factor
of k, the mass of µ is evenly distributed up to scale M−1.

Proof: It is sufficient to consider intervals of length M−1, since we
can cover a larger interval by smaller intervals to get the statement.

Let x0 be the midpoint of such an interval, and consider the convo-
lution of FM/2 with µ at x0,∫

T
FM/2(x− x0)dµ(x)

Since

FM/2(x− x0) =

M/2∑
m=−M/2

cme
2πimx

with each |cm| ≤ 1, we have∣∣∣∣∫
T
FM/2(x− x0)dµ(x)

∣∣∣∣ ≤ k

On the other hand, since FM/2 ≥ 0 and µ is a positive measure, we
have

k ≥
∫

T
FM/2(x− x0)dµ(x) ≥

∫
I

FM/2(x− x0)dµ(x)

and, noting that sin(x) ≤ x and that sin(x)
x

is decreasing for |x| ≤ π/4,
we have for |x− x0| < 1/2M that

FM/2(x− x0) =
2

M

(
sin(π

2
M(x− x0))

sin(π(x− x0))

)2

≥ 2

M

(
sin(π

2
M(x− x0))

π(x− x0)

)2

≥ M

2

(
sin(π

2
M(x− x0))

π
2
M(x− x0)

)2

≥ M

2

(
sin(π/4)

π/4

)2

&M
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Therefore, we have

k ≥
∫
I

FM/2(x− x0)dµ(x)

&
∫
I

Mdµ

= Mµ(I)

and the result follows. �

1.4. Some Comments about the Fourier Transform on Rd. As
noted before, there is not too much mystery in generalizing the Fourier
transform to several dimensions. For example, for f ∈ S(Rd) (defined
in the obvious way, replacing powers of x with polynomial functions
in the d variables, and replacing derivatives with respect to x with all
derivatives), we define

f̂(ξ) =

∫
Rd
f(x)e−2πiξ·xdx

where x and ξ are now in Rd, and we use the usual dot product

ξ · x := ξ1x1 + ξ2x2 + · · ·+ ξdxd

Since the exponential satisfies

e−2πiξ·x =
d∏
j=1

e−2πiξjxj

the Fourier transform on Rd inherits the properties of the Fourier trans-
form on R simply by repeating the arguments, integrating one variable
at a time.

In particular, we have:

• Fourier Inversion:

f(x) =

∫
Rd
f̂(ξ)e2πiξ·xdξ

• Scaling Property: If [Rλ(f)] (x) = f(λx) for λ ∈ R, then

R̂λ(f) = λ−df̂(ξ/λ)

(Note the scale factor of λ−d, since we are changing variables
x→ λx in d dimensions!)
• Plancherel Theorem:

〈f, g〉 = 〈f̂ , ĝ〉
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• Multiplication and Convolution:

f̂ ∗ g = f̂ ĝ

f̂ g = f̂ ∗ ĝ

• Multiplication Operators and Differentiation: If Xj is
the operator of multiplication by xj, and Dj is the differential
operator (2πi)−1 ∂

∂xj
, then

X̂jf = −Dj f̂

D̂jf = Xj f̂

̂e2πiyXjf(ξ) = f̂(ξ1, ξ2, . . . ξj − y, . . . , ξd)

• Our favorite Schwartz function on Rd, the Gaussian Gπ =
e−π|x|

2
, is its own Fourier transform. Hence

Ĝα =
(π
α

)d/2
Gπ2/α

and yields equality in the Heisenberg Uncertainty Principle (see
below).

There are several points regarding the Fourier transform on Rd, how-
ever, that deserve attention. The first is the Uncertainty Principle:
note that while

[Dj, Xj] = (2πi)−1Id

for each j, the operators Dj and Xk commute whenever j 6= k, since

∂

∂xj
(xkf) = xk

∂

∂xj
f

So the Uncertainty Principle holds in each coordinate individually.
Another point to consider is that we have many different coordinate

systems in Rd (and nobody likes depending on a particular coordinate
system, especially when we move from Rd to manifolds). It will be of
particular interest to us to consider polar coordinates, and we begin
with the following Lemma:

Lemma 1.19. Let R ∈ SO(d) be a rotation of Rd, and denote TR the
operator TRf(x) = f(Rx). Then

T̂Rf = TRf̂

i.e., the Fourier transform commutes with rotations.
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Proof: Since detR = 1, we can change variables x 7→ R−1x to get

T̂Rf(ξ) =

∫
Rd
f(Rx)e−2πix·ξdx

=

∫
Rd
f(x)e−2πiR−1x·ξdx

=

∫
Rd
f(x)e−2πix·Rξdx

= f̂(Rξ)

since R preserves the dot product, whereby R−1x · ξ = x ·Rξ. �
One particularly nice consequence is that

Corollary 1.4. Let f ∈ S(R) be a radial function; i.e., f(x) = f(|x|)
(or, equivalently, f(Rx) = f(x) for all rotations R ∈ SO(d)for all x.

Then f̂ is also a radial function.

A nice example is (again) our friends the Gaussians.
Proof: This follows from the last Lemma, since

f̂(Rξ) = TRf̂(ξ) = T̂Rf(ξ) = f̂(ξ)

because TRf = f . �
Another related property is the following important fact:

Exercise 1.5. Let

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
d

be the Laplacian operator on Rd. Show that

∆̂f(ξ) = −4π2|ξ|2f̂(ξ)

So the Laplacian, which is invariant under rotations, is sent by the
Fourier transform to the operator of multiplication by a radial function
−4π2|ξ|2.

1.5. The Semi-classical Fourier Transform. As hinted above in
Corollary 1.3, we would like to be able to control the degree of uncer-
tainty in our Fourier transforms ( 1

4π
is a very interesting number, but

does not conform to the quantum mechanics of our universe; at least
not in our usual units). In everyday life the uncertainty is very small
(about 1.05 × 10−34 in SI units). For the semiclassical theory, ~ will
always be a small (positive) parameter tending to 0.

In order to get the right uncertainty, then, we need to reparametrize
our Fourier transform. Thus we define:
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Definition 1.5. For f ∈ S(R), we define the ~-semiclassical Fourier
transform

F~(f)(ξ) = (2π~)−1/2

∫
R
f(x)e−

i
~ ξxdx

Note that this is nothing but the usual Fourier transform, rescaled
by a factor of 2π~; i.e.

F~(f)(2π~ξ) = (2π~)−1/2f̂(ξ)

Note that the normalizing factor of (2π~)−1/2 insures that F~ remains
unitary.

It is clear that the semiclassical Fourier transform is inverted via

f(x) = (2π~)−1/2

∫
R
F~(ξ)e

i
~xξdξ

Remark: The importance of the parameter ~ will become apparent
later on; for now, let us be content to examine its effect on the Heisen-
berg Uncertainty Principle— since the Fourier transform is rescaled by
a factor of 2π~, the function F~ is much more localized than f̂ , by a
factor of 2π~. This leads to the semiclassical version of Heisenberg’s
Uncertainty Principle, stated in Corollary 1.3. This is actually a phys-
ical law, when the appropriate (very small) constant ~ is used; though
in the semiclassical sense, it is measuring the degree to which one can
simultaneously localize f and F~f as ~→ 0. Notice, of course, that as
~→ 0, the right-hand side of Corollary 1.3 tends to 0 as well.

We also wish to record the following important fact:

Lemma 1.20. Consider the operator H = −~2∆ on S(R). Then

F~(Hf)(ξ) = |ξ|2F~(f)(ξ)

Proof: Recall from Exercise 1.5 that ∆̂f(ξ) = −|2πξ|2f̂(ξ). There-
fore

F~(Hf)(ξ) =
1√
2π~

Ĥf(ξ/2π~)

= − 1√
2π~

~2∆̂f(ξ/2π~)

=
1√
2π~

~2|ξ/~|2f̂(ξ/2π~)

= |ξ|2 1√
2π~

f̂(ξ/2π~)

= |ξ|2F~(ξ)

as required. �
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Remark: One can also define a semiclassical Fourier transform on
the torus, by setting for f ∈ C∞(T)

F~f(2π~m) = (2π~)−1/2f̂(m)

which is now defined on 2π~Z. (The discrete Fourier transform is in a
sense already “semi-classical”, and we will see it arise out of F~ on T
when we discuss the so-called “cat map” models).

2. A Brief Introduction to Basics of Quantum Mechanics

In this section, we give a “crash course” in the basic foundations
of quantum mechanics. We will not try to motivate the discussion
physically, nor try to discuss philosophical consequences of the physical
theory. From our point of view, it is simply an abstract (and bizarre)
mathematical model of mechanics, whose only redeeming feature is that
some very smart people have found that it works (i.e., its predictions
agree disturbingly well with experimental data).

2.1. The Hamiltonian Formulation of (Classical) Mechanics.
Let’s first recall Newton’s Law of classical mechanics, given by the
second order ODE

F =
dp

dt
= m

d2q

dt2

where p = mdq
dt
∈ Rd is the momentum of a particle moving in Rd, m

its mass, and q ∈ Rd its position. F is the (net) force acting on the
particle, which we will always assume to be conservative; i.e., given by
F = −∇V (q) for some potential function V of the position. This im-
mediately implies that the motion of the particle is determined initial
conditions (q0, p0) ∈ R2d, and in fact the motion is a flow on R2d de-
termined by solving the ODE (we will always assume that the solution
exists for all time).

Hamilton recognized that Newton’s Law can be reformulated by in-

troducing the Hamiltonian function H = |p|2
2m

+ V (q), and observing
that

∂H

∂pj
=

1

m
pj =

1

m
·mdqj

dt

=
dqj
dt
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for j = 1, . . . d, while Newton’s Law implies that

−∂H
∂qj

= −dV
dqj

= Fj

=
dpj
dt

At first, this just looks like a silly way to write one 2nd order equation
as a system of 2 1st order equations. But it becomes a bit less silly,
and a bit more useful, with the following important observation:

Lemma 2.1. Let f ∈ C∞(R2d), and suppose z(t) = (q(t), p(t)) is a
solution of Hamilton’s equations for some Hamiltonian H. Then,

df

dt
= {f,H}

Here we introduce the Poisson bracket

{f, g} =
∂f

∂q
(z)

∂g

∂p
(z)− ∂f

∂q
(z)

∂g

∂p
(z)

=
d∑
j=1

∂f

∂qj
(z)

∂g

∂pj
(z)− ∂f

∂qj
(z)

∂g

∂pj
(z)(1)

In particular, a function f ∈ C∞(R2d) is invariant under the motion
governed by H iff {f,H} = 0.

Proof of Lemma 2.1:

d

dt
f(z(t)) =

∂f

∂q
(z(t))q′(t) +

∂f

∂p
(z(t))p′(t)

=
∂f

∂q

∂H

∂p
(z(t))− ∂f

∂p

∂H

∂q
(z(t))

= {f,H}(z(t))

We pause for some terminology, into which we can translate the
above Lemma. We consider z(t) = (q(t), p(t)) ∈ R2d to be the state of
the particle at time t, in the sense that knowing z(t) tells you everything
you need to know about the particle at time t to determine its path.
We call R2d the phase space for the motion; this is the space on which
the motion takes place, as the particle moves from state to state. Any
(smooth) function f on R2d is called an observable, in the sense that
it’s something about the particle you can measure at any point in its
motion. Examples of observables are

• A position coordinate f(q, p) = qj
• A momentum coordinate f(q, p) = pj
• The potential f(q, p) = V (q)
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• The Hamiltonian itself f(q, p) = H(q, p) = 1
2m
|p|2 + V (q)

• The angular momentum f(q, p) = L3(q, p) = q1p2 − p1q2
(the terminology and notation come from the case d = 3)

• Anything else you might care to measure about your particle.

So, the Hamiltonian function (or “observable”) gives rise to a flow ΦH
t

on the phase space R2d, and an observable f is invariant under this flow
iff {f,H} = 0. We call such an f a constant of the motion. Observe
that {H,H} = 0 trivially, so that the Hamiltonian is a constant of
the motion. In fact, observe that the Hamiltonian is nothing but the
total energy of the particle (kinetic energy + potential energy), so this
observation states that energy is conserved.

Example 2.1. Let d = 2, and suppose that V = V (r) is a radial
function. Then the angular momentum L3 is a constant of the motion.

Proof: Compute

{L3, H} =
2∑
j=1

∂L3

∂qj

∂H

∂pj
− ∂L3

∂pj

∂H

∂qj

=

(
p2
p1

m
− (−q2)

dV

dq1

)
+

(
(−p1)

p2

m
− q1

dV

dq2

)
= (q2,−q1) · ∇V

But since V is radial, its gradient ∇V points radially (inward or out-
ward, depending on the sign), and is therefore orthogonal to the vector
field (q2,−q1). �

Definition 2.1. A Hamiltonian H ∈ C∞(R2d) is called completely
integrable iff there exist d independent constants of the motion {fi}
(that is, the Jacobian of the map x 7→ {f1(x) = H(x), f2(x), . . . , fd(x)}
has full rank d) such that

{fi, fj} = 0

for all i, j = 1, . . . d.

Example 2.2. Note that, for a particle moving in R2 (with phase space
R4), a Hamiltonian is completely integrable if there exists any constant
of the motion (besides H).

• Circular billiards preserve angular momentum about the center.
(More generally, elliptic billiards preserve angular momentum
about either focus.)
• Rectangular billiards preserve linear momentum in each direc-

tion (up to sign, which changes during reflection).
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It can be shown (Liouville-Arnold Theorem) that in the completely
integrable case, the common level surfaces of the constants of the mo-
tion are tori, on which the Hamiltonian flow acts by translation. Thus,
for completely integrable Hamiltonians, the flow is not exponentially
unstable (toral translations can only have linear instability).

The following observation is also important:

Theorem 2.1 (Liouville). The Hamiltonian flow preserves phase space
volume.

