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 MAT 561: Mathematical Physics, Spring 2007

MAT 560
References
Homeworks

 Contact William
Contact Jerry

Lectures: Mondays 9:45 -- 11:30 AM and 1 -- 2 PM, in the Math Tower, P-131.

Instructors: Jerry Jenquin and William D. Linch III.

Office Hours: Jerry's are TBA
 William's are TBA.

Suggested Prerequisites We'll be assuming familiarity with the material
 covered in MAT 530, 531 and 560. Some previous exposure to physics, while
 helpful, is by no means necessary.

Course Content: In this second semester we will cover Thermodynamics,
 Statistical Mechanics, and Quantum Mechanics. The latter will be divided into
 two ``sections''. One more mathematical and one more physical.

Texts and Online Notes: Although there are no official texts for this course
 here's a list of references for some of the topics we'll be covering and some of
 the prerequisite topics. In particular we recommend the following texts to
 complement the lectures.

1. Mathematical Methods of Classical Mechanics by V.I. Arnold.
2. A Course in Mathematics for Students of Physics by Paul Bamberg and

 Shlomo Sternberg.

Homework: We will provide four problem sets throughout the semester: one
 for each ``section'' of this semester's material. There will be four
 corresponding homework sessions and, at every session, each student must
 present a solution to one of the problems. Before each presentation the
 student is expected to give a ``practice run'' in front of either William or Jerry
 for the sake of quality control. Also a TeX'd solution must be turned in
 sometime before the presentation. The students are not required to arrive at
 the solutions independently but must present them independently.

Solutions: Below are solutions to the Thermodynamics problem set as done
 by the students.

1. Nate Round
2. Josh Rembaum
3. Gabe Drummond-Cole
4. Joe Walsh
5. Andrew Stimpson
6. Ki Song
7. Chris Bay

Grades: The course grade will be determined solely by the homework.

DSS advisory: If you have a physical, psychiatric, medical, or learning
 disability that could adversely affect your ability to carry out assigned course
 work, we urge you to contact the Disabled Student Services office (DSS),

http://www.math.stonybrook.edu/~jjenquin/refs561.html
http://www.math.sunysb.edu/~wdlinch3/
http://www.math.sunysb.edu/~wdlinch3/
http://www.math.sunysb.edu/~wdlinch3/
http://www.math.stonybrook.edu/~jjenquin/refs561.html
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 Educational Communications Center (ECC) Building, room 128, (631) 632-
6748..
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 MAT 560: Mathematical Physics, Fall 2006

MAT 560
References
Homeworks

 Contact William
Contact Jerry

Lectures: Tuesdays and Thursdays 11:20 AM -- 12:40 PM in the Math Tower,
 P-131.

Instructors: Jerry Jenquin and William D. Linch III.

Office Hours: Jerry's are 10 -- 11 AM on Tuesdays and Thursdays.
 William's are 1:30 -- 2:30 PM on Tuesdays and Thursdays.

Suggested Prerequisites We'll be assuming familiarity with the material
 covered in MAT 530 and 531. Some previous exposure to physics, while
 helpful, is by no means necessary.

Course Content: In this first semester we will cover Classical Newtonian
 Mechanics, Classical Relativistic Mechanics, and Electromagnetism.
 Specifically we hope to cover the following:

 Classical Newtonian Mechanics

Paths in Euclidean space and Newton's 2nd Law.
Phase space and symplectic geometry.
Hamiltonian mechanics in the Newtonian setting.
Variational principles, Lagrangian mechanics.
Symmetry and Noether's theorem.
The Euclidean group, symmetry, and conserved charges (a.k.a.
 Newtonian kinematics).
Time translation, energy, and dynamics.
Hamiltonian mechanics from Lagrangian mechanics.
Gravitational potentials and solvable systems.

 Classical Relativistic Mechanics

Geometry on Minkowski space.
Lagrangian for paths on Minkowski space.
The Poincare group, symmetry, and relativistic kinematics.
Reparameterization invariance.

 Electromagnetism

Differential forms, Stoke's theorem, currents, flows.
Hodge star for Euclidean, Lorentzian signatures and duality.
Electromagnetic fields and Maxwell's equations
PDE's on Minkowski space and Poincare symmetry
Laplace and wave equations, Green's operators, boundary conditions
Exact solutions: propagating waves, monopoles, instantons, ...
Lagrangian formulation of electromagnetism
Hamiltonian theory of electromagnetism
Gauge symmetry and connections on principal R-bundles
Magnetic sources, Dirac charge quantization, and principal U(1)-bundles
Generalizations in various directions.

http://www.math.stonybrook.edu/~jjenquin/hmwk560.html
http://www.math.sunysb.edu/~wdlinch3/
http://www.math.sunysb.edu/~wdlinch3/
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Texts and Online Notes: Although there are no official texts for this course
 here's a list of references for some of the topics we'll be covering and some of
 the prerequisite topics. In particular we recommend the following texts to
 complement the lectures.

1. Mathematical Methods of Classical Mechanics by V.I. Arnold.
2. A Course in Mathematics for Students of Physics by Paul Bamberg and

 Shlomo Sternberg.
3. Overview of Selected Topics in Physics by William D. Linch III. These

 notes offer a treatment closer to what one would find in a physics text.
 It's a work in progress.

We are also fortunate to have Gabriel Drummond-Cole's TeX'd course notes,
 annotated with physics commentary by William.

Lecture 1
Lecture 3
Lecture 4

Homework: We will provide several problem sets throughout the semester.
 The best way to learn the material is to attempt these problems and even
 come up with and solve some problems on your own.

Grades: Throughout the semester students will be expected to present
 homework solutions in class. The course grade will be determined solely by
 these presentations.

DSS advisory: If you have a physical, psychiatric, medical, or learning
 disability that could adversely affect your ability to carry out assigned course
 work, we urge you to contact the Disabled Student Services office (DSS),
 Educational Communications Center (ECC) Building, room 128, (631) 632-
6748..

http://www.math.sunysb.edu/~blafard/
http://www.math.stonybrook.edu/~jjenquin/hmwk560.html
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 MAT 561: Mathematical Physics, Spring 2007

MAT 560
References
Homeworks

 Contact William
Contact Jerry

 Here are the problem sets. They will be assigned on a first-come-first-serve
 basis. If you have any questions or want some help feel free to stop by
 anytime or make an appointment. We also encourage you to seek out each
 other for help, especially if your respective assigned problems are related.

Thermodynamics Homework
Statistical Mechanics Homework
Jerry's Quantum Homework
William's Quantum Homework

Solutions: Below are solutions to the Thermodynamics problem set as done
 by the students.

1. Nate Round
2. Josh Rembaum
3. Gabe Drummond-Cole
4. Joe Walsh
5. Andrew Stimpson
6. Ki Song
7. Chris Bay

 Below are solutions to Jerry's Quantum Mechanics problems as done by the
 students.

1. Gabe Drummond-Cole
2. Nate Round
3. Joe Walsh
4. Josh Rembaum
5. Andrew Stimpson
6. Ki Song
7. Chris Bay

http://www.math.stonybrook.edu/~jjenquin/refs561.html
http://www.math.sunysb.edu/~wdlinch3/
http://www.math.sunysb.edu/~wdlinch3/
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 Jerry Jenquin

Contact
Research
Classes
Culture

I can be contacted in the following ways:

Email:  jjenquin@math.sunysb.edu
Phone: (631) 632 - 8262
Office: Math Tower

Room 3-115
Smail: Mathematics Department 

Stony Brook University 
Stony Brook, NY 11794-3651

http://www.math.stonybrook.edu/~jjenquin/research.html
mailto://jjenquin@math.sunysb.edu/
http://www.sunysb.edu/doit/academic.html


Problem 1. Let V be a finite-dimensional vector space and let ( , ) : V × V →
V be a skew-symmetric bilinear pairing on V . Then V has a basis of the form

{xi, yi}m
i=1, {zi}n

i=1 such that

 (xi, yi) = 1
(xi, yj) = 0
(zi, α) = 0 ∀α ∈ V

If ( , ) is identically zero, then any basis for V is of the above form, with n =
dim(V ) and m = 0. If not, then (x, y) 6= 0 for some x, y ∈ V . Furthermore x 6= y
by skew-symmetry, so after rescaling if necessary we have (x, y) = 1.

Now we can write V = span{x, y}⊕V ′, where V ′ = {α ∈ V |(α, x) = (α, y) = 0},
and apply the same arguement recursively to V ′. Since V is finite dimensional, the
recursion terminates and we arrive at a basis of the desired form.

Corollary 1. If ( , ) is nondegenerate, then the dimension of V is even.

Problem 2. If ω1 and ω0 are symplectic forms on R2n and ω1 = ω0 at 0, then there
exits a local diffeomorphism f defined in some neighborhood of 0 so that f∗ω1 = ω0.