Proof: Essentially follows from the fact that the Hamiltonian vector
field

XH =

(
∂H

∂p1

,
∂H

∂p2

, . . . ,
∂H

∂pd
,−∂H

∂q1
, . . . ,−∂H

∂qd

)
generating the flow defined by Hamilton’s equations is divergence-free,
as is clear from straightforward calculation (the derivatives of positive
terms with respect to qj cancel with the derivatives of the negative
terms with respect to pj). �

2.2. Quantum Mechanics on R.

2.2.1. Quantum States. In quantum mechanics, the first change is that
the state of a particle is no longer described by a point in phase space;
rather, it is given by a vector in a Hilbert space. For a particle moving
along R, the space of states is L2(R); such a state ψ ∈ R is often called
the “wave function” of the particle. We will always take our states to
be unit vectors, i.e. we require that ||ψ||L2 = 1.

The position and momentum of the particle no longer have definite
values. Rather, the probability measure |ψ(q)|2dq gives the probability
density of the particle being found near q; more precisely, given an
interval A, the probability of finding the particle in A is given by

Prob(q ∈ A) =

∫
A

|ψ(q)|2dq

Remark: We will often say, eg., that “1/2 of the mass of the particle
is in A”, rather than “the probability of finding the particle in A is
1/2”. Mathematically there is no real difference here; either way, we
mean that

∫
A
|ψ|2dq = 1/2. Physically speaking, the latter is probably

more correct, since upon measurement, the particle will either be in
A or not. But in our idealized universe, no definitive experiments will
actually be performed, and it will be more intuitive (to me) to simply
imagine a particle whose mass is smeared out over R according to the
distribution |ψ|2.
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The momentum density of the particle is given by the measure
|F~(ψ)(p)|2dp. Note that, by the unitarity of F~, this is also a prob-
ability measure. In this way, the Heisenberg Uncertainty Principle of
Corollary 1.3 is given its usual physical meaning— one cannot give
both the position and momentum of a particle to arbitrary accuracy;
if the position is known to high accuracy (meaning that |ψ|2 is highly
localized), then its momentum will be accordingly uncertain (F~(ψ)
will be more widely spread out).

2.2.2. Observables. Since the state of a particle is no longer a point
in phase space, it’s no longer relevant to measure some observable
quantity by evaluating a function on phase space. Rather, we need
a new way to understand observables and their “evaluation” on states
ψ ∈ L2(R).

The easiest way to understand this is by considering the “position
observable” formerly known as f(q, p) = q. We have already stated
that we can’t measure the position of the particle exactly; rather, we
can understand the “average position” or the expected value of the
position as

E(q) =

∫
R
q|ψ(q)|2dq

Paraphrasing, we can say that the expected value of the position ob-
servable (for the state ψ) is given by

Eψ(f(q, p) = q) = 〈Qψ,ψ〉

where we have introduced the operator Qψ(q) = qψ(q)
Similarly, we can see that a diagonal matrix coefficient of the opera-

tor P : ψ 7→ −i~dψ
dq

gives the expected value of the momentum for the

state ψ

Eψ(f(q, p) = p) = 〈Pψ, ψ〉
= 〈F~(Pψ),F~(ψ)〉

=

∫
R
p|F~(ψ)|2dp

In general, we would like to associate to each classical f ∈ C∞(R2)
an operator on L2(R), denoted Op(f), such that the matrix coefficient

Eψ(f) = 〈Op(f)ψ, ψ〉

gives the average value of the observable f for the state ψ.

Example 2.3. • If f(q, p) = f(q) is a function only of position,
then by analogy with the position operator Q (and by the same
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reasoning), the operator Op(f) should be multiplication by f .
Thus,

〈Op(f)ψ, ψ〉 =

∫
R
f(q)|ψ(q)|2dq

• By the same token, if f(q, p) = f(p) is a function only of mo-
mentum, then we should take the ~-Fourier transform inside the
inner product, and apply the same logic. Thus, in particular,
if f(p) is a polynomial in p, then Op(f) will be a differential
operator on L2(R).

Example 2.4. Extending the analogy with Q and P above, we should
write

H =
1

2m
P 2 + V (Q)

as the Hamiltonian operator on L2(R). Since P 2 = −~2 d2

dq2
, we get

Eψ(H) = 〈Hψ,ψ〉 =

∫
R

(
−d

2ψ

dq2
(q)ψ(q) + V (q)|ψ(q)|2

)
dq

Note that we have abused notation and used H to stand for both
the Hamiltonian function on R2 and its quantization Op(H) as an op-

erator on L2(R). Some use Ĥ = Op(H), but then one runs into other
notation problems because of the Fourier transform... in any case, the
convention H = Op(H) is widespread, so even if you don’t like it, you’ll
have to get used to it anyway!

Remark: One might be (and probably should be) concerned that
these operators are not bounded on L2(R), so it’s not clear why the
expectation Eψ should exist for these observables. We won’t tread into
this issue, since for most of this course we will be working with compact
domains; for now, let’s adopt the “physicists’ convention” that vectors
in L2(R) are actually Schwartz functions.

2.2.3. The Schrödinger Equation. An important remaining question is,
what becomes of the equations of motion? The state of a particle over
time is no longer a flow of points in phase space; we need instead a law
governing the time evolution of a wave function.

The quantum evolution is given by Schrödinger’s Equation

∂

∂t
ψt(q) = − i

~
Hψt(q)

=
i~
2m

∂2

∂q2
ψt(q)−

i

~
V (q)ψt(q)
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We often write Ut = e−
i
~Ht for the evolution operator sending ψ0 7→ ψt.

The “U” here stands for unitary, since the evolution is unitary, as can
be seen by

d

dt

∫
R
|ψt(x)|2dx =

∂

∂t
〈ψt, ψt〉 =

〈
∂

∂t
ψt, ψt

〉
+

〈
ψt,

∂

∂t
ψt

〉
=

〈
− i

~
Hψt, ψt

〉
+

〈
ψt,−

i

~
Hψt

〉
= − i

~
(〈Hψt, ψt〉 − 〈ψt, Hψt〉)

and the unitarity follows from the fact thatH is symmetric (assuming—
as we always will— that V is real-valued, and doing an integration by
parts with the differential operator P ).

This calculation brings out the importance of H being symmetric;
without this assumption, the Schrödinger flow need not be unitary,
which violates the intepretations of |ψ|2 and |F~ψ|2 as probability den-
sities. This property is the quantum analogue of Theorem 2.1.

2.2.4. The Ehrenfest Equations. There is a nice way to (try to) jus-
tify the analogy with classical mechanics, by showing that there are
equations analogous to Hamilton’s equations that are satisfied by the
Schrödinger flow. These equations are called the Ehrenfest equa-
tions, and are given by

d

dt
Eψt(q) =

1

m
Eψt(p)

d

dt
Eψt(p) = −Eψt

(
dV

dq

)
satisfied by any solution ψt of Schrödinger’s equation, as we show below.
Notice that these are extremely similar to Hamilton’s equations, and
it even seems at first glance like the average postion and momentum
Eψt(q) and Eψt(p) satisfy an ODE! Unfortunately, this is not quite the
case, since in general

−Eψt

(
dV

dq

)
6= dV

dq
(Eψt(q))

i.e., the average value of the force F = −V ′(q) is not equal to the force
evaluated at the average position Eψt(q).

Now we “prove” the Ehrenfest equations, by assuming that ψt ∈
S(R). Of course, there isn’t much mystery here— simply write out
what the time derivatives are, and replace ∂tψt via the Schrödinger
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equation:

d

dt
Eψt(q) =

〈
Q
∂

∂t
ψt, ψt

〉
+

〈
Qψt,

∂

∂t
ψt

〉
= 2Re

(∫
R
q

(
i~
2m

ψ′′t (q)− i

~
V (q)ψt(q)

)
ψt(q)dq

)
Now, the potential term (with the “V ” term) clearly vanishes, since

it is proportional to the imaginary part of∫
R
qV (q)|ψt(q)|2dq

which is real-valued. It remains to check the term with ψ′′t , for which
we apply integration by parts to get

d

dt
Eψt(q) = − ~

m
Im

(∫
R
q (ψ′′t (q))ψt(q)dq

)
=

~
m
Im

(∫
R
q|ψ′t(q)|2dq +

∫
R
ψ′t(q)ψt(q)dq

)
= − i~

2m
(〈ψ′t, ψt〉 − 〈ψt, ψ′t〉)

since the term
∫

R q|ψ
′
t(q)|2dq is real. But this last line can be rewritten

d

dt
Eψt(q) =

1

2m
(〈(−i~)ψ′t, ψt〉+ 〈ψt, (−i~)ψ′t〉)

=
1

2m
(〈Pψt, ψt〉+ 〈ψt, Pψt〉)

=
1

2m
2〈Pψt, ψt〉

=
1

2m
Eψt(p)

since P is symmetric.

Exercise 2.1. In this exercise, (continue to) assume that ψt ∈ S(R).

• Show the second Ehrenfest equation

d

dt
Eψt(p) = −Eψt

(
dV

dq

)
is satisfied by any solution of the Schrödinger equation.
• Show that the expected value of H is preserved under the Schrödinger

flow (conservation of energy); i.e., we have

d

dt
Eψt(H) :=

d

dt
〈Hψ,ψ〉 = 0
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2.2.5. Commutators. Recall that the Hamiltonian formulation gave us
a convenient way to understand the time dependence of an observable
f , evaluated for the state (q(t), p(t)) ∈ R2d of a (moving) particle. In
particular, we saw that the value of the observable is conserved iff the
observable Poisson-commutes with the Hamiltonian, H.

There is a similarly lovely description of the time dependence of the
average value of a quantum observable operator F acting on L2(R):

Lemma 2.2. Let ψt be a solution of Schrödinger’s equation, and H the
Hamiltonian operator. Then for any quantum observable F , we have

d

dt
〈Fψt, ψt〉 =

1

i~
〈[F,H]ψt, ψt〉

Here, the bracket denotes the usual commutator operator [F,H] :=
F ◦H−H◦F . Notice again the conservation of energy, since [H,H] = 0
trivially.

Proof: Here we go again,

d

dt
〈Fψt, ψt〉 = 〈F∂tψt, ψt〉+ 〈Fψt, ∂tψt〉

=

〈
− i

~
FHψt, ψt

〉
+

〈
Fψt,−

i

~
Hψt

〉
=

1

i~
〈[F,H]ψt, ψt〉

since H is self-adjoint. Thus, we see that F is a constant of the
motion iff F commutes with H.

This gives us another correspondence in the classical ↔ quantum
dictionary

{f, g} ←→ 1

i~
[Op(f), Op(g)]

which you can check by hand for the observables we listed above (see
also Lemma 2.3 below).

Example 2.5 (Canonical Commutation Relations). Observe that

[Qj, Pk] =

{
i~Id j = k

0 j 6= k

= i~δj(k)Id

where Id is the identity operator. It’s straightforward to check that
{qj, pk} = δj(k). Recall that this fact implies the Heisenberg Uncer-
tainty Principle, which explains its conspicuous title.
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2.3. Quantization of Observables. It is now very natural to ask:
given a smooth (classical) observable f ∈ C∞(R), is there always a
naturally defined operator Op(f) on L2(R) on the quantum side? What
are its properties— eg., is Op(f) a bounded operator if f is a bounded
function?

Unfortunately, the answer is “no”— or at least, “not quite”. One can
understand the issue from the simple example of f(q, p) = qp. At first
glance, one is tempted to define Op(f) = QP , with the position and
momentum operators Q = Op(f(q, p) = q) and P = Op(f(q, p) = p)
defined above. The problem with this is that f(q, p) = qp = pq, so it
seems equally valid to write Op(f) = PQ, and the operators P and Q
do not commute. Thus QP 6= PQ, and our naively defined quantization
of f(q, p) = qp is not well-defined.

However, one can hope to find solace (and a satisfactory solution) by
recalling that, as ~→ 0, the operators P and Q almost commute; more
precisely, they commute up to a factor of ~. Thus, asymptotically there
is no difference between PQ and QP , and we can hope to capture this
asymptotic equivalence to work out a theory of quantization sending
smooth observables to linear operators in a relatively reasonable— even
if not canonical— way.

Let’s look at the example above of f(q, p) = qp. If we decide to
take OpL(f) = QP (the “L” stands for left-quantization1), then we
can write via Fourier inversion

[OpL(f)ψ](q) = q · 1√
2π~

∫
p∈R

pF~(f)e
i
~ qpdp

=
1

2π~

∫
p∈R

qp · e
i
~ qp

∫
q′∈R

ψ(q′)e−
i
~ q
′pdq′dp

=
1

2π~

∫∫
f(q, p)ψ(q′)e

i
~ (q−q′)pdq′dp

On the other hand, using OpR(f) = PQ (“right-quantization”) gives

[OpR(f)ψ](q) =
1

2π~

∫∫
f(q′, p)ψ(q′)e

i
~ (q−q′)pdq′dp

Another possibility, called Weyl quantization, is to “split the differ-
ence” between left and right quantization, and define

[OpW (f)ψ](q) =
1

2π~

∫∫
f

(
q + q′

2
, p

)
ψ(q′)e

i
~ (q−q′)pdpdq′

1This is sometimes called “standard quantization” in the literature; which is
rather unfortunate, because for us, the Weyl quantization is much more natural.
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One can see that OpW has the pleasant property of sending real-valued
functions to symmetric operators:

〈OpW (f)ψ1, ψ2〉 =

∫
[OpW (f)ψ1](q)ψ2(q)dq

=

∫∫∫
f

(
q + q′

2
, p

)
ψ1(q

′)e
i
~ (q−q′)pψ2(q)dqdq

′dp

=

∫∫∫
ψ1(q

′)f

(
q + q′

2
, p

)
ψ2(q)e

i
~ (q′−q)pdqdq′dp

=

∫
ψ1(q

′)[OpW (f)ψ2](q′)dq
′

= 〈ψ1, Op
W (f)ψ2〉

using the fact that f is real valued in the third line. This only works
because the definition of f is symmetric in q and q′, which is not the
case for left and right quantizations!