We will solve this problem using time-dependent vector-fields. Given a time
dependent vector field ξ : R × M → TM , let φ : R × M → M be the solution to
the initial value problem {

ξs(φs(x)) = dφ(s,x)( ∂
∂t )

φ0(x) = x

Lemma 1. For any time-dependent form αt, time-dependent vector field ξt and
one parameter family of diffeomorphisms φt generated by ξt, we have

∂

∂t
(φ∗

t αt) =
∂

∂t
αt + Lieξt

αt

Proof: First define φ̄ : R×M → R×M by extending φ by the identity, so that
φ̄(s, x) = (s, φs(x)). Then φ∗

t αt = φ̄∗αt.
First consider the case where αt is a time-dependent function. At a point (s, x) ∈

R×M , we have

∂

∂t
(φ∗

t αt)(s,x) =
∂

∂t
(α ◦ φ̄t)(s,x)

= dα(s,φs(x)) ◦ dφ̄(s,x)(
∂

∂t
)

= dα(s,φs(x)) ◦ (d(IDR) + dφ)(s,x)(
∂

∂t
)

= dα(s,φs(x))(
∂

∂t
+ ξs(φs(x)))

=
∂

∂t
α(s,φs(x)) + ξsα(φs(x))

= φ∗
t (

∂

∂t
αt + Lieξt

αt)(s, x)

1
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Next consider the case where αt = dft is an exact 1-form. Then
∂

∂t
(φ∗

t dft)(s,x) = d(
∂

∂t
φ∗

t ft)

= d(φ∗
t (

∂

∂t
ft + Lieξtft))

= (φ∗
t (

∂

∂t
dft + Lieξt

dft))

because d commutes with ∂
∂t and Lieξt

.
Now, every form αt can be written locally as a wedge product of fuctions and

exact 1-forms. Since pullback commutes with wedge and ∂
∂t is a derivation of the

wedge product, the lemma follows. �

We proceed with the proof of Problem 2. Define:

ωt = tω1 + (1− t)ω0

Observe that ωt is a linear combination of closed forms, and thus is closed and
locally exact. Then there exists a 1-form β such that:

dβ = ω1 − ω0

At the point 0, ω1 = ω0 and thus ωt = tω1 + (1 − t)ω0 = ω0. Therefore ωt is
nondegenerate at 0. Nondegeneracy is an open condition, so ωt is nondegenerate in
a neighborhood of 0 as well. Thus it is possible to define a time-dependent vector
field ξt by the relation:

ιξt
ωt = −β

Let φt be the one parameter family generated by ξt. Then by our Lemma,
∂

∂t
(φ∗

t ωt) = φ∗
t (

∂

∂t
ωt + Lieξtωt)

= φ∗
t (ω1 − ω0 + d(ιξtωt) + ιξtdωt)

= φ∗
t (dβ − dβ + 0)

= 0

Thus φ∗
1ω1 = φ∗

0ω0. But φ∗
0 is the identity, so φ∗

1ω1 = ω0. φ1 is the desired
diffeomorphism.



MAT 561 - HW 1 Problem 2

Josh Rembaum

March 6, 2007

2 Assuming question 1.

(a) Let ω ∈ Ω2(M) be closed, non-degenerate. Claim: there exist local
coordinates in a neighborhood of m ∈ M , (U, φ), φ = (x1, . . . , x2n)
such that

ω = dx1 ∧ dx2 + . . . dx2n−1 ∧ dx2n

Proof: For m ∈ M , pick a chart (U, φ), φ : U → R2n, and φ(m) = 0.
Consider (φ−1)∗ω.
It is a non-degenerate 2-form,1 ω ∈ Λ2(R2n)∗, so by problem 1a),
∃ (V, y), 0 ∈ V such that

(φ−1)∗ω
∣∣∣
0

= dy1 ∧ dy2 + . . . + dy2n−1 ∧ dy2n
∣∣∣
0

Further, (φ−1)∗ω is also closed,2 so, as a 2-form on R2n, by problem
1b),
∃ f : R2n → R2n, a diffeomorphism, defined on a neighborhood of 0,
such that:

(f∗ ◦ (φ−1)∗)ω = dy1 ∧ dy2 + . . . + dy2n−1 ∧ dy2n

on the neighborhood. Then,

ω = (f−1 ◦ φ)∗dy1 ∧ dy2 + . . . + dy2n−1 ∧ dy2n

= d(y1 ◦ f−1 ◦ φ) ∧ d(y2 ◦ f−1 ◦ φ) + . . . +
= + d(y2n−1 ◦ f−1 ◦ φ) ∧ d(y2n ◦ f−1 ◦ φ)

Let xi = yi ◦ f−1 ◦ φ and we have the coordinates desired:

ω = dx1 ∧ dx2 + . . . + dx2n−1 ∧ dx2n. �
1This is because ω is non-degenerate and φ is a bijection, so their composition remains

injective.
2Since pull-back commutes with external derivative.

1



(b) Suppose ω ∈ Ω2(M) is a closed form with constant rank k ≤ n, i.e.:

∀m ∈ M, ωk
∣∣∣
m
6= 0, and ωk+1

∣∣∣
m

= 0

Claim: ∃ local coordinates such that

ω = dx1 ∧ dx2 + . . . + dx2k−1 ∧ dx2k

Proof: by inducting on the dimension of M .
Base case: dimM = 2k.
Then ωk 6= 0 ⇒ ω is a non-vanishing top form, so it is non-degenerate
(and closed by assumption).
Thus, we can apply the results of 2a) to get local coordinates such
that:

ω = dx1 ∧ dx2 + . . . + dx2k−1 ∧ dx2k

Suppose that for dimM = 2k + i there exist local coordinates such
that:

ω = dx1 ∧ dx2 + . . . + dx2k−1 ∧ dx2k

Consider the case for dimM = 2k + i + 1.
ωk+1 = 0 ⇒ ω is degenerate,3 so:

∃X ∈ X(M) s.t. ιXω = 0

Further, we can choose local coordinates {z1, . . . , z2n−1, y} such that
X = ∂

∂y .
Then

ιXω = 0 ⇒ ω =
∑
i<j

aijdzi ∧ dzj

Want to show that aij is independent of y, so that ω will be defined
on a dimension 2k + i submanifold and we can apply the inductive
hypothesis.
ω closed ⇒ dω = 0, i.e.:

0 =
∑
i<j

(
∂aij

∂y
dy ∧ dzi ∧ dzj + stuff not involving y

)
The linear combination of basis vectors is 0 if and only if the coeffi-
cients are all 0, so we have that
∀i∀j ∂aij

∂y = 0.
Thus the aij ’s are independent of y, so that ω is a closed 2-form on a
dimension 2n + i submanifold of M and we can apply the induction
hypothesis to get that there are local coordinates such that:

ω = dx1 ∧ dx2 + . . . + dx2k−1 ∧ dx2k �

3In the case i = 0, ω is degenerate, since it’s a skew-symmetric form on an odd-dimensional
manifold, so in local coordinates its matrix, ωij is skew-symmetric and the odd dimension gives
ωij = −ωji, but det(ωij) = det(ωji), thus det(ωij) = 0, hence it’s a degenerate matrix. This
holds for every point, so ω is degenerate as a form.
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[3.] Assume that α is a constant rank 2k+1 one-form on MN . Prove that there exists a basis
{x1, y1, . . . , xk, yk, z, . . .} with respect to which

α = dz +
k∑

i=1

xidyi.

Proof. Since α is rank 2k + 1, α ∧ (dα)k is nowhere zero, so (dα)k is nowhere zero, but
(dα)k+1 is identically zero, so (dα) is an exact (hence closed) two-form of constant rank k.

Then by Darboux’s theorem, there exists a set of coordinates {x1, y1, . . . , xk, yk, z1, . . . , zN−2k}
with respect to which

dα =
k∑

i=1

dxi ∧ dyi.

Then

d(α−
k∑

i=1

xidyi) = dα−
k∑

i=1

dxi ∧ dyi = 0

So

α−
k∑

i=1

xidyi

is closed, hence locally exact, so that locally there exists a function z such that

α−
k∑

i=1

xidyi = dz.

Now

α ∧ (dα)k = dz ∧
k∧

i=1

dxi ∧ dyi

because all the other terms have multiples of some dxi or dyi. Writing dz locally and omitting
those terms which are functional multiples of dxi or dyi, this isN−2k∑

j=1

∂z

∂zj
dzj

 ∧
k∧

i=1

dxi ∧ dyi.

Because α is of constant rank 2k + 1, this form is nowhere zero, so in particular,
N−2k∑
j=1

∂z

∂zj
dzj

is nowhere zero. This means that if the range of z (as a function M → RN} is restricted to
〈z1, . . . , zN−2k〉, its derivative is rank one, so it is a coordinate.

Then on 〈x1, y1, . . . , xk, yk, z1, . . . , zN−2k〉 it is still a coordinate, and in particular a coordi-
nate independent of the set {x1, y1, . . . , xk, yk}, as desired.

1



(a) Start with a one-form α ∈ Ω1(R2k) of constant rank 2k. Show there exist local coordinates x1, . . . , x2k

such that

α ∧ (dα)k−1 = gdx2 ∧ dx3 ∧ · · · ∧ dx2k

for some positive g. Define a function f so that fk = g and define a one-form σ so that α = fσ. Show
that σ has rank 2k − 1.

Proof. By definition of a rank 2k one-form, (dα)k is nonvanishing, and α ∧ (dα)k ≡ 0. (In this case,
this second property is trivial since (dα)k is a top form.) We can assume α ∧ (dα)k−1 does not vanish
locally, since its derivative is (dα)k. Since α ∧ (dα)k−1 is a nonvanishing 2k − 1-form, we can find a
locally-defined nonvanishing vector field ξ such that i(ξ)[α∧ (dα)k−1] ≡ 0. Therefore, around any point,
we can find local coordinates t, x2, x3, . . . , x2k such that ξ = ∂

∂t in this coordinate system.

Hence, i(ξ)[α ∧ (dα)k−1] = i(ξ)[dx2 ∧ · · · ∧ dx2k] = 0. Since α ∧ (dα)k−1 is nonvanishing, at each point
p there is a unique one dimensional subspace of the tangent space at p where ξ(p) must reside. Ergo,
α ∧ (dα)k−1 and dx2 ∧ · · · ∧ dx2k are linearly dependent. So α ∧ (dα)k−1 = gdx2 ∧ · · · ∧ dx2k for some
continuous, nonvanishing g. If g is negative, we can switch x2 to −x2 to make g positive.

Let f be such that fk = g and let σ = 1
f α.

dσ = − 1
f2

df ∧ α +
1
f

dα

Since α ∧ α = 0, we can quickly calculate:

(dσ)k−1 = −(k − 1)
1
fk

df ∧ α ∧ (dα)k−2 +
1

fk−1
(dα)k−1

σ ∧ (dσ)k−1 =
1
fk

α ∧ (dα)k−1 =
1
g
(gdx2 ∧ · · · ∧ dx2k) = dx2 ∧ · · · ∧ dx2k

(dσ)k = d(σ ∧ (dσ)k−1) = d(dx2 ∧ · · · ∧ dx2k) = 0

Hence, σ ∧ (dσ)k−1 vanishes nowhere and (dσ)k is identically 0; i.e. σ has constant rank 2k − 1.

(b) Prove that the above still holds when n ≥ k and α ∈ Ω1(R2n) still has rank 2k.

Proof. We know that (dα)k is nowhere vanishing, and α∧(dα)k ≡ 0. Hence, (dα)k+1 = d(α∧(dα)k) ≡ 0.
Thus, dα is a 2-form of constant rank k. Therefore, by Darboux’s Theorem (Problem 2), there exist
local coordinates x1, x2, . . . , x2n such that dα = dx1 ∧ dx2 + dx3 ∧ dx4 + · · ·+ dx2k−1 ∧ dx2k.

Then (dα)k = k!(dx1 ∧ dx2 ∧ · · · ∧ dx2k−1 ∧ dx2k), and since α has rank 2k, α ∧ (dα)k = 0. Expressed
in this coordinate system, α =

∑2n
i=1 aidxi for some functions ai. α ∧ (dα)k = 0 implies that ai ≡ 0 for

i > 2k. So

α =
2k∑
i=1

ai(x1, . . . , x2n)dxi.

dα =
∑2k

i=1

∑2j
j=1

∂ai

∂xj dxj ∧ dxi. Therefore, for any 1 ≤ i ≤ 2k and for any j > 2k, ∂ai

∂xj = 0, since the

only term of the sum that carries a factor of dxj ∧ dxi is ∂ai

∂xj dxj ∧ dxi, and this term does not appear
at all in dα by choice of coordinates. Hence, each ai is independent of xj for j > 2k. Thus,

α =
2k∑
i=1

ai(x1, . . . , x2k)dxi.

1



is completely independent of x2k+1, . . . , x2n. Therefore, we can restrict to the 2k-dimensional submani-
fold generated by {x1, . . . , x2k}, and apply part (a).

(c) Use part (b) to show that if α ∈ Ω1(M) has constant rank 2k then we can find a positive function f and
a one-form σ of constant rank 2k − 1 such that

α = fσ.

Use this fact and question (3) to find coordinates that verify the claim.

Proof. Part (b) allows us to define σ and f locally as follows: Given a coordinate chart x : U → R2n,
x∗α is a one form of constant rank 2k on R2n. Thus, there exist a positive function f ′ and a rank 2k− 1
1-form σ′ on R2n such that f ′σ′ = x∗α. Let f = x∗f ′ and σ = x∗σ′.

By question 3, there are local coordinates z1, z2, . . . , zn, y1, y2, . . . , yn such that σ = dy1 +
∑k

i=2 zidyi.
Then α = fdy1 +

∑k
i=2 fzidyi. Define x1 = f and xi = fzi for 2 ≤ i ≤ k. (dα)k = dx1 ∧ dy1 ∧ · · · ∧

dxk∧dyk 6= 0, so x1, . . . , xk, y1, . . . yk are linearly independent. Hence, the xi, yi are part of a coordinate
system such that α =

∑k
i=1 xidyi.

2



MAT 561 Mathematical Physics II: HW1 3/5/2007 Andrew Stimpson

Consider a thermodynamic system whose only configurational variable is volume V so that the
equilibrium submanifold M is 2-dimensional. NOTE: For any of these results to make sense, we
must assume that Q 6= 0.

(a) Let Q denote the heat 1-form and let p denote pressure. Explain how we can interpret the
ratio of two forms as a function

f =
Q ∧ dp

Q ∧ dV
.

Proof: Because 2-forms are top forms on a 2-manifold, in local coordinates (y1, y2) we can
write

Q ∧ dp = fp(y) dy1 ∧ dy2 and Q ∧ dV = fV (y) dy1 ∧ dy2.

Because V is a configurational variuable, Q∧dV is nowhere-vanishing, so we can provisionally
define f ≡ fp/fV . This definition is coordinate-free because in any other coordinates, the
top form corresponding to dy1 ∧ dy2 will be related to dy1 ∧ dy2 by a multiplication by a
non-vanishing function1, which will cancel out in the quotient. ¥

(b) Fix a point x ∈ M and any adiabatic vector ξ ∈ TxM . Show that

f(x) =
dp(ξ)
dV (ξ)

which justifies the expression f =
(

dp

dV

)

adiabatic

where the right hand side is just the ratio of 1-forms evaluated on some adiabatic vector.

Proof: Pick η ∈ TxM such that Q(η) 6= 0. Part (a) showed that

Q ∧ dp = f Q ∧ dV.

So at the point x,

Q(η) dp(ξ) = (Q ∧ dp)(η, ξ) = f(x)(Q ∧ dV )(η, ξ) = f(x) Q(η) dV (ξ)

because Q(ξ) = 0. So because Q(η) 6= 0, dp(ξ) = f(x) dV (ξ). Note that since f is indepen-
dent of the choice of ξ, the ratio dp(ξ)

dV (ξ) is also independent of ξ. ¥

(c) Let T denote temperature. Based on the discussion above, state what is meant by

dT ∧ dp

dT ∧ dV
=

(
dp

dV

)

isothermal

.

Statement: To calculate, dp
dV along infinitesimal isothermal directions, we can just take the

ratio of dp and dV evaluated on isothermal tangent vectors. But just as in part (b), this
can be calculated by taking the ratio of the two 2-forms dT ∧ dp and dT ∧ dV because an
isothermal tangent vector is in the kernel of dT by definition.

1the determinant of the Jacobian of the transition function

1



(d) Since the differentials of V, T and p, T are linearly independent, we may write

Q = ΛV dV + CV dT or Q = Λpdp + CpdT

where the Λs and Cs are functions on M . Show that
(

dp

dV

)

adiabatic

= γ

(
dp

dV

)

isothermal

where γ = Cp/CV .

Proof:
(

dp

dV

)

adiabatic

=
Q ∧ dp

Q ∧ dV
=

(Λpdp + CpdT ) ∧ dp

(ΛV dV + CV dT ) ∧ dV
=

Cp dT ∧ dp

CV dT ∧ dV
=

Cp

CV

(
dp

dV

)

isothermal

¥

(e) An ideal gas is one that, in equillibrium, obeys the constraints

pV = nT and γ = constant

where n are the moles of gas. Use part (d) to show that the adiabatic curves for an ideal gas
are given by

pV γ = constant.

Proof: Using the coordinates (V, T ) for M , for an isothermal vector τ ,

dp(τ) =
∂p

∂V
dV (τ) +

∂p

∂T
dT (τ) =

∂p

∂V
dV (τ).

Because pressure has the formula p(V, T ) = nT
V ,

(
dp

dV

)

isothermal

=
∂p

∂V
= −nT

V 2
=⇒

(
dp

dV

)

adiabatic

= −γ
nT

V 2

Let ξ be an adiabatic vector in TxM .

d(pV γ)(ξ) = V γdp(ξ) + pγV γ−1 dV (ξ) =
(
−V γγ

nT

V 2
+ pγV γ−1

)
dV (ξ)

=
(
−V γγ

nT

V 2
+

nT

V
γV γ−1

)
dV (ξ) = 0.

So infinitesimal adiabatic vectors are in the kernel of d(pV γ). Thus as long as Q 6= 0, Q must
be proportional to d(pV γ), which means that adiabatic curves must be level sets of pV γ . ¥
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MAT561 Homework 1

Problem 6

Part a

Let yi be another basis of linear coordinates on V . Then, there exists A =
(Ai

j) ∈ GL(Rn) such that yi = Ai
jx

j . We have

dyi = Ai
jdxj

∂

∂yi
= Ai

j ∂

∂xj

where (Ai
j) = A−1.

Using above, we get:

Hessf =
∂2f

∂yi∂yj
dyi

⊗ dyj

= Ai
k ∂

∂xk

(

Aj
l ∂f

∂xl

)

Ai
mAj

ndxm
⊗ dxn

= Ai
kAi

mAj
lAj

n

∂

∂xk

(

∂f

∂xl

)

dxm
⊗ dxn

= δk
mδl

n

∂

∂xk

(

∂f

∂xl

)

dxm
⊗ dxn

=
∂2f

∂xm∂xn
dxm

⊗ dxn

The fact that Hessian is symmetric follows from the commutativity of partial
differentiations.

Part b

Let f : V → R. Then, we have

df : TV → TR

(p, ṗ) 7→ (f(p), (dfp)(ṗ))

So φf (p) = dfp = ∂f
∂xi (p)dxi. Now to find dφf :

dφf : TV → TV ∗
≃ V ∗

× V ∗

(p, ṗ) 7→ (dfp,
∂2f

∂xj∂xi
(p)ṗidxj)

1



dφf = Hessf as a map from V to V ∗⊗V ∗. So φf is a local homeomorphism
at p if and only if the Hessian is non-singular at p.

Part c

From the computation in part b), we have:
dφf,p = Hij(p)dxi ⊗ dxj , where Hij denotes the Hessian of f .
By the chain rule, it follows that:

dφ−1
f : TV ∗

→ TV

(α, α̇) 7→

(

φ−1
f (α), Hij(φ−1

f (α))α̇i

∂

∂xj

)

Using this, we have:

Lf(α) = < id(α), φ−1
f (α) > −f ◦ φ−1

f (α)

φLf (α) = d(Lfα) = < d(id)α, φ−1
f (α) > + < id(α), dfφ

−1

f
(α) > −dfφ−1(α) ◦ dφ−1

f,α

= < id, φ−1
f (α) > +(α − dfφ

−1

f
(α))H

−1(φ−1
f (α))

= φ−1
f (α) + (α − dfφ

−1

f
(α))H

−1(φ−1
f (α))

= φ−1
f (α) + (α − φf (φ−1

f (α)))H−1 = φ−1
f (α) + (α − α)H−1

φLf (α) = φ−1
f (α)

where H−1 = Hij ∂
∂xi ⊗

∂
∂xj .

Part d

From the previous part, we have

α = φ−1
Lf (x) = φf (x)

for any x in V .

LLf(x) = L(Lf)(x) = < x, φ−1
Lf (x) > −Lf(φ−1

Lf (x))

= < x, α > −Lf(α)

= < x, α > −(< x, α > −f ◦ φ−1
f (α))

= f(φ−1
f (φf (x))) = f(x)

So it follows that LL = id.