Exercise 2.2. Let f(q, p) = qp as in the above discussion. Show that

OpW (f) =
1

2
(QP + PQ)

where Qψ(q) = qψ(q) and Pψ(q) = −i~dψ
dq

are the position and mo-

mentum operators as above.

Each of these quantizations of f is an example of a pseudodiffer-
ential operator, which is the general name given to an operator A of
the form

Aψ(x) =
1

2π~

∫∫
a(x, y, ξ)ψ(y)e

i
~ (x−y)ξdydξ

for some smooth function a, called the symbol of A. The terminology
comes from the fact that, when a is polynomial in ξ, you get differ-
ential operators; thus pseudodifferential operators generalize the usual
differential operators.

Pseudodifferential operators have many wonderful applications to
various branches of analysis, but we won’t concern ourselves here with
the general theory. For now, we will be content to discuss a specific class
of pseudodifferential operators adapted to our problem, and examine
some of its properties. For us, the symbol a will always be of the form

a(p, q) =
∞∑
j=0

~jaj(p, q)

for some sequence of smooth functions aj, and unless otherwise spec-
ified, Op(a) = OpW (a). The function a0 will be called the principle
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symbol of the “complete symbol” a. The idea is that we imagine
~ → 0, and under some growth assumptions on the aj, the principal
symbol dominates. For now, we take the aj to be ~-independent (this
will have to be loosened later on, but is just fine for introducing the
theory), and we further assume that:

(2) ∃M > 0 such that ||aj||Ck ≤M j+k ∀k ∈ N

This will ensure not only that the series
∑

~jaj converges for ~ suffi-
ciently small, but also that we can apply certain differential operators
that will be important in the arguments. So statements presented here
should be understood in the sense of “there exists a reasonable class of
symbols, such that for any symbol a in this class, the statement holds”.

We can now state the main results of this section:

Theorem 2.2. Let a be a complete symbol satisfying (2). Then OpW (a) =
OpL(a1) = OpR(a2) for some symbols a1 and a2 satisfying (2), whose
principle symbols are equal to the principal symbol of a.

Remark: Since Weyl quantization is the only one among our three
“obvious” quantizations with the property that OpW (f) is self-adjoint
whenever f is real-valued, it will be the “default” quantization that we
will use the most. However, we will meet other important quantizations
as well, that have other important properties!

Theorem 2.3. Suppose a and b are complete symbols (satisfying (2)).
Then Op(a)◦Op(b) = Op(c) for some complete symbol c (also satisfying
(2)), such that the principal symbol of c is c0 = a0b0.

Thus our operators form an algebra, which is commutative to first
order. This is consistent with the idea that the ~ → 0 limit should
recover classical mechanics, where the algebra C∞(R) of observables is
commutative.

2.3.1. Quantization(s) of Characters. Before proving these statements,
let’s look at some key examples, and see what Theorems 2.2 and 2.3
say:

Example 2.6. Suppose a(q, p) = uq+vp is a linear function, for some
u, v ∈ R. Then

OpW (a) = OpL(a) = OpR(a) = uQ+ vP

given by

[Op(a)ψ](q) = uqψ(q)− iv~ψ′(q)
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More generally, if a(q, p) = f(q) + g(p), then all three of these
quantizations will agree— because we don’t have to worry about non-
commutativity! Thus, these symbols trivially satisfy Theorem 2.2.
Now, given two linear symbols a(q, p) = u1q + v1p and b(q, p) =
u2q + v2p, we have

Op(a) ◦Op(b) = (u1Q+ v1P )(u2Q+ v2P )

= u1u2Q
2 + u1v2QP + u2v1PQ+ v1v2P

2

= u1u2Op(q
2) + u1v2Op

L(qp) + u2v1Op
R(qp) + v1v2Op(p

2)

But we already saw that [Q,P ] = i~Id, so that

Op(a) ◦Op(b)
= u1u2Op(q

2) + u1v2QP + u2v1(QP − [Q,P ]) + v1v2Op(p
2)

= u1u2Op(q
2) + u1v2Op

L(qp) + u2v1Op
L(qp)− i~u2v1Op(1) + v1v2Op(p

2)

= OpL(u1u2q
2 + (u1v2 + u2v1)qp+ v1v2p

2 − i~u2v1)

So Op(a)◦Op(b) = OpL(c), for a symbol c(q, p) = c0(q, p)+i~u2v1 with
principal symbol

c0 = ab = u1u2q
2 + (u1v2 + u2v1)qp+ v1v2p

2

and Theorem 2.3 is satisfied for OpL. A similar calculation shows
that the statement holds true for OpR and OpW as well; only the ~-
proportional term of c changes, leaving the principal symbol equal to
c0 = ab.

Example 2.7. Suppose a(q, p) = e
i
~ (uq+vp) for some u, v ∈ R. Then[

OpL(a)ψ
]
(q) = e

i
~uqψ(q + v)[

OpR(a)ψ
]
(q) = e

i
~u(q+v)ψ(q + v)[

OpW (a)ψ
]
(q) = e

i
~uqe

i
2~uvψ(q + v)

Note that this example essentially shows us what to do for any
smooth symbol a, since we can decompose it into a linear combina-
tion of these exponentials via (inverse) Fourier transform.

Remark: These are sometimes called the translation operators,
since (up to the constant phase factor e

i
~ tuv) they translate by the vector

(v, u) in phase space; i.e. they translate the position by q 7→ q+ v, and
the momentum by p 7→ p+ u.

Remark: You will notice that each of these three operators is unitary,
and, in particular, bounded on L2, even though their symbols are not
Schwartz-class. This is a first indication that the quantized operators
are more sensitive to local properties (boundedness, smoothness) than
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decay. In fact, this example shows us that the norm of Op(a) is really
controlled by the decay of the Fourier transform of a.

Proof: First, let’s do the case u = 0, in which case all three quan-
tizations (remember, they have to agree when a is independent of q!)
give translation by v. Recall that

[Op(a)ψ](q) =
1

2π~

∫∫
ψ(q′)a(q, p)e

i
~ (q−q′)pdpdq′

=
1√
2π~

∫∫
F~(ψ)(p)e

i
~ (vp)e

i
~ qpdp

=
1√
2π~

∫∫
F~(ψ)(p)e

i
~ (q+v)pdpd

= ψ(q + v)

from Fourier inversion.
Remark: This operator is sometimes written as e

i
~vP . Recalling that

P = −i~ d
dx

, we get the statement that ev
d
dxψ(q) = ψ(q + v). One can

think of this as a Fourier-analytic way of saying that the exponential
map takes the tangent vector t d

dx
to translation by t.

Continuation of Proof of Example 2.7: For OpL, remember that we
“do the p part first”, which means that we first translate by v, and
afterwards multiply by e

i
~uq. More precisely,

[
OpL(a)ψ

]
(q) =

1

2π~

∫∫
ψ(q′)a(q, p)e

i
~ (q−q′)pdpdq′

=
1

2π~

∫∫
ψ(q′)e

i
~ (uq+vp)e

i
~ (q−q′)pdpdq′

= e
i
~uq

1

2π~

∫∫
ψ(q′)e

i
~vpe

i
~ (q−q′)pdpdq′

= e
i
~uqψ(q + v)

as above.
For OpR, we first do the q-part, multiplying by the function e

i
~uq to

get ψ̃(q) = e
i
~uq, and then apply the p part, translating ψ̃ by q 7→ q+ v

to get

[OpR(a)ψ](q) = ψ̃(q + v) = e
i
~u(q+v)ψ(q + v)
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To be precise, we have

[
OpR(a)ψ

]
(q) =

1

2π~

∫∫
ψ(q′)a(q′, p)e

i
~ (q−q′)pdpdq′

=
1

2π~

∫∫
ψ(q′)e

i
~ (uq′+vp)e

i
~ (q−q′)pdpdq′

=
1

2π~

∫
p∈R

e
i
~vpe

i
~ qp

(∫
q′∈R

ψ(q′)e
i
~uq
′
e−

i
~ q
′pdq′

)
dp

=
1√
2π~

∫
e
i
~ (q+v)pF~(ψ)(p− u)dp

Notice now, that in order to perform the Fourier inversion, we have to
change variables to p′ = p− u, which gives us

[
OpR(a)ψ

]
(q) =

1√
2π~

∫
e
i
~ (q+v)(p′+u)F~(ψ)(p′)dp′

= e
i
~ (q+v)u 1√

2π~

∫
e
i
~ (q+v)p′F~(ψ)(p′)dp′

= e
i
~ (q+v)uψ(q + v)

We leave it as an exercise to do the final calculation, for OpW (a). �

Exercise 2.3. Let a(q, p) = e
i
~ (uq+vp). Show that

[OpW (a)ψ](q) = e
i

2~uve
i
~uqψ(q + v)

Notice that the quantizations differ only by the factor of e
i
~ tuv ap-

pearing in front; for OpL we take t = 0, for OpR we take t = 1, and
for OpW we take t = 1/2. Imagine now that we take an ~-independent
symbol a(q, p) = ei(xq+yp); this is the same as taking x = ~u and y = ~v
in Example 2.7. Thus, we find that[

OpL(a)ψ
]
(q) = eiuqψ(q + ~v)[

OpR(a)ψ
]
(q) = eiu(q+~v)ψ(q + ~v)[

OpW (a)ψ
]
(q) = eiuqei~uvψ(q + v)

and the three quantizations differ only by a factor of

eit~uv = 1 +
∞∑
j=1

~j
(ituv)j

j!
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Thus we see how Theorem 2.2 is satisfied; we haveOpW (a) = OpL(a1) =
OpR(a2) with

a1 = a+
∞∑
j=1

~j
(
−1

2
iuv
)j

j!
a

a2 = a+
∞∑
j=1

~j
(

1
2
iuv
)j

j!
a

whose principle symbols are equal to a.
For the composition statement of Theorem 2.3, notice that for two

such exponential symbols a(q, p) = exp(i(u1q + v1p)) and b(q, p) =
exp(i(u2q + v2p)), their product c0 = exp(i((u1 + u2)q + (v1 + v2)p) is
again of the same form, and is supposed to be the principal symbol
of Op(a) ◦ Op(b). By Theorem 2.2 (which we just checked for these
symbols) it’s sufficient to show this for OpL, which turns out to be the
most convenient for this purpose, since[

OpL(a) ◦OpL(b)ψ
]
(q) = eiu1q[OpL(b)ψ](q + ~v1)

= eiu1qeiu2(q+~v1)ψ(q + ~v1 + ~v2)

= ei~u2v1 ·
[
OpL(c0)ψ

]
(q)

=
[
OpL(ei~u2v1c0)ψ

]
(q)

and by again expanding the factor ei~u2v1 in a Taylor series, we get the
complete symbol c = ei~u2v1c0 with principal symbol c0.

It’s also worth noting the asymmetry in the factor ei~u2v1 ; in fact, if
we computed OpL(b) ◦OpL(a) instead, we would get a different factor
ei~u1v2 . This shows that Op(a) and Op(b) do not commute, but that
their commutator is proportional to ~. In general, Theorem 2.3 shows
that the commutator [Op(a), Op(b)] is a pseudodifferential operator
whose principal symbol vanishes; it can be shown that in this case
the next term in the expansion of the symbol (which is the dominant
term as ~ → 0) is proportional to ~{a, b}; another indication of the
correspondence between commutators on the quantum side and Poisson
brackets on the classical side (see Lemma 2.3). You can check this
directly for the exponential symbols we just did!

2.3.2. Smooth Observables. Suppose now that a ∈ S(R2), which in par-
ticular means that F~(a) (understood now as a 2-dimensional (semiclas-
sical) Fourier transform) decays nicely; in particular, we have F~(a) ∈
L1(R2), and we use Fourier inversion to write

a(q, p) =
1

2π~

∫∫
F~(a)(ξ, η)e

i
~ (ξ,η)·(q,p)dξdη
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Therefore, we can extend Example 2.7 by linearity to quantize a: let
eξ,η(q, p) := exp

(
i
~(ξ, η) · (q, p)

)
= exp

(
i
~(ξq + ηp)

)
, and define

Op(a) =
1

2π~

∫∫
F~(a)(ξ, η) ·Op(eξ,η)dξdη

since each Op(eξ,η) is unitary on L2(R), and F~(a) is in L1, the operator
Op(a) is bounded on L2.

Remark: Recall from Lemma 1.11 that the L1-norm of â— and thus,
by a change of variable, the L1-norm of (2π~)−1F~(a)— can be con-
trolled by the first few derivatives of a (the requisite number of deriva-
tives depends only on the dimension d of the phase space Rd); thus, the
norm of Op(a) can be bounded in terms of the first first k(d) deriva-
tives of a. This is a general fact— the Calderón-Vaillancourt Theorem
states that, if a and its derivatives are each bounded on R2d (but even
if a is not a Schwartz function), then the operator Op(a) is bounded
on L2(Rd) by ||a||Ck(R2d) for some k = k(d) depending only on the di-
mension d. We won’t need this level of generality, so we won’t give the
proof.

We now wish to prove Theorems 2.2 and 2.3 under the assumption
that F~(a) ∈ L1(R2). The general idea is to use Example 2.7 for each
Fourier component F~(a)(ξ, η), but we need to correctly interpret the
step where we take the Taylor expansion ei~ξη =

∑
~j(iξη)j/j!, since

we are integrating over all (ξ, η) ∈ R2.
Proof of Theorem 2.2: We will actually give an explicit formula for

the symbols, namely

a1 = a+
∞∑
j=1

~j
(
−1

2
i
)j

j!

∂2ja

∂qj∂pj

a2 = a+
∞∑
j=1

~j
(

1
2
i
)j
j!

∂2ja

∂qj∂pj

We begin by writing

Op(a) = OpW (a) =
1

2π~

∫∫
F~(a)(ξ, η) ·OpW (eξ,η)dξdη

quantizing each Fourier component individually according to Exam-
ple 2.7; the integral converges absolutely as long as F~(a) ∈ L1(R2),
since each Op(eξ,η) is unitary.

Recall also from Example 2.7 that

OpW (eξ,η) = e
i

2~ ξηOpL(eξ,η)

= e−
i

2~ ξηOpR(eξ,η)
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Therefore, we have

OpW (a) =
1

2π~

∫∫
e
i

2~ ξηF~(a)(ξ, η) ·OpL(eξ,η)dξdη

=
1

2π~

∫∫ ∞∑
j=0

(
i
2

)j
j!

ξjηj

~j
F~(a)(ξ, η) ·OpL(eξ,η)dξdη

Now, recall that F~ has the property that

−iξ
~
F~(a) = F~

(
∂a

∂q

)
−iη
~
F~(a) = F~

(
∂a

∂p

)
which means that

ξη

~
F~(a) = −~F~

(
∂2a

∂q∂p

)
so that we get

OpW (a) =
1

2π~

∫∫ ∞∑
j=0

(
i
2

)j
j!

ξjηj

~j
F~(a)(ξ, η) ·OpL(eξ,η)dξdη

=
1

2π~

∫∫ ∞∑
j=0

(
i
2

)j
j!

(−~)jF~

[(
∂2

∂q∂p

)j
a

]
(ξ, η) ·OpL(eξ,η)dξdη

=
1

2π~

∫∫
F~

[
∞∑
j=0

(
− i

2

)j
j!

~j
(

∂2

∂q∂p

)j
a

]
(ξ, η) ·OpL(eξ,η)dξdη

= OpL(a1)

with

a1 =
∞∑
j=0

~j
(
−1

2
i
)j

j!

∂2ja

∂qj∂pj
= a+

∞∑
j=1

~j
(
−1

2
i
)j

j!

∂2ja

∂qj∂pj

as required. The argument for OpR is identical, substituting − 1
2~ for

1
2~ . �

We now turn to the composition theorem. The ideas are the same,
though the implementation gets a bit messier, since we now have two
operators Op(a) and Op(b), which each need to be decomposed into
Fourier components, and then make sense of the resulting Fourier trans-
forms. There will now be four Fourier parameters ξ1, η1, ξ2, η2, and the
formulas will get a bit longer. To simplify the exposition, we will
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restrict ourselves to left-quantization OpL, though it’s clear the calcu-
lations may be carried out identically for OpR or OpW . In any case,
Theorem 2.2 shows that it doesn’t matter!

Proof of Theorem 2.3: Once again, write

OpL(a) =
1

2π~

∫∫
F~(a)(ξ1, η1) ·Op(eξ1,η1)dξdη

OpL(b) =
1

2π~

∫∫
F~(b)(ξ2, η2) ·Op(eξ2,η2)dξdη

and recall from Example 2.7 that

OpL(eξ1,η1) ◦OpL(eξ2,η2) = e
i
~ ξ2η1Op(eξ1,η1 · eξ2,η2)

Therefore, we have

OpL(a) ◦OpL(b)

=
1

(2π~)2

∫∫ ∫∫
F~(a)(ξ1, η1)F~(b)(ξ2, η2)Op

L(eξ1,η1) ◦OpL(eξ2,η2)dξ1dη1dξ2dη2

=
1

(2π~)2

∫∫ ∫∫
F~(a)(ξ1, η1)F~(b)(ξ2, η2)e

i
~ ξ2η1OpL(eξ1,η1 · eξ2,η2)dξ1dη1dξ2dη2

=
1

(2π~)2

∫∫ ∫∫
F~(a)(ξ1, η1)F~(b)(ξ3 − ξ1, η3 − η1)e

i
~ (ξ3−ξ1)η1OpL(eξ3,η3)dξ1dη1dξ3dη3

where ξ3 = ξ1 + ξ2 and η3 = η1 + η2, since

eξ1,η1 · eξ2,η2 = eξ3,η3

(This is basically the same calculation one does to show that âb = â∗b̂).
Ideally, we would like to integrate over ξ1 and η1 to get

∫∫
F~(a)(ξ1, η1)F~(b)(ξ3 − ξ1, η3 − η1)dξ1dη1 = F~(a) ∗ F~(b)

but there is a factor exp(− i
~(ξ3 − ξ1)η1) that is interfering.

As before, though, in the proof of Theorem 2.2, we can expand
this exponential in a Taylor series, and transform multiplication of
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F~(a)(ξ1, η1) by η1 and F~(b)(ξ3 − ξ1) by (ξ3 − ξ1) as differential oper-
ators inside F~:

1

2π~

∫∫
F~(a)(ξ1, η1)F~(b)(ξ3 − ξ1, η3 − η1)e

i
~ (ξ3−ξ1)η1dξ1dη1

=
1

2π~

∫∫ ∞∑
k=0

(−i~)k

k!

(
−iη1

~

)k
F~(a)(ξ1, η1) ·

(
−i(ξ3 − ξ1)

~

)k
F~(b)(ξ3 − ξ1, η3 − η1)dξ1dη1

=
1

2π~

∫∫ ∞∑
k=0

(−i~)k

k!
F~

(
∂ka

∂pk

)
(ξ1, η1)F~

(
∂kb

∂qk

)
(ξ3 − ξ1, η3 − η1)dξ1dη1

=
1

2π~

∞∑
k=0

(−i~)k

k!
F~

(
∂ka

∂pk

)
∗ F~

(
∂kb

∂qk

)
(ξ3, η3)

= F~(ab)(ξ3, η3) +
∞∑
k=1

~k
(−i)k

k!
F~

(
∂ka

∂pk
∂kb

∂qk

)
(ξ3, η3)

since 1
2π~F~(f) ∗ F~(g) = F~(fg).

Therefore we get

OpL(a) ◦OpL(b) =

∫∫
F~(c)(ξ3, η3)Op

L(eξ3,η3)dξ3dη3 = OpL(c)

where

c = ab− i~∂a
∂p

∂b

∂q
+
∞∑
k=2

~k
(
ik

k!

)
∂ka

∂pk
∂kb

∂qk

and we are done. �

2.3.3. Gross Omission: The Method of Stationary Phase. If you sense
that there is a more general principle at work here in the calculations
of the preceding section, then you are right— these are special exam-
ples of a more general principal called the method of stationary
phase. Generally speaking, the idea is that given a phase function
φ(x, ξ) with exactly one critical point (x0, ξ0) that is not degenerate,
one can get an asymptotic expansion about (x0, ξ0) in powers of ~ for
the integral ∫

R2

f(x, ξ)e
i
~φ(x,ξ)dxdξ =

∞∑
k=0

~kD2kf(x0, ξ0)

where the D2k are differential operators of order at most 2k. For a
complete proof, see eg. Martinez[?] or Evans-Zworksi[?]; we will only
sketch the ideas involved, since the full force will not be needed in the
course.
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The first idea is that the extremely rapid oscillations of e
i
~φ(x,ξ) away

from the critical point of φ imply that the integral is really over a small
neighborhood of the critical point; more precisely, if B = Bε(x0, y0) is
the ball of radius ε around the critical point, then∫

R2\B
f(x, ξ)e

i
~φ(x,ξ)dxdξ = Oφ,ε,f (~∞)

which means that for any N ∈ N, there exists a constant C(φ, ε, f,N)
such that the integral is ≤ C(φ, ε, f,N)~N . This is established by
integrating by parts N times in the integral.

Without loss of generality, we may assume that x0 = 0 = ξ0 by doing
a change of variable. Next, one approximates φ(x, ξ) near the critical
point (0, 0) by a non-degenerate quadratic form Q(x, ξ), and use the
Plancherel Theorem 1.15 for the (ordinary) Fourier transform to obtain∫

R2\B
f(x, ξ)e

i
~Q(x,ξ)dxdξ =

∫
R2\B

f̂(y, η)ê
i
~Q(·)(y, η)dydη

Now, the Fourier transform of e
i
~Q(·), like the Fourier transform of a

Gaussian (corresponding to the quadratic form Q(x, ξ) = x2 + ξ2), is

proportional to ei~Q
−1(y,η), which can be expanded in a Taylor series as

we did in the last section. Each term in the Taylor expansion is of the
form ~kP2k, where each P2k is a polynomial in y, η of degree 2k; moving
this inside the Fourier transform, it becomes a differential operator of
order 2k. So we are left with∫ ̂[ ∞∑

k=0

~kD2kf
]
(y, η)dydη =

∞∑
k=0

~kD2kf(0, 0)

by Fourier inversion.

2.4. Quantum Dynamics and Egorov’s Theorem. At the end of
the proof of Theorem 2.3, we explicitly calculated the next term of the
semiclassical expansion: namely, we saw that OpL(a)◦OpL(b) = OpL(c)
with

c = ab− i~∂a
∂p

∂b

∂q
+
∞∑
k=2

~k
(

(−i)k

k!

)
∂ka

∂pk
∂kb

∂qk

We had a good reason for computing this term explicitly, since it gives

Lemma 2.3. Let a, b be complete symbols. Then for any of our quan-
tizations OpW , OpL, OpR, we have the commutator formula[

Op(a), Op(b)
]

= i~Op(c)
where c has principal symbol given by the Poisson bracket {a, b}.
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Proof: We first show this for OpL. From the expression above for
OpL(a) ◦OpL(b), we have[

OpL(a), OpL(b)
]

= OpL(a) ◦OpL(b)−OpL(b) ◦OpL(a)

= OpL(c1)−OpL(c2)

with

c1 = ab− i~∂a
∂p

∂b

∂q
+
∞∑
k=2

~k
(

(−i)k

k!

)
∂ka

∂pk
∂kb

∂qk

c2 = ab− i~∂b
∂p

∂a

∂q
+
∞∑
k=2

~k
(

(−i)k

k!

)
∂kb

∂pk
∂ka

∂qk

Subtracting c1 − c2, we see that the leading terms cancel, and the
difference of the second terms gives exactly i~{a, b}.

Now, replacing OpL by either OpW or OpR doesn’t change the prin-
ciple symbol of c on the right-hand side, by Theorem 2.2, and the same
is true for the leading term on the left-hand side. It remains to see
what happens with the ~-linear term on the left-hand side. We have

OpW (f) = OpL(f + ~f̃1 +O(~2))

OpR(f) = OpL(f + ~f̃2 +O(~2))

(here g = O(~2) means that g = ~2g̃ for some symbol g̃). On the other
hand, looking at the ~-linear term of the commutator gives

1

~

([
OpW (a), OpW (b)

]
−
[
OpL(a), OpL(b)

])
= OpL(ã1) ◦OpL(b) +OpL(a) ◦OpL(b̃1)−OpL(b̃1) ◦OpL(a)−OpL(b) ◦OpL(ã1) +O(~)

= O(~)

since compositions of OpL’s commute to first order, and so the terms
cancel modulo O(~). The same is true for OpR. �

We now apply this to Lemma 2.2, to get

Lemma 2.4. Let f ∈ C∞(R2) be a smooth observable such that ||f ||Ck .
Mk for some constant M (i.e., f is an ~-independent symbol satisfy-
ing (2)), and Op(f) one of our three quantizations. Then for any
L2-normalized solutions ut, vt of Schrödinger’s equation, we have

d

dt
〈Op(f)ut, vt〉 = 〈Op({f,H})ut, vt〉+O(~)
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Proof: Lemma 2.2 shows2 that

d

dt
〈Op(f)ut, vt〉 =

1

i~
〈[Op(f), H]ut, vt〉

But now Lemma 2.3 says that

1

i~
[Op(f), H] = Op({f,H}) + ~Op(f̃)

for some symbol f̃ , such that Op(f̃) is bounded on L2(R). Therefore,
since ut and vt are unit vectors, we have

~〈Op(f̃)ut, vt〉 = O(~)

and the statement follows. �
Recalling from Lemma 2.1 that the Hamiltonian flow ΦH

t satisfies

d

dt
f(ΦH

t (z)) = {f,H}(z)

we define

ft = f ◦ ΦH
t

Ft = e
i
~HtOp(f)e−

i
~Ht

to be the classical and quantum evolutions of the obervable f and
Op(f), respectively (to understand why Ft corresponds to the Schrödinger

evolution of Op(f), consider a solution ψt = e−
i
~Htψ of Schrödinger’s

equation, and write

〈Op(f)ψt, ψt〉 = 〈Op(f)e−
i
~Htψ, e−

i
~Htψ〉 = 〈Ftψ, ψ〉

since the Schrödinger operator e−
i
~Ht is unitary by section 2.2.3).

We want to understand the relationship between Op(ft) and Ft;
in other words, the relationship between the classical evolution gov-
erned by Hamilton’s equations and the quantum evolution given by
Schrödinger’s equation. We can now give the main result giving this
correspondence:

Theorem 2.4 (Egorov). For any smooth observable f ∈ C∞(R) (sat-
isfying 2), and any fixed time t, we have

||e
i
~HtOp(f)e−

i
~Ht −Op(f ◦ ΦH

t )|| = Ot(~)

in the operator norm on L2(R2).

2More precisely, the proof of the Lemma, since the Lemma is only stated for the
case u = v.
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Remark: Egorov’s Theorem is actually a more general statement
about the propagation of singularities by PDEs, but Theorem 2.4 is
the consequence of Egorov’s Theorem that will concern us.