2



Part e

One can generalize the notion of the Legendre transform to vector bundles in
the following way:

Given f : M × V → R, we define φf : M × V → M × V ∗ by

φf (m, v) = (m, dV f(m,v)),

where dV f is the “partial external differential” of f along V . (This is equivalent
to fixing a point in M, and then taking the differential of f as a function on V .)

Since f is smooth on M × V , so is φf . The local coordinates on the fibre
are linear, so the “Hessian along V” is well-defined on each point of M , and it
is precisely equal to dV φf .

φf is a local homeomorphism along the fibres, if for each point p on M , the
Hessian along V in some local coordinates have none-zero determinant. Note
that this doesn’t necessarily give a local homeomorphism on the bundle.

Assuming that φf is a diffeomorphism along the fibre at each base point
allows one to take the Legendre transform of f as before, only this time one has
to mind the base point. This gives us a notion of Legendre transform on trivial
vector bundles, and one can see that transforming a smooth function on M ×V

will yield a smooth function on M × V ∗ since it is the sum of compositions of
smooth maps.

Finally, for a general vector bundle, one may perform Legendre transforma-
tion via the local trivializations.

3



Thermodynamics Homework

MAT 561

Christopher Bay

March 6, 2007

Let V be the 4-dimensional vector space with linear coordinates T , S, p, V , i.e.

V = RT ⊕ RS ⊕ Rp ⊕ RV

where each coordinate has the appropriate physical units. Endow V with the symplectic form

ω = dT ∧ dS − dp ∧ dV.

1. We use ω to identify Rp = (RV )∗ via the linear isomorphism

ωp : Rp → (RV )∗, ∂p 7→ ι(∂p)ω = −dV = −V. (1)

Let U ∈ C∞(RS ⊕ RV ) be the internal energy. Our goal is to compute the Legendre transform
LV U : RS ⊕ (RV )∗ → R of U along the V direction and reinterpret it as a map RS ⊕ Rp → R.
Let s ∈ RS and α ∈ (RV )∗, and let Us : RV → R be the function Us(v) = U(s, v). Interpret
dUs : RV → RV ×(RV )∗ as a map from RV to (RV )∗ and suppose that this map is a diffeomorphism
for each s ∈ S. Then

LV U(s, α) = LUs(α) (2)
= 〈α, (dUs)−1(α)〉 − U(s, (dUs)−1(α)). (3)

Here 〈 , 〉 : (RV )∗ ⊗ RV → R denotes the canonical pairing. Consider the bilinear map p · V :
Rp ⊕ RV → R. Via the diffeomorphism (dUs)−1 : (RV )∗ → RV we can interpret p · V as a map
on Rp ⊕ (RV )∗ (which is no longer linear, and depends on the choice of s ∈ S). Furthermore, the
map ωp allows us to consider this map as a function on Rp alone. Making the dependance on s
explicit, we have a map p · V : RS ⊕ Rp → R. For s ∈ S and ρ ∈ Rp we have

p · V (s, ρ) = p(ρ) · V ((dUs)−1(ωp(ρ)))
= (p(ρ)V )((dUs)−1(ωp(ρ)))
= 〈p(ρ)V, (dUs)−1(ωp(ρ))〉
= −〈α, (dUs)−1(α)〉,

where α := ωp(ρ) ∈ (RV )∗, and the minus sign is due to the sign in (??). Now, we may also
interpret the term on the far right of (??) as a function U : RS ⊕ Rp → R via ωp:

U(s, ρ) = U(s, (dUs)−1(ωp(ρ))) = U(s, (dUs)−1(α)).

1



Therefore,
−LV U = pV + U = H ∈ C∞(RS ⊕ Rp),

where H is the enthalpy.

For a path γ, the change in enthalpy along γ is∫
γ

dH =
∫

γ

dU +
∫

γ

(pdV + V dp).

According to the First Law of Thermodynamics,∫
γ

dU = W (γ) + Q(γ) = −
∫

γ

pdV + Q(γ).

Thus, the change in enthalpy is Q(γ)+
∫

γ
V dp and the change in enthalpy is equal to the heat added

precisely when
∫

γ
V dp = 0. In particular, this occurs for isobaric (constant pressure) processes.

2. The form ω also induces an isomorphism

ωT : RT → (RS)∗, ∂T 7→ ι(∂T )ω = dS = S. (4)

We now derive the relationship

−LSU = U − TS = FHelm ∈ C∞(RT ⊕ RV )

where the U − TS term will be properly interpreted.

We assume that for each v ∈ V the map dUv is a diffeomorphism. By definition, for σ ∈ (RS)∗

and v ∈ V ,

LSU(σ, v) = LUv(σ) (5)
= 〈σ, (dUv)−1(σ)〉 − U((dUv)−1(σ), v). (6)

The bilinear map TS : RT ⊕ RS → R can be considered as a map on RT ⊕ (RS)∗ (which also
depends on v) by precomposing with (dUv)−1 : (RS)∗ → RS in the second argument. It can then
be considered as a map on RT by precomposing with ωT in the second argument. We then have a
map TS : RT ⊕ RV → R, given by

TS(t, v) = T (t)S((dUv)−1(ωT (t)))
= 〈T (t)S, (dUv)−1(ωT (t))〉
= 〈σ, (dUv)−1(σ)〉,

where σ := ωT (t) ∈ (RS)∗. The U term in (??) may be interpreted as a map U ∈ C∞(RT ⊕ RV )
as follows:

U(t, v) = U((dUv)−1(ωT (t)), v) = U((dUv)−1(σ), v).

Therefore,
−LSU = U − TS = FHelm ∈ C∞(RT ⊕ RV ).

For a path γ the change in FHelm along γ is∫
γ

dFHelm =
∫

γ

dU −
∫

γ

(SdT + TdS).
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By the First Law of Thermodynamics,∫
γ

dU = W (γ) + Q(γ) = W (γ) +
∫

γ

TdS.

So the change in FHelm is W (γ)−
∫

γ
SdT and the change in the Helmholtz free energy is equal to

the work done by the system precisely when
∫

γ
SdT = 0. In particular, this occurs for isothermal

(constant temperature) processes.

3. Now use ω to identify Rp ⊕RT = (RS ⊕RV )∗ via ωp ⊕ ωT . Suppose dU : RS ⊕RV → (RS ⊕RV )∗

is a diffeomorphism. Then for σ ∈ (RS)∗ and ν ∈ (RV )∗,

LU(σ, ν) = 〈(σ, ν), (dU)−1(σ, ν)〉 − U((dU)−1(σ, ν)).

In the notation used above,

dU(s, v) =
∂U

∂S
|(s,v) dS +

∂U

∂V
|(s,v) dV = dUv(s) + dUs(v),

so that dU(s, v) = (dUv(s), dUs(v)). So dU(s, v) = (σ, ν) implies (dU)−1(σ, ν) = ((dUv)−1(σ), (dUs)−1(ν))
where the pair (s, v) which depends on the pair (σ, ν). Then for some (s, v) we have

LU(σ, ν) = 〈σ, (dUv)−1(σ)〉+ 〈ν, (dUs)−1(ν)〉 − U((dUv)−1(σ), (dUs)−1(ν)).

Since (s, v) depends on (σ, ν) ∈ (RS ⊕RV )∗ the interpretations made above are still valid, but now
the first term is TS ∈ C∞((RS ⊕ RV )∗) and the second term is −pV ∈ C∞((RS ⊕ RV )∗). For
example, if t = ω−1

T (σ) then

〈σ, (dUv)−1(σ)〉 = 〈ωT (t), (dUv)−1(σ)〉
= 〈T (t)S, (dUv)−1(σ)〉
= T (ω−1

T (σ))S((dUv)−1(σ))

and similarly for −pV . By precomposing with (ωp ⊕ ωT )−1 we have TS,−pV, U ∈ C∞(Rp ⊕ RT )
and

−LU = U − TS + pV = FGibbs ∈ C∞(Rp ⊕ RT ).

3
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Classical Theory
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Chapter 1

Introduction, notation, and
preliminaries

1.1 Our guiding philosophy

This course is meant to be an introduction to the topics usually taught to under-
graduate physics major. These are classical mechanics in both the Newtonian and
Relativistic setting; classical electromagnetism; thermodynamics and statistical me-
chanics; and quantum mechanics. We have two audiences in mind: former physics
majors who have seen the general content before and pure math majors with an
interest is studying physical topics.

For the first audience, we present the physics in a way that emphasizes some
of the overall mathematical structure. This approach can be of great pedagogical
benefit by shining new light on old topics and preparing one for further study in field
and string theory, to which many of the mathematical ideas we discuss apply.

For the second audience, the mathematical structure is there for psychological
reasons, as well as pedagogical ones, softening the culture shock and yet introducing
math that is interesting in its own right. We also present specific examples and
solutions to get a hands-on feel for the physical ideas that they display.

In some cases, particularly when we cover quantum mechanics, some may find
our mathematical approach to be vague and hand-waving at best. While this is
somewhat regrettable, we will not apologize for it. One of the goals of this course is
to offer the students a sense (perhaps even an intuition) for how physicists achieve
progress, not in spite of eschewing mathematical rigor, but sometimes because of it.
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6 CHAPTER 1. INTRODUCTION, NOTATION, AND PRELIMINARIES

1.2 Physical and mathematical preliminaries

Dimensional analysis and “naturalness”
Vector fields, differential forms, and calculus



Chapter 2

Classical mechanics

2.1 Newtonian mechanics on Euclidean space

2.1.1 Space, time and particle

Space We will generally refer to space meaning the 3-dimensional real vector space
R3 = {x = (x, y, z) ∈ R×R×R} with the right-handed orientation and the Euclidean
inner product 〈· , ·〉 : R3 × R3 → R, to which we will refer as dot product. For
x,y ∈ R3, 〈x,y〉 = x · y. We describe all events by coordinate expressions as
that is the language most closely related to the realization of the event. We will
also switch freely between various confusing but conventional notations to describe
the coordinates. For example, it is common to write x ∈ R3 variously as xi for
i = 1, 2, 3 or just xi and also x = (x, y, z). Note that by convention x1 = x denotes
the “x-coordinate”, x2 = y denotes the “y-coordinate”, and x3 = z denotes the
“z-coordinate”. In this language, x · y =

∑3
i,j=1 δijx

iyj where δij is the Kronicker-
delta, equal to +1 when i = j and 0 otherwise. We will use the Einstein summation
convention meaning that when covariant and contravariant indices are repeated, a
summation over the full range of the indices is implied, that is, for a vector xi and
covector pi, pix

i =
∑3

i=1 pix
i.