Proof of Thoerem 2.4: First, by unitarity of the Schrödinger evolu-
tion we have

||e
i
~HtOp(f)e−

i
~Ht −Op(ft)|| = ||Op(f)− e−

i
~HtOp(ft)e

i
~Ht||

and so we may estimate the latter. For this, we’ll take two unit vectors
u, v ∈ S(R) and estimate the matrix coefficient〈(

Op(f)− e−
i
~HtOp(ft)e

i
~Ht
)
u, v
〉

Note that for t = 0, where both operators are equal to Op(f), this
matrix coefficient is exactly 0; so it is sufficient to show that the deriv-
ative
d

dt

〈(
Op(f)− e−

i
~HtOp(ft)e

i
~Ht
)
u, v
〉

=
d

dt

〈
e−

i
~HtOp(ft)e

i
~Htu, v

〉
= O(~)

and then integrate up to time t.
Now take ut and vt to be the solutions of Schrödinger’s equation with

initial conditions u0 = u and v0 = v, and observe that

d

dt

〈
e−

i
~HtOp(ft)e

i
~Htu, v

〉
=

d

dt
〈Op(ft)u−t, v−t〉

Applying Lemma 2.4 (with a minus sign, since u−t and v−t are being
propagated backwards) and recalling that d

dt
(ft) = {f,H}, we have

d

dt
〈Op(ft)u−t, v−t〉 =

〈
d

dt
Op(ft)u−t, v−t

〉
− 〈Op({ft, H})u−t, v−t〉+O(~)

= 〈Op({ft, H})u−t, v−t〉 − 〈Op({ft, H})u−t, v−t〉+O(~)

= O(~)

as required. �
Remark: One sees from the argument that the error term in Theo-

rem 2.4 can, in general, depend exponentially on t. This implies that
there is a constant c, such that the classical and quantum evolutions
differ by a “small” error (that vanishes as ~ → 0) up to time c| log ~|.
This will be a recurring theme when we discuss the Ehrenfest time.

2.5. Anti-Wick Quantization. Another question one might want to
ask about quantization is positivity— is it true that, if f ≥ 0 is a
positive function, then Op(f) is positive-definite? Of course, by now
we know that, in general, it only makes sense to ask for this to hold up
to ~; in fact, for the quantizations we’ve discussed so far, it’s not true
that Op(f) is positive-definite whenever f ≥ 0, when ~ is fixed.
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However, there is another quantization for which this property does
hold for arbitrary ~ > 0, called the Anti-Wick quantization. That
this quantization is positive is obvious from the construction, but we
will also show that it agrees with our previous quantizations, at least
to first order (i.e., they have the same principal symbol).

To discuss the Anti-Wick quantization, we need to introduce the
concept of a coherent state. Let the function g0,0 be given by the
L2-normalized Gaussian

g0,0(q) = (π~)−1/4e−
1
2~ q

2

Note that this Gaussian is symmetric about q = 0, and is equal to
its ~-Fourier transform, which is therefore symmetric about p = 0.
Moreover, g0,0 (and therefore also F~(g0,0)) is localized up to

√
~ near

0 (in the sense that once x > C
√

~, the value of g0,0(x) < e−Cx
2

decays

very rapidly). We will often say that g0,0 has width3
√

~/2.
We call g0,0 the coherent state centered at (0, 0). The termi-

nology comes from the fact that g0,0 is optimally jointly localized in
position and momentum near 0. We then use the translation operators
from Example 2.7 to define the coherent state centered at (x, ξ) by

gx,ξ(q) := OpW (e−ξ,x)g0,0(q) = e−
i

2~xξe
i
~ ξqg0,0(q − x)

Observe that gx,ξ is optimally jointly localized in position near x, and
momentum near ξ.

An important property is that any wave function can be decomposed
into a superposition of coherent states:

Lemma 2.5 (Coherent State Decomposition). Let u ∈ L2(R). Then
we have

u =
1

2π~

∫∫
R2

〈u, gx,ξ〉gx,ξdxdξ

in L2(R). In other words, for any Schwartz function v ∈ S(R), we
have

〈u, v〉 =
1

2π~

∫∫
R2

〈u, gx,ξ〉〈gx,ξ, v〉dxdξ

3For more precise (but perhaps less intuitive) terminology, notice that the vari-
ance of |g0,0|2 ∫ ∞

−∞
q2g2

0,0(q)dq =
~
2

so that the “width” is given by the standard deviation of the probability measure
|g0,0(q)|2dq.
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Proof: Write∫∫
R2

〈u, gx,ξ〉〈gx,ξ, v〉dxdξ

=

∫∫
(x,ξ)∈R2

∫
q1∈R

∫
q2∈R

u(q1)gx,ξ(q1)gx,ξ(q2)v(q2)dq1dq2dxdξ

=

∫∫
q1,q2∈R

u(q1)v(q2)

∫∫
x,ξ∈R

gx,ξ(q2)gx,ξ(q1)dxdξdq1dq2

We claim that∫∫
gx,ξ(q2)gx,ξ(q1)dxdξ = 2π~δ0(q1 − q2)

from which the Lemma follows. To prove the claim, recall by Fourier
inversion that

∫
e
i
~ ξ(q2−q1)dξ = 2π~δ(q2 − q1), and write∫∫

gx,ξ(q2)gx,ξ(q1)dxdξ

=

∫ ∞
x=−∞

∫ ∞
ξ=−∞

e−
i

2~xξe
i
~ ξq2g0,0(q2 − x)e−

i
2~xξe

i
~ ξq1g0,0(q1 − x)dξdx

=

∫ ∞
x=−∞

∫ ∞
ξ=−∞

e
i
~ ξ(q2−q1)g0,0(q2 − x)g0,0(q1 − x)dξdx

=

∫ ∞
x=−∞

g0,0(q2 − x)g0,0(q1 − x)

∫
ξ∈R

e
i
~ ξ(q2−q1)dξdx

=

∫ ∞
x=−∞

g0,0(q2 − x)g0,0(q1 − x)2π~δ(q2 − q1)dx

= ||g0,0||2L22π~δ(q2 − q1) = 2π~δ(q2 − q1)
as claimed. �

Thus, we see that any wave function u can be decomposed into
optimally-localized pieces. The map

u 7→ 1√
2π~
〈u, gx,ξ〉

from L2(R) → L2(R2
x,ξ), which is unitary by Lemma 2.5, is called the

microlocal transform or FBI transform of u (named after Fourier-
Bros-Iagolnitzer). The term “microlocal” is supposed to evoke intuition

of being localized to scale
√

~ in both position and momentum.
Equipped with such a decomposition, it makes sense to define the

Anti-Wick quantization of f as

[OpAW (f)ψ
]
(q) :=

1

2π~

∫∫
(x,ξ)∈R2

f(x, ξ)〈ψ, gx,ξ〉gx,ξdxdξ
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Intuitively, you multiply each coherent state component of ψ— the
piece localized near (x, ξ)— by the function f(x, ξ).

Remark: The choice of Weyl quantization in the definition of coher-
ent states here is not significant; either left or right quantization could
be substituted without affecting Lemma 2.5, since the terms distin-
guishing the quantizations of e−ξ,x are of the form e−

i
~ txξ and cancel

with their complex conjugates in the integral.
Remark: It is clear that this quantization makes sense not only for

smooth f , but even just f ∈ L∞(R2). How can this be? The con-
volution with gx,ξ in the definition of the quantization smooths out
the function f , so that it behaves like the quantization of a Schwartz
function (see below Lemma 2.6).

Remark: Putting in the constant function f(q, p) = 1, we get the
so-called resolution of the identity

Id = OpAW (1) =
1

2π~

∫
(x,ξ)∈R2

|gx,ξ〉〈gx,ξ|dxdξ

that appears in the literature.
Important(!) Remark: This quantization assigns positive-define op-

erators to positive functions— if f(x, ξ) ≥ 0 for all (x, ξ) ∈ R2, then

〈OpAW (f)ψ, ψ〉 =
1

2π~

∫∫
f(x, ξ) |〈ψ, gx,ξ〉|2 dxdξ ≥ 0

Lemma 2.6. Let f ∈ S(R2). Then we have

||OpAW (f)−OpW (f)|| = Of (~)

Thus, the Anti-Wick quantization is asymptotically equivalent to the
three quantizations we already know.

Proof: We leave as an exercise (see below) to show that

OpAW (f) = OpW (f ∗G)

for the Gaussian G(x, ξ) = e−
1
~ (x2+ξ2). Then, since f ∗G→ f in Ck for

any k, as ~ → 0, the Lemma follows from the remark of section 2.3.2,
that for f ∈ S(R2), the operator Op(f) is bounded4 by ||Op(f)|| .
||f ||C2 .

Exercise 2.4. Assume that f ∈ S(R), and set G(x, ξ) = e
1
~ (x2+ξ2).

4As remarked there, the Calderón-Vaillancourt Theorem removes the decay as-
sumption on f , and so this Lemma actually holds for more general f ∈ C∞(R)
under mild growth conditions.
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(1) Show that

OpW (f ∗G)ψ(q)

=

∫∫∫
q′,x,ξ∈R

ψ(q′)f(x, ξ)

(∫
p∈R

G

(
q + q′ − 2x

2
, p− ξ

)
e
i
~ (q−q′)pdp

)
dxdξdpdq′

(2) Do the integral over p first, evaluating the expression in paren-
theses using the formula for the ~-Fourier transform of a Gauss-
ian.

(3) Use the fact that

a2 + b2

2
=

(
a+ b

2

)2

+

(
a− b

2

)2

to show that this expression from part (2) is equal to gx,ξ(q)gx,ξ(q′).
(4) Conclude that OpW (f ∗G) = OpAW (f).

2.6. Eigenstates and Definite Values. We’ve seen how we can cal-
culate the expected value of a quantum observable, given a specified
quantization Op, and we’ve seen some examples of various quantiza-
tions and their properties.

In general, this is the best one can hope to do in terms of “eval-
uating” observables in the quantum world. However, there are some
observables that admit definite evaluation, at least for some states. As
a silly example, take the constant classical observable f(q, p) = C. It
doesn’t matter where you are or where you’re going; the observable
takes the value C. Of course, Eψ(f(q, p) = C) = C trivially for any
L2-normalized state ψ, but it would be very strange indeed if quantum
mechanics did not allow some mechanism for giving this observable a
definite value, instead of just an average value, of C.

So let’s agree to assign the identity operator a definite value of 1
for all states. But this is not without consequence— what if a state ψ
cannot distinguish between an operator Op(f) and a scalar operator
C ·Id? In other words, if ψ is an eigenvector of Op(f), then Op(f) acts
on ψ as a scalar multiple of Id, and therefore we should agree that ψ
has a definite value for the observable Op(f), given by its eigenvalue.

Remark: Note that the operators Q and P have no L2-eigenvectors—
an eigenvector of Q would have to be a δ function (why?), which is not
in L2; an eigenvector of P is an exponential ψ(q) = eikq for some k ∈ R,
which is also not in L2. So there is still no state with definite position
or momentum! On the other hand, waves like eikq do have a definite
momentum— and a definite energy— which is one of the motivating
facts behind the development of quantum mechanics.
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Eigenvectors of an observable are often called eigenstates or pure
states for the observable. An important example is H, the Hamilton-
ian operator. Since the observable H corresponds to the total energy
of the particle, eigenfunctions of H are states of definite energy. Note
that Schrödinger’s equation implies that if ψ = ψ0 is such a state, then
the Schrödinger evolution acts on the eigenspace of ψ by a scalar λψ,
and in fact

e−
i
~Htψ = e−

i
~λψtψ

so that the evolution is by a phase factor of absolute value 1 (this
is also immediate from the fact that the Schrödinger evolution is uni-
tary). Multiplication by a factor e−

i
~λψt does not change |ψ| or |F~(ψ)|,

so the position and momentum distributions for ψ remain unchanged
by the Schrödinger evolution. Thus, these distributions are invariant
under the quantum evolution! We often call such a ψ a steady-state for
the Schrödinger evolution— in this case, ψt is not exactly fixed, since
it changes by a phase factor, but this factor has no physical signifi-
cance; the physically meaningful distributions |ψt| and F~(ψ)| remain
constant.

2.7. Quantization on Manifolds. We will soon wish to work with
dynamical systems on compact— or perhaps finite volume— manifolds,
rather than Rd. For the systems we have in mind (toy models and
hyperbolic surfaces), we will establish quantization procedures that are
more amenable to each setting. However, it is worth remarking that for
any smooth manifold M , one can use the standard pseudodifferential
calculus on Rd in a local chart to define a quantization on M .

Namely, given an atlas of charts Uj ⊂ M and smooth diffeomor-

phisms φj : Uj → Ũj ⊂ Rd, we can define local (Darboux) coordinates
on the cotangent bundle T ∗M via the map

Φj : (p, q) 7→ (φj(q), dφj(q)
−1p) ∈ R2d

One can then take a partition of unity χk ∈ C∞0 (Uj(k)) satisfying∑
k χ

2
k = 1, and define for f ∈ C∞(T ∗M)

Op(f)ψ =
∑
k

χk

[
Op(f ◦ Φj(k))(χkψ ◦ φ−1

j(k))
]
◦ φj(k)

Of course, this definition depends on the choice of quantization on
R2d, the choice of local coordinates, and the partition of unity— but it
is not hard to be convinced that these choices only change the symbol
by lower order terms, and that the operator Op(f) is asymptotically
well-defined.
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Since we will not use this quantization in the course, we won’t enter
into any of these details; however, it is good to know that there is at
the very least some way to extend the results from Rd to manifolds, so
that we may ask questions about the latter.

3. Eigenvalue Spacing Statistics

We now turn to the main objects of study for this course: the Hamil-
tonian operator

H =
1

2m
P 2 + V (Q)

We wish to understand the relationship between this operator, which
generates the Schrödinger evolution of a quantum particle, and the
classical dynamics generated by the Hamiltonian flow to which H cor-
responds.

We will now assume that the dynamics take place on a compact
manifold, on which the potential vanishes. Two main examples are

• Billiard flow on a compact domain D ⊂ R2 (with boundary).
• Geodesic flow on a compact Riemann surfaceM without bound-

ary.

We will introduce more examples (so-called “toy models) in section ??,
but for now, let’s keep these two examples in mind. Notice that since
there is no potential, the classical Hamiltonian is simply 1

2m
|p|2, and

so the Hamiltonian operator is the scaled Laplacian H = − 1
2m

~2∆
(for billiards with boundary, we have the Dirichlet boundary condition
ψ|∂D = 0 which prevents the particle from leaving the domain).

Since our operator H is self-adjoint, we have an orthonormal basis
of L2(D) or L2(M) consisting of eigenfunctions of H. Of course, to
understand the operator H means to understand how it acts on L2,
which in turn means understanding its eigenvalues and eigenfunctions.
So the question becomes, what properties of the eigenvalues and eigen-
functions of H reflect properties of the classical dynamics?

In this section, we discuss some conjectures about properties of the
eigenvalues that are supposed to reflect dynamical information about
the classical system. Very little is known about these conjectures, and
later sections will be devoted to the eigenfunctions— about which much
more can be said.

Notational Remark: From here on, we will assume that the particle
has mass 1 and (definite) energy H = 1/2. Thus, the spectrum of
the operator H determines which values of ~ are admissible (of course,
in physics, it goes the other way around— ~ is fixed, and determines
which energy levels are admissible...). Thus when we take ~ → 0, we
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are taking ~ along a discrete sequence of values accumulating at 0.
On the flip side, if Hψ = 1

2
ψ for small ~, this means that ψ is an

eigenfunction of ∆ of large eigenvalue 2~−2, since

−~2∆ψ = Hψ =
1

2
ψ

So the semiclassical limit ~ → 0 is the same as the large eigenvalue
limit of the Laplacian.

3.1. Weyl’s Law. A fundamental result (which we will not prove
here) is Weyl’s law, which gives the asymptotic number of eigenval-
ues (counted with multiplicity) of H. Note that this result is uniform,
and does not depend on the dynamics of the classical system! We set
|D| to be the area of D, and set N(λ) to be the number of eigenvalues
λj (with multiplicity) such that λj ≤ λ.

Theorem 3.1 (Weyl’s Law in Dimension 2). We have

N(λ) ∼ |D|
4π

λ

This can also be extended to the Laplace-Beltrami operator on a
manifold without too much trouble.

Exercise 3.1. Verify Weyl’s Law for a rectangular billiard with sides
of length a and b.

(1) For any eigenfunction ψ, use the Dirichlet boundary condition
to expand φ in a Fourier sine series in each coordinate (sepa-
ration of variables).

(2) Conclude that eigenvalues are of the form m2

a2 + n2

b2
for integers

m and n, and give an explicit basis of eigenfunctions.
(3) Use Gauss’ result that the number of integer lattice points inside

an ellipse x2

a2 + y2

b2
≤ C is asymptotic to the area Cπab of the

ellipse. Check how many lattice points actually correspond to
the same eigenfunction!

(4) Compare the number of basis eigenfunctions in the previous part
with the number you get from Weyl’s Law.

For most domains, the eigenvalues and eigenfunctions are extremely
difficult to compute explicitly. Thus, it is something of a miracle that
their total number is, at least asymptotically, easy to calculate (though
the remainder term is much harder, even for the square billiard— this is
Gauss’ circle problem!). In any case, the generality of Weyl’s Law shows
that the total number of eigenvalues is not sensitive to the dynamics; if
there is dynamical information encoded in the spectrum, we will have
to look at the finer structure of the spectrum to see it.
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As we will see, it is conjectured that one should look at the spacings
between consecutive eigenvalues to distinguish completely integrable
systems from chaotic dynamics.

3.2. Completely Integrable Systems: Invariant Tori and the
Berry-Tabor Conjecture. The first conjecture in this direction came
in 1977:

Conjecture 3.1 (Berry-Tabor, 1977). For a “generic” completely inte-
grable Hamiltonian system, the spacing between consecutive eigenvalues
of the corresponding Hamiltonian operator should obey Poisson statis-
tical laws.

The word “generic” is used very loosely (and dangerously) here; per-
haps the most illuminating definition for generic here is “unless there’s
a good reason for the conjecture to fail”. Indeed, there are examples—
eg., square billiards; see below— where this is false, but for arithmetic
reasons which are “not generic” in a usual, measure-theoretic sense.

Let’s also discuss what “Poisson statistical laws” are. Informally
speaking (we won’t give the rigorous characterization here), we’re talk-
ing about the spacings between consecutive occurences of independent
random events. A good prototypical example to have in mind is coin-
flips: suppose we are flipping a fair coin once every second, and looking
at the time between consecutive results of heads. Each flip is indepen-
dent of the preceding ones, so given that a heads has just occurred,
the probability of getting a heads on the next flip (so that the spac-
ing between the consecutive flips is 1 second) is 1/2. The probability
that the spacing is exactly 2 seconds is the joint probability of a tails
followed by a heads, which is 1/4. It’s clear that the probability of

waiting exactly t seconds for the next head is
(

1
2

)t
. In particular, the

probability density decays exponentially with time.
This is a general picture of what happens for the spacings between

independent random events. If the probability of an event occurring in
any time interval is independent of the last occurence, then the joint
probability of the event not occurring over the course of many intervals
should decay exponentially. Thus, the spacing statistics should look
like an exponential decay, as in Figure 1.

Thus, Berry-Tabor are conjecturing that the spacings between con-
secutive eigenvalues for a completely integrable Hamiltonian should
look like those of numbers that were randomly and independently se-
lected, asymptotically as the eigenvalues go to ∞.

Why? Here’s a vague heuristic argument. We know that, in the
completely integrable case, the phase space is foliated into invariant
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0.7r

0.4r

Ω

(1, 1)

(0, 0)

Figure 1. One of the regions proven by Sinai to
be classically chaotic is this region Ω
constructed from line segments and circular
arcs.

Traditionally, analysis of the spectrum recovers
information such as the total area of the billiard,
from the asymptotics of the counting function
N(λ) = #{λn ≤ λ}: As λ → ∞, N(λ) ∼ area

4π
λ

(Weyl’s law). Quantum chaos provides completely
different information: The claim is that we should
be able to recover the coarse nature of the dynam-
ics of the classical system, such as whether they
are very regular (“integrable”) or “chaotic”. The
term integrable can mean a variety of things, the
least of which is that, in two degrees of freedom,
there is another conserved quantity besides ener-
gy, and ideally that the equations of motion can be
explicitly solved by quadratures. Examples are the
rectangular billiard, where the magnitudes of the
momenta along the rectangle’s axes are conserved,
or billiards in an ellipse, where the product of an-
gular momenta about the two foci is conserved,
and each billiard trajectory repeatedly touches a
conic confocal with the ellipse. The term chaotic
indicates an exponential sensitivity to changes
of initial condition, as well as ergodicity of the
motion. One example is Sinai’s billiard, a square
billiard with a central disk removed; another class
of shapes investigated by Sinai, and proved by him
to be classically chaotic, includes the odd region
shown in Figure 1. Figure 2 gives some idea of how
ergodicity arises. There are many mixed systems
where chaos and integrability coexist, such as the
mushroom billiard—a semicircle atop a rectangu-
lar foot (featured on the cover of the March 2006
issue of the Notices to accompany an article by
Mason Porter and Steven Lansel).

Figure 2. This figure gives some idea of how
classical ergodicity arises in Ω.

s = 0 1 2 3 4

y = e−s

Figure 3. It is conjectured that the distribution
of eigenvalues π2(m2/a2 + n2/b2) of a
rectangle with sufficiently incommensurable
sides a, b is that of a Poisson process. The
mean is 4π/ab by simple geometric reasoning,
in conformity with Weyl’s asymptotic formula.
Here are plotted the statistics of the gaps
λi+1 − λi found for the first 250,000
eigenvalues of a rectangle with side/bottom
ratio 4

√
5 and area 4π , binned into intervals of

0.1, compared to the expected probability
density e−s .

January 2008 Notices of the AMS 33

Figure 1. Normalized gaps between the first 250,000
eigenvalues of a rectangle with side/bottom ratio 51/4 and
area 4π, compared to the expected probability density
e−s of a Poisson process. Picture from Rudnick[?].

tori. We also know that these tori are level sets for an integral of the
motion f , that by definition Poisson commutes with the Hamiltonian
H, so that the corresponding quantizations commute up to small error:
[Op(f), H] = O(~2). It is natural to imagine (and a rigorous version
of this was proved by Schnir’lman[?]) that the Hamiltonian operator
H approximately commutes with projection to the invariant tori, and
for small ~— or large eigenvalue— we can imagine the phase space as
being broken up into disjoint blocks of invariant tori, each with its own
H-spectrum, that are independent of each other. As ~ → 0, we can
take a finer and finer subdivision into more and more such invariant
blocks of tori.

Now, essentially by “Weyl’s law”, each block of phase space will
contribute a chunk of the spectrum proportional to its volume. Thus,
the spectrum of H can be thought of as coming from a collection of
independently chosen values, from the many disjoint blocks of invariant
tori. In this way, their statistics should resemble those of independent
random variables.

Conjecture 3.1 is not known (yet) to hold for a single case. On the
other hand, there are some known counterexamples. Notice that, for
the square billiard, the eigenvalues must be (proportional to) integers,
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and occur with high multiplicity. The probability density for level spac-
ings collapses to a δ measure at 0. The same thing happens for any
rectangle whose sides are rational multiples of each other. In some
sense, one can view the δ measure at 0 as a degenerate limit of the
Poisson distribution, and one believes that under diophantine condi-
tions, rectangular billiards should obey the Berry-Tabor Law. But so
far, very little is known.

3.3. Chaotic Systems: Random Matrices and the Bohigas-
Giannoni-Schmit Conjecture. At the other extreme, we have the
“chaotic” systems, and a conjecture about the spacings between con-
secutive eigenvalues for their Hamiltonian operators.

Conjecture 3.2 (Bohigas-Giannoni-Schmit, 1984). The spacings be-
tween eigenvalues of a chaotic Hamiltonian operator “generically” fol-
low the spacing laws for eigenvalues of large random matrices.

The idea of using statistical properties of large random matrices to
model complicated systems has a long history in physics, beginning
with Wigner, who suggested using eigenvalues of large random matrices
to model the energy levels of heavy atoms (the complex interactions
between large numbers of subatomic particles make the heavy atoms
difficult— if not impossible— to analyze directly). One might call this
a quantum version of statistical mechanics.

In any case, it is not at all obvious what the correct notion of “ran-
dom matrices” is. First of all, we should restrict ourselves to matrices
that have some semblance to the Hamiltonian operators they’re trying
to model; in particular, since our Hamiltonians are self-adjoint, one
should consider matrices with similar symmetry. Consider, then, the
space of N ×N real symmetric matrices, where N is large. This space
is N(N + 1)/2-dimensional, since the matrix is determined by its val-
ues along the diagonal and in the upper triangular region (the lower
triangular region is determined by symmetry). One natural notion
of a random symmetric matrix is the so-called “GOE”, which stands
for Gaussian Orthogonal Ensemble. It comes from the following two
assumptions:

• Each of the N(N + 1)/2 matrix elements are chosen indepen-
dently.
• The probability distribution is invariant under conjugation by

orthogonal matrices (i.e., orthogonal change of basis).

It turns out that these very natural conditions force the (indepen-
dent) matrix elements to be Gaussian-distributed in R. In fact, the
orthogonal-invariance condition requires all off-diagonal elements to



LECTURE NOTES — INTRO TO QUANTUM CHAOS, SPRING 2011 61

be chosen from the same Gaussian distribution, and all diagonal ele-
ments to be chosen from the same Gaussian distribution (the variance
of the diagonal elements turns out to be twice the variance of the off-
diagonal ones, essentially because each off-diagonal term appears twice
in the matrix, and each diagonal term appears once). It can also be
shown that the probability density of a matrix A is proportional to
e−C(N)·Tr(A)2 for some constant C(N) depending on the size of the ma-
trices.

A conjecture that has its roots back in the work of Wigner states
that the statistics of eigenvalues of GOE matrices should hold for any
“reasonable” probability distribution on the space of real-symmetric
matrices, in which matrix elements are chosen independently. We will
not enter into a discussion of this fascinating theory here, but we note
that this type of universality is very encouraging for the hope of ex-
trapolating to arbitrary “generic” chaotic Hamiltonian operators.

The level spacings between consecutive eigenvalues of GOE matrices
are distributed according to the probability measure

µGOE(s) =
π

2
se−

πs2

4

which looks like the picture in Figure 2. We won’t prove this here,
but there is one glaring feature that distinguishes it from the Poisson
distribution, and which is not too difficult to understand— namely,
the density vanishes at 0. This is often referred to as level repulsion,
since the eigenvalues (or energy levels) tend to repel each other, in the
sense that the probability of finding another eigenvalue very close to a
given one is very small.

Why is this? Consider a double eigenvalue; this means that there is a
two-dimensional space on which the matrix acts as a scalar multiple of
the identity. By an orthogonal change of basis— which we may do, since
our distribution is invariant under orthogonal transformations— we can

assume that our matrix has the form

λ 0
0 λ

M

 for an (N−2)×(N−

2) symmetric matrix M . Note that the condition of having a double
eigenvalue forces two conditions on this upper left block of the matrix—
the diagonal terms must be equal, and the off-diagonal terms must
vanish. More precisely, if these two eigenvalues are very close together,
it forces two conditions on the entries in the 2×2 block— the diagonal
terms must be close, and the off-diagonal term(s) must be small (this
is one condition, since one off-diagonal term determines the other by
symmetry). Since all (3) matrix elements are chosen independently,
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s = 0 1 2 3 4

GOE distribution

Figure 4. Plotted here are the normalized gaps
between roughly 50,000 sorted eigenvalues

for the domain Ω, computed by Alex Barnett,
compared to the distribution of the

normalized gaps between successive
eigenvalues of a large random real symmetric
matrix picked from the “Gaussian Orthogonal

Ensemble”, where the matrix entries are
independent (save for the symmetry

requirement) and the probability distribution
is invariant under orthogonal transformations.