For any vector x we define the unit vector x̂ = |x|−1x where |x| ≡
√

x · x ≡ r.
The unit vectors in the x-, y-, and z-directions are denoted x̂, ŷ, and ẑ. The ori-
entation on space defines a cross-product × : R3 × R3 → R3. The right-handed
orientation is the one given by the right-hand rule x̂ × ŷ = +ẑ. This can be ex-
pressed using the totally anti-symmetric tensor εijk normalized to ε123 = +1, that is
εijk(x̂)i(ŷ)j(ẑ)k = 1, in terms of which for any two vectors a, b, (a×b)i = δii′εi′jka

jbk.

7



8 CHAPTER 2. CLASSICAL MECHANICS

Time and Particle In the Newtonian picture of nature, there is a universal clock
defining time for all observers. We will denote this universal time by t ∈ R. In
general, particle motion is described, by definition, by a time-dependent vector x(t).1

The velocity v of a particle is the derivative with respect to time of its position
v(t) = ẋ(t) ≡ d

dt
x(t). Its acceleration a is the derivative of its velocity, or the second

derivative of its position a(t) = ẍ(t). We will often drop the argument of these
physical quantities, leaving their time-dependence implicit. It is also common to
denote the constant values of these quantities with a ‘naught’, e.g. x0 for constant
position vector. We define the linear momentum p(t) of a particle as the product of
its mass m and velocity ẋ, p = mẋ.

Symmetries The space symmetry group for Newtonian mechanics is given by the
Euclidean group SO(3) n R3 where the compact factor acts on the coordinates by
rotations xi 7→ Λi

jx
j : Λi

jδikΛ
k
l = δjl and the non-compact factor acts by translations

xi 7→ xi + ai. In Newtonian mechanics the time variable does not mix with the
spacial coordinates. We therefore have a separate symmetry factor R of translations
in time t 7→ t + c. The physical interpretation of these space-time symmetries is
that in writing equations, the origin and orientation of the coordinate system are
conventions and in particular are not physical. That is, only the relative coordinates
of space-time events are physical. In general, physical quantities are invariant under
the space-time symmetry group. In practice we will always fix this ambiguity by
specifying the coordinate system.

Note that when physical quantities are expressed in linear-algebraic language,
the transformation laws are simple, that is, linear. When a physical formalism is
expressed in the way, we say that the formalism is covariant – in this case with
respect to the space symmetry group SO(3) n R3 × R – and that the space-time
symmetry is manifest. It is always the case that a covariant formalism is expressed
in terms of unphysical quantities because covariance means that the symmetries
are manifest which means that they are realized linearly on the variables which, in
turn, means that the variables are not invariant under the symmetries and hence not
physical.

2.1.2 Newton’s Laws

Newton i: An object of mass m in rectilinear motion x(t) = v0t + x0 will stay in
rectilinear motion unless acted on by a force.

1This is the meaning of particle as opposed to an extended object for which we have to specify
a distribution of positions as a function of time.
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This statement defines the concept of kinematics or geodesic motion. It is equiv-
alent to the statement that free particle trajectories satisfy the equation

ẍ = 0. (2.1)

Which, in turn, is equivalent to the statement that, in the absence of force, momen-
tum is conserved

ṗ = 0. (2.2)

Note that the equation is SO(3) n R3 × R covariant. In a local lagrangian system,
the existence of a global symmetry implies, via Noether’s theorem, the existence
of a conserved current (c.f. section 2.1.5). Suffice it here to say that the current
associated to the translations is the momentum p. The kinematic equation (2.2)
expresses that it is conserved, that is, constant in time. Similarly, there is a current
associated to the rotational invariance – the angular momentum L = x× p. Noting
that p ‖ ẋ and using the kinematical equation, we see that the angular momentum is
conserved L̇ = 0. Finally, the current associated to a shift in the time variable is T =
1
2
mẋ2 = 1

2m
p2 and is called the (kinetic) energy (the normalization is conventional).

Again, the kinematic equations imply that it is conserved.

Newton ii: An object of mass m, when acted on by a force F will deviate from
rectilinear motion with an acceleration a = ẍ according to the relation

F(x, t) = ma(t) (2.3)

or, equivalently,

F(x, t) = ṗ(t). (2.4)

This is the statement of dynamics or the deviation from geodesic motion due
to an external influence. An equivalent way to express this is that the second law
defines the source 1

m
F(x, t) for the kinematic (read “source-less”) equation ẍ = 0 or

ṗ of the first law. In this sense, it defines what is meant by a force.
An important point to note is that the second law is linear in the force. This

implies that we have the
Principle of superposition: If there are 2 forces F1 and F2 acting on the same
particle, the effective force Ftotal the particle experiences is the vector sum of the indi-
vidual forces Ftotal = F1 +F2. In particular, two opposing forces of equal magnitude
and opposite direction applied to the same particle produce no net dynamics.

A second important point is that the second law can be interpreted as defining
the mass of an object to be the ratio of a stimulus |F| to the response |a| in its

motion by m = |F|
|a| . In this sense, we see that m refers to an inertial mass, that is, a

property describing its resistance to a change in motion.
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Newton iii: An object, when acted on by some agent with a force Faction will exert
a force Freaction on the agent of equal magnitude and opposite direction, id est,

Faction = −Freaction. (2.5)

This is a statement of linear momentum conservation during a collision. Intu-
itively, when pressing on an object with some force, the object presses back (other-
wise, we wouldn’t be able to feel it). The third law is the statement that the reaction
force is of precisely the same magnitude as the applied force.2

Newton’s law of universal gravitation Consider two objects, one of mass m1

and the other of mass m2. They will exert a gravitational force on one another given
by

Fgravitation = −G
m1m2

r2
r̂ (2.6)

where G ≡ 1
4πκ

≈ 6.67259× 10−11Nm2kg−2 is the least precisely known fundamental
constant of nature.

This formula is fundamentally different from the second law. Firstly, it introduces
a constant G which is claimed to be fundamental in the sense that it is the same
number no matter what material form the masses take.

Secondly and related to this, the masses m1,2 entering it could be called gravita-
tional masses since they describe a property of an object we are calling gravitation
and should probably have been called gravitational charge. A priori, this is a different
type of mass than the inertial mass entering the dynamical second law. Therefore,
Newton’s law of universal gravitation is making the bold assertion that gravitational
mass and inertial mass are equivalent.

Finally, we note that setting a2 = −Gm2

r2 r̂ to be the acceleration due to the gravity
of the mass m2 at a distance r from its position, we find the form Fgravitation = m1a2.
Taking m = m♁ to be the mass of the earth and r = r♁ its radius, we find the famous
acceleration due to gravity g = |a♁| ≈ 9.8ms−2.

2This law causes some confusion when used in conjunction with the second to the effect that if
the object pushes back with exactly the same force, the forces should cancel and there should be no
resulting dynamics. Indeed, there is no relative dynamics between the hand and the object, rather,
the object will accelerate relative to the ground against which we are also pushing when we try to
accelerate the object.
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2.1.3 Potentials

There are various drawbacks to the vector space formulation of Newtonian mechanics,
not the least of which is that all defining equations are vector equations. In most
cases of physical interest, drastic simplifications are made possible by switching to
a description in terms of energy. Suppose the force is holonomic ∇× F = 0. Then
we can define the potential energy function U(x, t) s.t. F = −∇U . The sign comes
from the observation that a force acts so as to decrease the potential energy. The
total energy E = T + U is the sum of the kinetic and potential energy. Just as the
kinetic energy was conserved in the absence of external forces, the total energy of a
system is conserved when the force is the gradient of the potential energy and the
latter does not depend explicitly on time: Ė = mẋ · ẍ +∇U · ẋ + ∂U

∂t
= 0 by Newton

ii. This is the famous principle of the conservation of energy. It is very powerful
because it is, in the cases in which it applies, equivalent to the second law but it is
a scalar equation, making it much easier to use.

2.1.4 Hamiltonian

Very closely related to the energy formulation of Newtonian mechanics is the Hamil-
tonian formalism. In this formulation, the fundamental variables are the position
xi and the momentum pi vs. the position and the velocity (c.f. section 2.1.5). A
physical trajectory is a graph in the phase space {xi, pi}3

i=1.
3 Note that the momen-

tum is treated as a 1-form in this formulation (which, as we will soon learn, is the
proper interpretation of this quantity). The dynamics is encoded in the Hamiltonian
H(x, p) which, when evaluated on a point in the phase space, is equal to the energy E
introduced in section 2.1.3. In particular, it is the sum of the kinetic energy function
T (p) which we take to be a function only of the momentum (usually T = 1

2m
p2)4 and

the potential energy function U(x) with we take to depend only on the position. We
can now easily show that the definition of momentum and the second law imply

Hamilton’s Equations

ẋi =
∂H

∂pi

3In general, the space parameterized by x may be any C2 3-manifold M . Then the phase space is
defined to be the co-tangent bundle T ∗M . From this point of view, it is easy to see the symplectic
structure.

4On a more general space the kinetic energy function will depend on x through the metric:
T = 1

2mgij(x)pipj .
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ṗi = −∂H

∂xi
(2.7)

The form of these equations5 displays an important aspect of the phase space, namely,
its symplectic structure: The phase space comes equipped with its Poincaré 1-form
pidxi and therefore the symplectic 2-form dpi ∧ dxi. This statement is often implicit
in a discussion of Hamilton’s equations in which one considers transformations of the
variables (x, p) which preserve the ‘form’ of Hamilton’s equations. These canonical
transformations are the symplectomophisms – smooth transformations on the phase
space coordinates which preserve the symplectic structure.

From the Poincaré 1-form and a phase space trajectory γ (a path in phase space)
we can construct the action (functional)

S[γ] =
∫

γ
pidxi. (2.8)

A useful generalization of the phase space includes the time coordinate as an
additional variable. This 7-dimensional space is called the extended phase space.
Similarly to the action functional (2.8) on the un-extended phase space, from the
Poincaré 1-form and the Hamiltonian function we can construct the action functional6

S[γ] =
∫

γ

[
pidxi −H(x, p)dt

]
. (2.9)

It is important to remember that (xi(t), pi(t)) are functions of the time parameter
t. As such, we are allowed to “vary” them. That is, we consider an infinitesimal
deformation of the trajectory γ → γ′ = γ + δγ. The variational or functional
derivative of the action functional is defined to be the linear part of S[γ′], that is

δS

δγ
≡ lim

δγ→0
S[γ + δγ]. (2.10)

This notation δ for ∂ for the functional derivative is customary in the calculus of
variations.

The path has two linearly independent variations in the x-direction and the p-
direction. It is therefore possible to define the partial variations in these directions.
The following notation is customary (and, hopefully, self-explanatory)

δS = δxi δS

δxi
+ δpi

δS

δpi

. (2.11)

5Note that the Hamilton equations (2.7) are coupled ordinary differential equations of the first
order which contain the same information as Newton’s second law which is second order.

6Note that this is (the negative of) an integrated Legendre transformation of H(x, p).
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The action is called stationary when δS = 0. Since the x- and p-variations are
independent, stationary action implies

0 =
δS

δxi
= −ṗi −

∂H

∂xi

0 =
δS

δpi

= ẋi − ∂H

∂pi

(2.12)

and we recover Hamilton’s equations (2.7).7 This is the principle of stationary action;
the physical trajectories in phase space are those which extremize (usually minimize)
the action.

This point of view has many advantages. Firstly, it generalizes the intuitive
idea that physical processes are such that they minimize the energy. Secondly, a
modification of this formalism (c.f. section 2.1.5) us a very powerful tool to solve
complicated concrete problems in analytical dynamics especially dynamical systems
defined in terms of constrained degrees of freedom. Finally, the principle of stationary
action will fit seamlessly into the description of quantum mechanical systems c.f.
chapter ??. There we will see that quantum mechanical corrections to classical
mechanics have the interpretation of deviations δγ of the phase space trajectories.

2.1.5 Lagrangian

A complementary formulation of Newtonian mechanics is the Lagrangian formu-
lation. The Lagrangian formulation is a “Legendre transform of the Hamiltonian
formulation”. Indeed, the space replacing the phase space of Hamiltonian mechanics
is the space parameterized by positions qi and velocities q̇i.8 The Lagrangian function
L(qi, q̇i) is the Legendre transform of the Hamiltonian H(xi, pi)

L(qi, q̇i) = piq̇
i −H(x, p). (2.13)

Plugging in the form H = T + U and substituting pi = mq̇i we find that L = T −U .
By the definition of the action (2.9), the Lagrangian function is the unintegrated
action density

S[γ] =
∫

γ
L(q, q̇) (2.14)

7In the first equation, we have integrated the time derivative by parts. This is legal since the
surface term is proportional to δx which vanishes when evaluated at the endpoints of the path
(recall that we vary the path but keep the endpoints fixed).

8For a general space M the Lagrangian formalism is defined on the tangent bundle TM . It is
conventional in this context to denote the positions by qi instead of xi.
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where γ is re-interpreted as a section of the tangent bundle.9 The stationary phase
principle in this case implies the Euler-Lagrange equation

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0. (2.15)

The advantages of the Lagrangian formalism over the Hamiltonian one include
the use of the stationary action principle to solve complicated problems in anaytical
dynamics and the possibility to easily manifest Lorentz invariance in relativistic
theory (c.f. ??).

Noether’s theorem Consider a time-independent infinitesimal transformation of
coordinates qi 7→ q′i ≈ qi + εi under which the action is invariant S 7→ S, that is, a
symmetry of the theory. Now promote the parameter εi → εi(t) to a function. The
resulting change in the action must be proportional to ε̇ since, when ε is constant,
the transformation is a symmetry. Given this, there must be a function Ji(q, q̇, t)

such that δS =
∫

ε̇iJi = εiJi|−
∫

εiJ̇i. The first term is the “surface term” εJ |tfti – the
difference of the quantity εJ at the final time tf and the initial time ti. The second
term vanishes by the equation of motion. (Prove it!) When ε is constant, we see
that J is conserved J(tf ) = J(ti). Such conserved functions arising from symmetries
of the theory are called Noether currents. In this case the symmetry is a translation
and the current is Ji = ∂L/∂q̇i, which is the definition of the momentum. In the
absence of external forces, this is indeed conserved.

With an eye to the future we will refer to a time-independent symmetry as a
global symmetry. Noether’s theorem is the statement that for every global symmetry
of the action, there is a conserved current and vice versa.

2.1.6 Examples

Gravitational potentials and solvable systems.
Potential theory and the need for fields.

9Usually this whole story is reversed: One defines the Lagrangian function as the difference
between the potential and kinetic energy functions and develops the Lagrangian formalism and
stationary action principle. Subsequently the Legendre transformation to the Hamiltonian function
is performed. It is then proven that the resulting Hamiltonian is independent of q̇ and the phase
space picture is developed.
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[Course overview.]

Let’s get started with Newtonian mechanics. The prerequisite is that you know what a
manifold is. I won’t assume Riemannian geometry. I’m trying to keep things simple, so
things will be on flat affine spaces. If you want to sup it up in your head as we go along, feel
free.

So classical mechanics, we’re talking about the physics (and math) of a single particle moving
in some Euclidean space. So if you want to play along at home it could be a Riemannian
manifold. The mathematical models are paths x, maps from time M1 → X where X is a
Euclidean target space. (or possibly a Riemannian manifold). Do I need to define a Euclidean
space? Sorry, I guess that’s a little bit insulting.

All right, so there are two spaces that are going to color our approach to this, M1 and X.
Let’s look at the structure of both of these spaces.

Okay, so time has physical significance. We attribute certain mathematical structure to it to
correspond to this. In particular,

1. It’s affine, meaning that it’s not necessarily a vector space. How do you add two
instances in time? You can’t. You can talk about how much time has passed, so it’s
an affine space over a one dimensional vector space T ∼= R.

2. There are units, like seconds or hours. What sort of mathematical structure would units
be associated with? A norm, a metric. In particular we have a translation invariant
metric on affine time. In other words, T has an inner product on it.

3. We could potentially also attribute to it an orientation, a differentiation between going
forward and backward. We’ll hold off on that for now.

To have a cogent discussion, we want to do math, so I want to fix some affine coordinate
t : M1 → R. We want to choose this so that |dt| = 1.
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The structure, excluding the third, gives us a symmetry group that we will talk about again
and again. The symmetry group is the Euclidean group for M1, which includes translations
and reflections. So there is a short exact sequence 1→ Translations→ Euc(M1)→ O(T )→
1. That’s the structure we associate to the domain.

Now what structure do we have in the range?

1. X is an affine space over a vector space V.

2. There is a (translation invariant) metric so that V is an inner product space. This
measures distance on Ed.

If you’re playing along with Riemannian geometry, these are the conditions that

1. X is a smooth manifold

2. X has a Riemannian metric

3. The metric is complete so we can work globally on X.

Let’s go back to the Euclidean space. Again there is an associated symmetry group Euc(Ed),
where you have translations and then reflections and rotations. Again you have a short exact
sequence

1→ V︸︷︷︸
translations

→ Euc(Ed)→ O(V )→ 1.

For a general Riemannian manifold the group of isometries will be smaller, meaning lower
dimensional. Sometimes this group will even be trivial.

There is one last piece of data that we need to define classical mechanics on X. We have the
model of maps from affine Euclidean time into a Riemannian manifold. The last piece of
data is

• a potential energy function V : X → R.

• A mass n > 0 of the particle.

A quick note on units. In this course we’ll come across a few fundamental units. In classical
mechanics we’ll only come across mass, length, and time. Energy will have units mL2/t2.

Actually, these are the only basic units. This is an empirical fact. We will see that extensions
of classical mechanics will introduce new fundamental constants such as the speed of light c
with units L/T (special relativity), a fundamental angular momentum ! with units ML2/T
(quantum mechanics), etc. but must reduce to classical mechanics in the appropriate limit,
e.g. c→∞ and !→ 0. Therefore, no new fundamental units are introduced even when more
fundamental physics is uncovered.
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Now we can finally define what classical mechanics is, or at least the classical mechanics
of the system. So all togethher, for any target space X, all possible particle motions are
modeled on paths P = Map(M1, X). We’ll assume that the paths are smooth. Don’t worry
about putting a Frechet topology or whatever on this.

This is again actually an empirical fact. Discontinuous paths imply the disappearance and
reappearance (at a later time) of particles while a kink in the path amounts to an instanta-
neous change in the particle’s velocity. In order to change a Newtonian particle’s velocity
discontinuously one must apply an infinite force. Infinite forces are considered pathological
and any use of such a thing should be considered only as an approximation.

Now given the potential energy function V the actual particle motions are paths x such that
they satisfy Newton’s second law

mẍ(t) = −V ′(x(t)) = −∇V (x(t))

In the physics literature this equation is variously written as mẍ = −∇V as a “vector”
equation or as mẍi = −∂V /∂xi in “components”. Here x is a coordinate for the point x and
xi are its components (in some orthonormal coordinate system) where the indices i = 1, 2, 3
label the linearly independent directions. A common notation is (x1, x2, x3) = (x, y, z). The
index on xi is defined to be ‘up’ and is lowered with the metric or its inverse. In Euclidean
space the placement of the indices (upper or lower) doesn’t matter as the metric gij = δij

is just the Kronicker symbol but the more general case such as in Riemannian geometry or
“curvilinear coordinates” (e.g. spherical coordinates) it, of course, matters a great deal.