One way to see the effect of the classical dy-
namics is to study local statistics of the energy
spectrum, such as the level spacing distribution
P(s), which is the distribution function of nearest-
neighbor spacings λn+1 − λn as we run over all
levels. In other words, the asymptotic propor-
tion of such spacings below a given bound x is∫ x
−∞ P(s)ds. A dramatic insight of quantum chaos

is given by the universality conjectures for P(s):
• If the classical dynamics is integrable, then

P(s) coincides with the corresponding quantity for
a sequence of uncorrelated levels (the Poisson en-
semble) with the same mean spacing: P(s) = ce−cs ,
c = area/4π (Berry and Tabor, 1977).
• If the classical dynamics is chaotic, then P(s)

coincides with the corresponding quantity for the
eigenvalues of a suitable ensemble of random
matrices (Bohigas, Giannoni, and Schmit, 1984).
Remarkably, a related distribution is observed for
the zeros of Riemann’s zeta function.

Not a single instance of these conjectures is
known, in fact there are counterexamples, but
the conjectures are expected to hold “generically”,
that is unless we have a good reason to think oth-
erwise. A counterexample in the integrable case
is the square billiard, where due to multiplici-

ties in the spectrum, P(s) collapses to a point
mass at the origin. Deviations are also seen in the
chaotic case in arithmetic examples. Nonetheless,
empirical studies offer tantalizing evidence for
the “generic” truth of the conjectures, as Figures
3 and 4 show.

Some progress on the Berry-Tabor conjecture in
the case of the rectangle billiard has been achieved
by Sarnak, by Eskin, Margulis, and Mozes, and by
Marklof. However, we are still far from the goal
even there. For instance, an implication of the
conjecture is that there should be arbitrarily large
gaps in the spectrum. Can you prove this for
rectangles with aspect ratio 4

√
5?

The behavior of P(s) is governed by the statis-
tics of the number N(λ, L) of levels in windows
whose location λ is chosen at random, and whose
length L is of the order of the mean spacing
between levels. Statistics for larger windows also
offer information about the classical dynamics and
are often easier to study. An important example
is the variance of N(λ, L), whose growth rate is
believed to distinguish integrability from chaos [1]
(in “generic” cases; there are arithmetic counterex-
amples). Another example is the value distribution
ofN(λ, L), normalized to have mean zero and vari-
ance unity. It is believed that in the chaotic case
the distribution is Gaussian. In the integrable case
it has radically different behavior: For large L, it
is a system-dependent, non-Gaussian distribution
[2]. For smaller L, less is understood: In the case
of the rectangle billiard, the distribution becomes
Gaussian, as was proved recently by Hughes and
Rudnick, and by Wigman.

Further Reading
[1] M. V. Berry, Quantum chaology (The Bakerian
Lecture), Proc. R. Soc. A 413 (1987), 183-198.

[2] P. Bleher, Trace formula for quantum integrable
systems, lattice-point problem, and small divisors, in
Emerging applications of number theory (Minneapolis,
MN, 1996), 1–38, IMA Vol. Math. Appl., 109, Springer,
New York, 1999.

[3] J. Marklof, Arithmetic Quantum Chaos, and
S. Zelditch, Quantum ergodicity and mixing of eigen-
functions, in Encyclopedia of mathematical physics,
Vol. 1, edited by J.-P. Françoise, G. L. Naber, and T. S.
Tsun, Academic Press/Elsevier Science, Oxford, 2006.
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Figure 2. Normalized gaps between 50,000 eigenvalues
of a chaotic billiard, compared to the expected proba-

bility density π
2
se−

πs2

4 of GOE matrices. Picture from
Rudnick[?].

satisfying these two independent conditions simultaneously forces the
probability density to vanish.

3.4. Arithmetic Symmetries. Like the Berry-Tabor Conjecture 3.1,
almost nothing is known towards the Bohigas-Giannoni-Schmit Con-
jecture 3.2. However, there are some counterexamples “known”, in the
sense that numerical evidence overwhelmingly suggests that the eigen-
value spacings are not GOE-distributed, for some special examples.
Once again, this is (assumed to be) due to special arithmetic nuances.

For example, if we take M = SL(2,Z)\H to be the modular surface,
then numerics have shown quite convincingly that the eigenvalue spac-
ings obey Poissonian statistics, rather than GOE. It’s as though the
geodesic flow on T ∗M were completely integrable! Of course, this is
not the case, and M is not foliated into invariant tori by any integral
of the motion. There is, however, an interesting foliation lurking in the
background— called the Hecke correspondence— which we will now
introduce briefly.

Recall that SL(2,R) acts on H by Möbius transformations. In gen-
eral, once we quotient by a subgroup, there is no reason to believe that
matrices in SL(2,R) should act on Γ\H in any meaningful way; the
only way for this to happen is if the action preserves the Γ-invariance.
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If Γ = SL(2,Z), however, there are some matrices are permuted by
SL(2,Z). Namely, let Mp be the set of 2 × 2 integer matrices of de-
terminant p. Then SL(2,Z) acts on Mp by multiplication. We can
embed Mp ↪→ SL(2,R) by dividing by

√
p, and SL(2,Z) leaves this set

invariant; thus the quotient SL(2,Z)\Mp ↪→ SL(2,Z)\H.
We can now define the p-Hecke operator Tp : L2(M) 	 by

Tp(f)(x) =
1
√
p

∑
α∈SL(2,Z)\Mp

f(α.x)

Since each α acts by isometries, this operator Tp commutes with ∆
on L2(M). One can also show that Tp commutes with Tq whenever
(p, q) = 1; that is, whenever p and q are relatively prime. Thus, in
particular, the set {Tp} for p prime forms a large family of self-adjoint
operators that commute with each other and with ∆. Notice how
heavily this construction relies on the arithmetic!

It is the existence of such a family that is (thought to be) responsible
for the Poissonian spacings between eigenvalues. Indeed, it’s as though
each Tp eigenspace is contributing its own “spectrum” independently,
just as each block of invariant tori contributed its own piece of the
spectrum in the completely integrable case.

Sadly, virtually nothing can be proved about any of this!

3.5. Gross Omission — Random Matrices and L-functions. I
would be remiss if I did not at least mention one other fascinating
aspect of the eigenvalue spacings of random matrices. Have a look
at Figure 3— does this look like it might be a graph representing the
consecutive spacings of eigenvalues of a chaotic Hamiltonian5 operator?

In fact, this plot comes from consecutive spacings of zeroes of the
Riemann zeta function on the critical line. It is very tempting to guess
that the zeroes s = 1

2
+ it of the zeta function are given by eigen-

values of 1
2

+ iH for some chaotic Hamiltonian operator H. If true,
then this would immediately imply the Riemann hypothesis, since self-
adjoint Hamiltonian operators have real eigenvalues— in fact, the idea
that zeroes of the zeta function could be given by eigenvalues of a
self-adjoint operator goes back to Hilbert and Polya, well before the

5Actually, the solid curve in the figure corresponds to the GUE ensemble of
complex Hermitian matrices, rather than real symmetric ones; we won’t be too
concerned with the difference between these ensembles here, but properties of the
classical Hamiltonian (conjecturally) govern whether GOE or GUE is the correct
random matrix model.
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Figure 3. Normalized gaps between 10 billion consec-
utive zeroes of ζ(s), starting from around zero number
1.3× 1016, from Odlyzko[?].

numerics6 of Odlyzko. What these numerics suggest is that the mys-
terious “Riemann zeta function Hamiltonian”— if it exists— should
come from the quantization of a chaotic Hamiltonian.

The same spacing statistics are expected to hold for all L-functions
(and for other spacing statistics); see eg. [?] for a more detailed ac-
count.

4. Eigenfunctions and Quantum Ergodicity

We now turn to studying the eigenfunctions of H. For simplicity,
we will restrict the discussion in this section to H = −~2∆ on L2(M),
where M = Γ\H is a hyperbolic Riemann surface and ∆ its Laplacian.
This operator corresponds to H = Op(|p|2), where |p|2 is the energy
of a particle of mass 1/2 moving freely on M at unit speed. In other
words, H is a Hamiltonian for the geodesic flow on M .

There are many questions that one can ask regarding the eigenstates
of H for small ~ (which correspond to eigenfunctions of ∆ of large
eigenvalue ~−2). A very general— and rather vague— idea, that can
be traced back to M. Berry, is that these eigenstates should resemble
“random waves” in the semiclassical limit. Whether or not this is true
(and it isn’t, in general; as with the eigenvalue spacing conjectures,
there are arithmetic counterexamples), intuition leads us to believe
that, as steady-states of the Schrödinger evolution, these eigenstates
should be “spread out” rather than localizing in small sets. There are
many different notions of “spread out”: for example,

6Actually, Montgomery was the first to compute spacings between zeroes of ζ(s),
and Dyson was the one who suggested that they be compared with random matrix
statistics. This is itself is a wonderful folklore story, of which many versions can be
found.
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Conjecture 4.1 (Iwaniec-Sarnak). Let φj be a sequence of eigenfunc-
tions of ∆ on M , with eigenvalues λj →∞. Assume that ||φj||L2 = 1.

Then ||φj||Lp = Op,ε(λ
ε) for all 2 < p ≤ ∞, and any ε > 0.

Conjecture 4.1 is very deep7, and far out of reach at the present. A
more modest goal is “weak” equidistribution:

Conjecture 4.2 (Quantum Unique Ergodicity, Rudnick-Sarnak ’94).
Let M be a compact Riemannian manifold of negative sectional curva-
ture, and {φj} an orthonormal basis of L2(M) consisting of eigenfunc-
tions of ∆ on M . Then for any f ∈ C(M), we have∫

M

f(x)|φj(x)|2dV ol(x)→
∫
M

f(x)dV ol(x)

i.e., the measures |φj|2dV ol converge in the weak-* topology to the uni-
form measure dV ol.

Moreover, the microlocal lifts

µj : f 7→ 〈Op(f)φj, φj〉
converge weak-* to the uniform (Liouville) measure in S∗M .

Some comments are in order regarding Conjecture 4.2. First, note
that the second statement implies the first, since taking f ∈ C∞(M) ⊂
C∞(S∗M) gives

〈Op(f)φj, φj〉L2(S∗M) =

∫
M

f(x)|φj(x)|2dV ol(x)

since in this case Op(f) is simply multiplication by f . The signif-
icance of the stronger statement is that it deals with distributions
on S∗M— where the dynamics take place— which, as we will see
(Egorov’s Theorem) are asymptotically invariant under the geodesic
flow. One can also show that these distributions are asymptotically
positive (à la Anti-Wick quantization), and thus weak-* limit points
of the µj are geodesic-flow-invariant probability measures (due to the
L2-normalization of the eigenfunctions). Thus, the second statement
is the one most suited to ergodic theory. Such a weak-* limit point of
the µj is called a quantum limit. So Conjecture 4.2 is stating that
there is a unique quantum limit; namely Liouville measure on S∗M
(that Liouville measure is a quantum limit at all will be established
by Quantum Ergodicity, Theorem 4.1 below). This (partially) explains
the terminology.

7For example, when applied to congruence surfaces, Conjecture 4.1 would imply
the Lindelöf Hypothesis for ζ and some other classical L-functions.
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Lemma 4.1. Any quantum limit is a positive measure, invariant under
the geodesic flow on S∗M .

Proof: Let f ∈ C∞(S∗M). Since Hψj = 1
2
ψj

e−
i
~Htφj = e−

i
~

1
2
tφj

and e−
i
~

1
2
te−

i
~

1
2
t = 1, we have

〈Op(f)φj, φj〉 = 〈Op(f)e−
i
~Htφj, e

− i
~Htφj〉

= 〈e
i
~HtOp(f)e−

i
~Htφj, φj〉

= 〈Op(f ◦ gt)φj, φj〉+Of (~)

by Egorov’s Theorem. Thus as ~→ 0 we have

|µj(f)− µj(f ◦ gt)| → 0

for any smooth f ∈ C∞(S∗M), and so any weak-* limit point of the
µj must be gt-invariant.

Since we may replace our choice of Op(f) by a positive quantization
Op+(f) (eg. by a local Anti-Wick construction) up to an error of O(~)
in the operator norm, and since ||φj|| = 1, we have for f non-negative

〈Op(f)φj, φj〉 = 〈Op+(f)φj, φj〉+O(~) ≥ O(~)

and µj is asymptotically a positive measure. �
Remark: You might wonder whether this condition is already restric-

tive. If the flow were uniquely ergodic, then there would be only one
invariant measure; but the geodesic flow on a compact manifold is not
uniquely ergodic. For example, given a closed geodesic, one can take
the normalized length measure on the geodesic. In general, there are
many, many measures invariant under the geodesic flow.

The first step towards classifying quantum limits is the following
Quantum Ergodicity Theorem, which shows that the uniform measure
is the “generic” quantum limit, when the classical flow is ergodic.

Theorem 4.1 (Quantum Ergodicity, Shnir’lman-Zelditch-Colin de Verdière).
Let M be a Riemannian manifold, such that the geodesic flow on M
is ergodic. Then almost all eigenfunctions become equidistributed; pre-
cisely, given any orthonormal basis {φj} of L2(M) consisting of eigen-
functions of ∆, there exists a subsequence {φjk} of asymptotic density
1 such that µjk converge weak-* to Liouville measure on S∗M .