We’re going to look at the space of solutions to this equation M , the space of states. A
solution is a state. It’s also called a phase space. Let me mention some properties right off
the bat.

• It will be clear soon that M is a smooth manifold, so we can do calculus on it.

• The affine Euclidean group for time Euc(M1) acts on M on the right so in particular
time translation acts on it. So Ts(x)(t) = x(t− s).

• One other thing, the potential was a function of X. It can also be a function of time, so
that the symmetry is broken. So Euc(M1) no longer preserves the space of solutions.

Let me argue that this is a smooth manifold. Let’s see this by breaking some symmetry.
Choose an instant t0 in time and by picking this we break the affine symmetry. Then there’s
a natural map M → TEd = V × Ed given by x '→ (ẋ(t), x(t)). This is a bijection and you
can just transfer the differentiable structure across.

The physical intuition behind this diffeomorphism is the intuitively obvious fact that when you
want to specify a particles trajectory, it suffices to give the initial position, its initial velocity,
and the potential field in which the particle motion occurs (i.e. the force which acts on it).
For example, the parabolic trajectory of a baseball depends on the gravitational potential field
(in this case V = mgz with g ≈ 9.8ms−2) the hight of the ball upon release and its velocity
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(speed and direction) upon release. Newton formulated his second law to be second order in
time derivatives precisely to accommodate this empirical fact.

Now we have a picture of what the space of solutions looks like. Let me give you some
examples.

Example 1 The free particle
This is the case where it’s moving in Euclidean space and V = 0. Then Newton’s second law
says mẍ = 0. Then M = {x(t) = p + vt|p ∈ Ed, v ∈ V }. So given a t0, the map takes p + vt
to (v, p). In this case the map doesn’t depend on t.

Example 2 This is a little less trivial but just as famous. It’s the spring or harmonic
oscillator.
Implicitly you have to have a distinguished point where the spring is stable. I may as well
take X = R1. Then the potential energy is V = 1

2kx2, where the units of k are M
T 2 .

Then Newton’s second law says mẍ(t) = −kx(t). Then M = {p cos(
√

k
m t)+

√
m
k v sin(

√
k
m t)|p, v ∈

R}. So then p cos(
√

k
m t) +

√
m
k v sin(

√
k
m t) t=0'→ (v, p).

There are other things I can point out about the space of solutions. We have the symmetry
group of the domain that acts on the solutions. What about the symmetry group of the
target? How does that naturally act on the space of solutions? it acts on the left, but only
those isometries that preserve the potential. An isometry that changes the potential will not
preserve the space of solutions. What’s true about the two group actions? They commute.
The time group will have to do with dynamics, the target group with kinematics. If X = Ed,
and V = 0, so that we’re talking about the free particle, then the entire Euclidean group acts
on the space of solutions, since everything preserves the 0 potential. In particular, if A is an
affine Euclidean transformation and its derivative is in O(V ), then p + vt '→ Ap + (dA · v)t.

Let me wrap up what I’ve said today, which isn’t much. In summary, we’ve discerned that
the space of solutions M to Newton’s second law has the following structure:

• There’s a right action by the Euclidean time group Euc(M1) acting by right composition
with the inverse.

• There’s a left action by potential-preserving isometries of X, Isom(X, V ).

• For t0 ∈M1 there’s a natural diffeomorphism M
t0∼= TX.

Next time I hope to make this fit in with the idea of a symplectic structure.
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[Is the exact sequence from last time secretly Noether’s theorem?]

We’ll see Noether’s theorem later. Let me recap what we’ve seen so far. So far we’ve seen
particle motion, and the structure of the phase space M which are paths from the affine time
to the target satisfying Newton’s second law

{x : M1 → X|ẍ = −V ′(x(t))}

This has a right action by Euc(M1), a left action by Isom(X, V ) and a for each t0 ∈ M1 a

natural diffeomorphism M
t0∼= TX.

We saw something about symplectic geometry on a smooth manifold M2n. This means there
is a two form ω ∈ Ω2(M) such that ωn is nowhere vanishing (nondegeneracy) and dω = 0
(closed).

The thing that will play a big role today is the symplectic gradient which takes smooth func-
tions on a symplectic manifold into vector fields C∞(M) → X (M) via f %→ ξf characterised
by ι(ξf ) = df. This gives us the Poisson bracket {·, ·} which makes C∞(M) a Lie algebra.
This is given by {f, g} = ω(ξf , ξg). Then this map ξ is a homomorphism of Lie algebras.

There is a typo in the equation above. The formula for ξf should be ι(ξf )ω = df , or in
components (local coordinates) ξi

f = ωij∂jf . The Poisson bracket is given in local coordinates
zi by

{f, g} =
∂f

∂zi
ωij ∂g

∂zj
. (1)

Note that ξf = −{f, ·} which is handy to keep in mind.

The symplectic form on the cotangent bundle is compatible with the coordinates of the latter in

the sense that it takes the form ω =
(

0 −1
1 0

)
in the basis where (zi) = (xi) for i = 1, . . . , n

and (zi) = (pi) for i = n + 1, . . . , 2n. (Compare ω = dpi ∧ dxi.) Then the Poisson bracket
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takes the form often found in physics books

{f, g} =
∂f

∂xi

∂g

∂pi
− ∂g

∂xi

∂f

∂pi
. (2)

By the way, I should mention that the use of components such as ξi
f instead of the full

vector ξf which in local coordinates x is given by ξi
f (x)∂/∂xi is actually not really coordinate

dependent. As pointed out by Penrose, the expression ξi
f can be understood merely as a

notation which keeps track of the tensorial nature of ξf which is that of a vector in this case.
Of course this does not apply to the coordinates themselves which prompted Penrose to use a
different label e.g. ξa vs. xi. However, modulo such caveats the notation is a powerful way of
keeping track of covariance of complicated expressions for objects composed of multiple tensor
quantities with derivatives, etc. acting on them. Finally, note that the coordinate basis vector
∂/∂xi ≡ ∂i is written as ∂a in Penrose’s notation. Physicists generally have never hear of
this Penrose notation and never distinguish a coordinate index i from an abstract index a.

The prime example of a symplectic manifold is when M = T ∗X, the cotangent bundle. Then
ω = dθ where θ is the God-given one-form on T ∗X.

Recall that in local coordinates on T ∗X θ = pidxi where the xi are local coordinates in the
base and the momenta pi are local coordinates on the fibre of T ∗x X.

Why is this interesting to us in the context of particle motion? These diffeomorphisms give
us a relationship, but we want to get from the tangent to the cotangent bundles. So we

use the Riemannian metric to get M
t0∼= TX ∼= T ∗X. So now the rest of this class will be

spent investigating, take the natural structure on T ∗X and pull it back by M . So we have
a symplectic structure for each t0 and these could depend on the choice of t0. So this is
breaking the symmetry.

Recall that the M ∼= TX isomorphism comes from the map xi(t) %→ (xi(t0), ẋi(t0)) which
takes a solution to Newton ii, that is, a specific particle motion, and maps it to the particle
coordinate at t = t0 and its velocity at t = t0. The second isomorphism takes (xi, ẋi) %→
(xi,mgij(x)ẋj) and, in physics at least, depends explicitly on the mass parameter.

This brings us to Hamiltonian mechanics. The goal of Hamiltonian mechanics is to encode
the symmetries of our phase space into the Lie algebra of smooth functions with the Poisson
bracket (C∞(M), {·, ·}).

To point out, to be grandiose, where this fits in the grand scheme of physical systems, there’s
usually a phase space, and another space (of observables). There should be a duality ∼
between them, as observables are evaluated on states. In our particular situation in classical
mechanics, our state space is our phase space. Our observables are the functions on our phase
space. These would be things like momentum and energy that we can assign to a particular
particle path.

Strictly speaking, and perhaps shockingly, these are not observables. The problem is that these
quantities are coordinate dependent. The (potential) energy, for example is only defined up to
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a constant since it appears with a derivative in Newton ii. Therefore, only energy differences
are physical. Similarly, the momentum is only defined up to a constant vector and only the
relative momentum between us and the particle is physical. This is the reason the observables
are required to be scalar functions on the phase space; they are not allowed to transform
non-trivially under a change of coordinates.

One would expect that the symmetries of the phase space should translate into symmetries
of the symplectic structure. Let me talk about that, and symplectomorphisms. I’m never
going to write out symplectomorphism again. I probably spelled it wrong in the first place.
I’ll call them whatever in the future, unless you want me to call them, like Bob. That might
look bad in Gabe’s notes.

Weinstein coined the term symplectic, from taking the Greek equivalent for the Latin word
for complex. Before it was the Abelian linear group. It sounds like a Victorian word, like
perambulator. It’s the Greek root for intertwined.

Let (M,ω) be a symplectic manifold. Then ϕ ∈ Diff(M) is a symplectomorphism if and
only if ϕ∗ω = ω. Let me give you some examples related to the cotangent space. Since this
happened automatically, we might think that any diffeomorphism from a diffeomorphism of
the underlying manifold would be a symplectomorphism. That is the case.

If M = T ∗X, ω = dθ and ϕ ∈ Diff(X), then

ϕ : T ∗X
∼→ T ∗X

by (x, p) %→ (ϕ(x), (dxϕ−1)∗p). So to check that this is a symplectomorphism, you just check
that this preserves θ.

Let us denote the symplectomorphism on the coordinates zi of M by ϕ : zi %→ z̃i(z). In the
case of the tangent bundle this gives (xi, pj) %→ (x̃i, ∂xk

∂x̃j pk) which is just the statement that
pi is a 1-form. It is then obvious that θ = pidxi is invariant.

Let’s look at a subclass where X = Ed, so M = V ∗ × Ed and let ϕ = A ∈ Euc(Ed). So for
x ∈ Ed and p ∈ V ∗ then Φ(x, p) = (Ax, (dA−1)∗p) is a symplectomorphism.

In the linear category last time this is analogous to the subgroup, we said GL(L) ⊂ Sp(L⊕L∗),
and this is the general analogue of this linear statement.

The reason I harped on these examples is because when we talked about particles, there are
transformations on the target space. The diffeomorphisms will give us special symplectomor-
phisms on the phase space.