Remarks:

• By asymptotic density 1, we mean that

lim
k→∞

k

#{j ≤ jk}
= 1
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• Theorem 4.1 implies that, if there are exceptional sequences of
eigenfunctions that converge to a singular measure, they are
sparse. In fact, in the toy models that we will meet later on,
there are such sparse exceptional sequences, and their construc-
tion relies in an obvious way on selecting very special eigenfunc-
tions.

Sketch of Proof: The analytic input is an average over the spectrum,
of the form:

(3) lim
λ→∞

1

N(λ)

∑
λj≤λ

〈Op(f)φj, φj〉 =

∫
S∗M

fdµL

where µL is Liouville measure on S∗M . If Op(f) is supported on the
finite-dimensional span of {φj : λj ≤ Λ}, then this is established8

by writing the trace of Op(f) in two ways— the left-hand side as a
sum over the eigenvalues, and the right-hand side as an integral of the
kernel over the diagonal. One then takes a suitable limit of cutoffs
approximating Op(f) to get the general statement.

The set of probability measures on M is weak-* compact, and so
if the complete sequence µj does not converge to µL, then there exist
other weak-* limit points (quantum limits) of the µj. So suppose that
there is a sequence E = {φjl} of eigenfunctions, such that

lim
λjl→∞

〈Op(f)φjl , φjl〉 =

∫
S∗M

fdµbad

for some singular measure µbad. Then we can rewrite the average (3)
as∫
S∗M

fdµL ∼
1

N(λ)

∑
λj≤λ

〈Op(f)φj, φj〉

=
1

N(λ)

∑
λjl≤λ,φjl∈E

〈Op(f)φjl , φjl〉+
1

N(λ)

∑
λjk≤λ,φjk /∈E

〈Op(f)φjk , φjk〉

Clearly, the first sum on the right tends to limλ→∞
#λjl≤λ
N(λ)

µbad(f).

But then this gives a decomposition of µL into distinct invariant mea-
sures! Since µL is ergodic for the geodesic flow on M , such a decompo-

sition must be trivial, and so the weight limλ→∞
#λjl≤λ
N(λ)

of µbad in the

decomposition must be 0, and the exceptional set E has density 0.

8In practice, it’s better to first average over a chunk of the spectrum, that’s
moving to higher and higher eigenvalues, and then deduce the estimate for the full
average.



68 WORK IN PROGRESS — USE WITH APPROPRIATE CAUTION

Since this holds for an arbitrary symbol f ∈ C∞(S∗M), one can take
a countable base for which the statement is satisfied, and then take a
countable intersection of full density subsequences to get the statement
for all symbols in C∞(S∗M). �

Remark: Note that we used the ergodicity of the geodesic flow, but
nothing more. In the toy models that we will meet in the next sec-
tion, where the classical dynamics are ergodic— in fact, uniformly
hyperbolic— Quantum Ergodicity can be proven along the lines of this
argument, but QUE fails; we will exhibit explicit (sparse) sequences of
eigenfunctions whose microlocal lifts have a singular component. Thus,
QUE requires more than just ergodicity.

Remark: The terminology has two meanings: firstly, since quantum
ergodicity is implied by ergodicity of the classical flow, it is the cor-
rect analogue of ergodicity for quantum systems (Zelditch has shown
that under some conditions, the converse is also true; but this is not
automatic). Secondly, it has an interpretation as a quantum version of
Birkhoff’s Pointwise Ergodic Theorem ??: just as almost every orbit
is equidistributed classically, we have a statement that almost every
quantum limit is equidistributed.

Remark: If the classical flow is uniquely ergodic, meaning that there
are no invariant measures other than Liouville measure, then QUE is
automatically satisfied by Lemma 4.1.

5. Toy Model I — the Baker’s Maps

The QUE problem is hard. So, it makes sense to look for easier
problems to study, that are sufficiently analogous, and can provide
good intuition as to what to look for in the harder problems. As it
turns out, some of these toy models lead to juicy questions of their
own, whose resolution could help gain a better understanding of the
theory.

So what is a “toy model”? What we require is a “chaotic” dynamical
system T : X → X that’s well understood, and admits some reasonable
quantum model: i.e., a sequence of small numbers ~→ 0, and

• A Hilbert space of states H (analogous to L2(M))
• A quantization of observables f ∈ C∞(X) 7→ Op(f) ∈ Hom(H)

such that Op(f) is asymptotically positive-definite whenever f
is positive
• A quantization of the dynamics T̃ : H → H satisfying an Egorov

property

T̃−1Op(f)T̃ ∼ Op(f ◦ T )
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Given such a framework, we can take a sequence of normalized eigen-
functions φj of T̃ , and study the microlocal lift

µj(f) = 〈Op(f)φj, φj〉H
By the Egorov property and asymptotic positivity, weak-* limit points
of the µj will be positive T -invariant measures on X.

5.1. The Classical Map. Our first toy model is a quantization of the
D-baker’s maps, or 2-sided shift on D symbols, where D ≥ 2 is an
integer. In this case (and for our other toy model, the cat maps in
section ??), the space X = T2, though for baker’s maps it is best to
identify points (q, p) ∈ T2 with a 2-sided infinite sequence

(q, p)↔ . . . ε′2ε
′
1 · ε1ε2 . . . εi, ε

′
i ∈ [0, D − 1] ∩ Z

coming from the D-adic expansions

q = 0.ε1ε2 . . .

p = 0.ε′1ε
′
2

(This identification is not quite 1-to-1, since eg. . . . 00 · 100 . . . and
. . . 11 ·011 . . . both correspond to the point (1/D, 0) ∈ T2, but this only
happens on a countable set of measure 0, and may be disregarded.)

The dynamics are given by the map

B(q, p) =

(
Dq mod 1,

p+ bDqc
D

)
∈ T2

which is identified with the shift on Σ, the space of double-sided se-
quences with the product topology. See Figure ?? for a picture; the
name comes from the intuition of cutting and stretching out the dough
in strips. It is well known that the shift supports piles and piles of
invariant measures— including, but not limited to, Bernoulli measures
of arbitrary entropy (see section ??).

5.2. Walsh-quantized baker’s map. We will now describe a quan-
tum model for the baker’s maps. Our semiclassical parameter will be
given by 2π~ = D−k, where k ∈ N is a parameter tending to ∞ in the
semi-classical limit. Our Hilbert space HDk of quantum states is finite-
dimensional, isomorphic to CDk . If we consider an orthonormal basis
{e0, . . . , eD−1} of CD, then we take {eε0⊗· · ·⊗eεk−1

: εi ∈ [0, D−1]∩Z}
to be our orthonormal basis of HDk . These vectors correspond to “po-
sition eigenstates”, and are “lifted” to the phase-space as characteristic
functions of (right-sided) cylinder sets of length k, i.e., sets of the form
{{an} : ai = εi for i = 0, . . . , k − 1}. Such cylinder sets correspond to
vertical strips of width D−k on T2.
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For “momentum eigenstates”, we employ the discreteD-Fourier Trans-
form

(FD)jk =
1√
D
e2πikj/D

as follows. The orthonormal set {F∗Deε−k ⊗ · · · ⊗ F∗Deε−1} is the ba-
sis for the momentum representation of states in HDk . They lift to
characteristic functions of left-sided cylinder sets, i.e. sets of the form
{{an} : ai = εi for i = −1, . . . ,−k}, corresponding to horizontal strips
on T2. Analogously, we take “coherent states” to be vectors of the form

(4) ε′ · ε := eε0 ⊗ · · · ⊗ eεbk/2c ⊗F
∗
Deε−dk/2e+1

⊗ · · · ⊗ F∗Deε−1

that lift to characteristic functions of disjoint rectangles R(ε′ ·ε) ⊂ T2,
each of area D−k, that are approximately square. This achieves a joint
localization in both position and momentum.

A family of quantizations is described in [?] for each k, corresponding
to different choices of “coherent states”, and they show the asymptotic
equivalence in the semiclassical limit k → ∞ for all f ∈ Lip(Σ), the
space of Lipschitz functions with respect to the shift metric. Therefore
we consider Lip(Σ) to be our space of observables, and define “the”
Anti-Wick quantization to be

OpAWk (f)ψ := Opk,bk/2c(f)ψ = Dk
∑
ε′·ε

(∫
R(ε′·ε)

f(x)dx

)
〈ε′ · ε|ψ〉〈ε′ · ε|

for all f ∈ Lip(Σ), where the sum runs over the Dk basis vectors of the
form (4). The “Husimi measures”, which will serve as our microlocal
lifts for this model, are then given by

µψ(f) = 〈OpAWk (f)ψ|ψ〉 =
∑
R(ε′·ε)

Dk|〈ψ|ε′ · ε〉|2
∫
R(ε′·ε)

f(x)dx

Note that these are positive measures for all k.
The quantization of the baker’s map is defined to be the operator

BDk , whose action on HDk is given by

BDk(v1 ⊗ v2 ⊗ · · · ⊗ vk) = v2 ⊗ · · · ⊗ vk ⊗F∗Dv1

We can now show that BDk satisfies the Egorov property for observables
f ∈ Lip(Σ) (see [?, Proposition 3.2])

Lemma 5.1. For f ∈ Lip(Σ), we have

||B−1
Dk
OpAWk (f)BDk −OpAWk (f ◦B)|| . ||f ||∞D−k/2

as k →∞.
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Now we take a sequence {ψj ∈ HDkj } of eigenvectors of BDkj , nor-
malized so that ||ψj|| = 1, and examine the Husimi (probability) mea-
sures µψj as kj →∞. By the Egorov property (5.1), any quantum limit
of {µψj} is a B-invariant probability measure on T2, and the problem is
to understand which of the myriad B-invariant measures arise as such
a limit.

Lemma 5.2 (Quantum Ergodicity for Walsh-quantized baker’s maps).
For each k, and any choice of orthonormal basis ofHk of Bk-eigenvectors,
there is a subset Ek of basis vectors such that

•
lim
k→∞

|Ek|
dimHk

= 0

• For any sequence {φk ∈ Hk} of basis eigenvectors such that
each φk /∈ Ek, the microlocal lifts

µk : f ∈ Lip(Σ) 7→ 〈OpAW (f)φk, φk〉Hk
as measures on T2 converge weak-* to Lebesgue measure.

Proof: For each OpAWk (f) : Hk 	, write the trace of OpAWk (f) in two
different (orthonormal) bases:

TrOpAWk (f) =
Dk∑
i=1

〈OpAWk (f)φ
(i)
k , φ

(i)
k 〉

TrOpAWk (f) =
Dk∑
j=1

Dk

∫
Rk

f = Dk

∫
T2

f(x)dx

We have used an orthonormal basis of eigenfunctions in the first expan-
sion, and an orthonormal basis of coherent states in the second (there
is a small miracle in this model that the coherent states are actually
orthogonal!). Equating both expressions, we get

1

Dk

Dk∑
i=1

〈Opk(f)φ
(i)
k , φ

(i)
k 〉 =

∫
T2

f(x)dx

i.e., the average of µ
(i)
k (f) over the full spectrum of Bk in Hk is equal

to Lebesgue measure. As above in Theorem 4.1, if we can divide this
average into two non-trivial measures, this would contradict the ergod-

icity of Lebesgue measure; thus if there are some eigenvectors φ
(i)
k such

that µ
(i)
k do not converge to Lebesgue measure, then their weight in the

average must tend to 0 as k →∞. �
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Exercise 1. Show that the Gaussian Gα defined by Gα(x) = e−αx
2

belongs to the Schwartz class

S(R) :=

{
f ∈ C∞(R) : ∀j, k ∈ N,∀x ∈ R,

∣∣∣∣(1 + x2)j
dk

dxk
f(x)

∣∣∣∣ <∞}
for any α > 0.

Exercise 2. Show that for f ∈ S(R), the integral f̂(ξ) =
∫

R f(x)e2πiξxdx
converges absolutely.

Exercise 3. Consider the operators

[Xf ] (x) = xf(x)[
e2πiyXf

]
(x) = e2πiyxf(x)

[Df ] (x) = (2πi)−1f ′(x)

Show that for f ∈ C∞(T) we have

D̂f(m) = (m)f̂(m)

̂e2πiyXf(x) = f̂(m− y)

and that for f ∈ S(R), we have

D̂f(ξ) = (ξ)f̂(ξ)

X̂f = − 1

2πi
f̂ ′(ξ)

̂e2πiyXf(x) = f̂(ξ − y)

Exercise 4. The point of this exercise is to show that, for the Gaus-
sians Gα, equality is achieved in the Heisenberg Uncertainty Principle;
i.e., we have(∫

R
x2|Gα(x)|2dx

) 1
2
(∫

R
ξ2|Ĝα(ξ)|2dξ

) 1
2

=
1

4π
||Gα||2L2

(1) Using some changes of variable and Corollary ??, show that it
is sufficient to prove the case of α = π; i.e., that

||XGπ||22 =
1

4π
||Gπ||22

(2) Use an integration by parts argument to show that

||XGπ||22 =

∫
R
x2e−2πx2

dx =
1

4π
||Gπ||22

.
1



2

Exercise 5. The point of this exercise is to show that f and f̂ cannot
both be compactly supported.

(1) Show that, if f has compact support, then its Fourier transform

f̂(z) =

∫
R
f(x)e−2πixzdx

can be extended to a holomorphic function of z ∈ C.
(2) Use this to show that the set {z : f̂(z) = 0} must be discrete.

(3) Deduce a contradiction from the assumption that f̂ is compactly
supported on R.

Exercise 6. Let

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
d

be the Laplacian operator on Rd. Show that

∆̂f(ξ) = −4π2|ξ|2f̂(ξ)
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