Now I want to talk about infinitessimal symplectomorphisms. So ξ ∈ X (M) is an infinitessi-
mal symplectomorphism if and only if Lie(ξ)ω = 0. This leads us to a special subset of vector
fields Xω = {ξ ∈ X (M)|Lie(ξ)ω = 0}. This sits inside X (M) as a subalgebra, preserving
the Lie bracket.

So as long as you stick with diffeomorphisms isotopic to the identity, these are the same
requirements.
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Maybe it is a good little exercise to show that the linear part of the finite symplectomorphism
is the infinitesimal symplectomorphism. That is, check explicitly that (ϕ∗ − 1)ω ≈ Lie(ξ)ω.

Okay, now the symplectic gradient. For any f ∈ C∞(M) I get a vector field ξf . I claim that
this lives in Xω(M). To see this note that

(Lie(ξf )ω) = d ◦ ι(ξf )ω + ι(ξf )dω = 0,

because ι(ξf )ω = df and dω = 0.

So what if I want to look at a particular symmetry. Can I find corresponding obervables?
Does every infinitessimal symmetry have a corresponding observable? The answer will depend
on H1. The short answer is no. The long answer brings up the exact sequence

f !! ξf

0 !! H0
dR

!! Ω0(M) !! Xω
!! H1

dR
!! 0

ξ !! [ι(ξ)ω]

So if [ι(ξ)ω] .= 0 then ξ has no corresponding observables. If ξ ∈ Xω has an observable, it
has many, only unique up to the constants.

This is not what a physicist would call many since it is as small as possible without be-
ing trivial. As we will probably see soon, the ambiguity inherent in some potentials can be
hugh sometimes involving an infinite number of functions. These ambiguities called gauge
invariances have become one of the central themes in theoretical physics.

Okay, now time translation. In classical mechanics, there is always a distinguished one-
parametery group of time translations. Let’s just assume for now that ξt is the corresponding
infinitessimal generator of time translation, that is, ι(ξ)ω is exact.

So we have a choice of corresponding observables. Pick one, up to a constant. Finally we meet
the energy. This is the Hamiltonian, which in the sense of these infinitessimal symmetries, is
negative the corresponding observable for time translation. In other words, energy, once you
take the symplectic gradient, it generates motion which is the negative of time translation.
So that is {x %→ x ◦ Ts, s ∈ R}.

This is an example of our previous observation that ξf = −{f, ·}. The statement that there
is a distinguished 1-parameter group of translations is equivalent to the statement that there
is a distinguished observable f = H, the Hamiltonian. Time translation is usually written as
ξt = d

dt so that our formula becomes

d
dt

= −{H, ·}. (3)
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Exercise: Hamilton’s equations follow by plugging the coordinates xi and pi into the equation
above. Write down Hamilton’s equations. Given the relation pi = mẋi, show that Hamilton’s
equations are equivalent to Newton ii.
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Recall that for certain ξ ∈ Xω(M ) (those for which the topological obstruction disappears)
there exists a corresponding observable Oξ ∈ C∞(M ) such that −dOξ = ι(ξ)ω.

This describes the infinitessimal symmetry ξ via ξf = {Oξ, f} for any f ∈ C∞(M ).

We got as far as saying that there are a particular set of symmetries we’re concerned with.
There are the infinitessimal symmetries of time translation, ζ ∈ Xω(M ), and this has the
observable Oζ where −Oζ is the energy or Hamiltonian. For a path x, H(x) = m2|ẋ(t)|2 +
V (x(t)). For x ∈ M this is independent of t.

[Is that obvious?]

Yes, I’ll get to it in a second. That’s where we left off last time. Any questions?

Before I finish off Hamiltonian dynamics, let me make some tangential but useful remarks
about observables. Most of the observables we see in this class will be something like O(t,f),
defined for any time t ∈ M1 and f : X → R. Then

O(t,f)(x) = f(x(t)).

Let me give another example, two examples.

1. If X = Ed, then we can take f = xi, and in this case O(t,f) the xi coordinate of the
particle at time t.

2. The Hamiltonian, this is the energy of the particle at time t.

A jet of a function is essentially its Taylor series. The first type of observable depended on
the 0-jet of the path; the Hamiltonian depends on the 1-jet. O(t,f) is local in time, meaning
it only depends on finitely many of these, only depends on a small neighborhood of a given
time.

So what’s the upshot? The structure on M is as follows. We have what is called a Hamil-
tonian system. That’s the phase space with its symplectic structure and our function H, so
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the couple (M ,H). So this is a symplectic manifold and a distinguished observable (energy)
such that −ξH is the infinitessimal time translation.

Let’s look at the symmetries of this extended structure. Global symmetries are symplectomor-
phisms that preserve H. The infinitessimal symmetries are infintessimal symplectomorphisms
ξ ∈ X (M ) such that Lie(ξ)H = 0. Now we’re going to look at these symmetries in terms of
observables.

Here “extended structure” should not be confused with the (closely related) “extended phase
space” which is used in the construction of the Hamiltonian form of the variational principle.
Extended phase space is just the Cartesian product of the original phase space (the cotangent
bundle T ∗X of the configuration space X) with the time M1 ∼= R.

So if Q is an observable that corresponds to an infinitessimal symmetry, then we have the
following relation: {H,Q} = 0. Now, for any observable, never mind that it’s a symmetry of
any system, time translation flow on phase space is induced by H. So we get that Ȯ = {H,O}.

This equation deserves its own line:
dO

dt
= {H,O} . (1)

In the operator formalism of quantum mechanics this will be the equivalent of the Schrödinger
equation.

Exercise: Show that the classical evolution equation (1) is equivalent to Hamilton’s equa-
tions.

Recall that you already showed that Hamilton’s equations (with the condition that the mo-
mentum is given in terms of the velocity by pi = mẋi or, equivalently, that the Hamiltonian
factorizes as H = 1

2mp2 + V (x)) are equivalent to Newton’s second law. Therefore, once we
fix the identification TX ∼= T ∗X, the evolution equation (1) is equivalent to Newton ii.

Now we use the observable energy to tell us how things change with time. So now, thus, what
we can conclude, assuming that the observable is a symmetry of the Hamiltonian system, for
Q, if Q induces a symmetry of the Hamiltonian system, then we havea conservation law. We
have that Q̇ = {H,Q} = Lie(−ξH)Q = Lie(ξQ)H = 0.

So look at Ḣ. This is {H,H} which is zero. So H is conserved. Such observables, here’s
more jargon, are called, and this is why I used Q, are called conserved charges.

So here’s the big idea , big enough to put in a box. Symmetries imply conservation laws.

Exercise 1 Compute these conserved charges. The physical situation is the free particle in
Euclidean space. We have the huge symmetry group, which is the isometries of Ed.

Compute the conserved charges for translations and for rotations. These will be momentum
and angular momentum.

The term linear momentum is sometimes used to distinguish these two types of momenta.
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Okay, let’s talk about Lagrangian mechanics. For particles we have solutions to Newton’s
second law, M ⊂ P = Map(M1, X). The idea of Lagrangian mechanics is to describe M as
the critical submanifold of a function S : P → R.

This function S is called the action, and M would be paths x such that δS(x) = dPS(x) = 0.
So δ is the exterior derivative on P.

This is the variational principle: we want the action to be stationary with respect to variations
δxi(t) (which form a basis of H∗(P)) in the path xi(t). This philosophy can be motivated
in various ways with various degrees of rigor. One such (rigorless) way is the following.
In Newtonian mechanics, particle motion tends to minimize the potential energy; if a ball
is sitting on an inclined plane it will roll to the bottom. The action principle is the precise
embodiment of this intuition.

[Is this why physicists want a path integral?]

That’s for quantum mechanics.

The Path Integral and the Principle of Least Action: A preview Quantum theory
introduces a fundamental unit of action ~ called Planck’s constant. The path integral Z is
the probability amplitude for a particle at position xi at time ti to be found at a xf at a later
time tf . It is given (schematically) by

Z =
∫ x(tf )=xf

x(ti)=xi

[dx(t)] exp
(

i

~
S[x(t)]

)
(2)

The boundary conditions on the path are indicated by the “limits of integration” and [dx(t)] is
a “measure” on the space of paths P. This formula expresses the fact that the probability of
finding a particle at xf at time tf given that it was at xi at time ti is given by a sum over all
paths (a.k.a. “histories”) with these boundary conditions weighted by a unimodular complex
number whose phase is the action (~ = 1 in natural units). Now consider the classical limit
~ → 0. When the action is away from its stationary point, any small deviation in the path
causes wild fluctuations in the exponential with “frequency” 1

~ →∞. The claim is that these
fluctuations average to 0 so that the path integral has, in the classical limit, support only on
those paths for which the action is extremal, that is δS = 0. The principle of least action
therefore follows naturally from the quantum principle of “sum over histories”.

So these equations, call these x paths, they satisfy what are called Euler-Lagrange equations.
We’ll eventually see that these are just Newton’s second law. Let me just continue with the
philosophical baloney. This sort of variational principle is also found in geometry, where it
used to obtain nice PDEs, like the harmonic PDE.

The terms “Newton’s second law”, “Euler-Lagrange equation” and “Hamilton’s equations”
are all examples of “equations of motion”. The phrase “equation of motion” or eom is used
interchangeably (and non-commitally) with any of these.

The Lagrangian approach gives us back our phase space, but it gives us a lot more than
that. The symplectic form was borrowed and depended on a time t. In the Lagrangian
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approach, we’ll get, the information embedded in this Lagrangian mechanics, which are
the Euler Lagrange equations and the submanifold M , but also a family of one-forms on
M parameterized by time. Finally, these one-forms will give us the symplectic structure
naturally, and that won’t depend on t.

I’ve kept you guys ten minutes long, I apologize. But in this sense, physicists equate “theory”
with a particular Lagrangian, which has all of this information in it.

[I thought it was the action?]

That’s the integral of the Lagrangian, which I think is more basic.
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Questions for Thermodynamics
¯

Disclaimer: Some of these problems are clearly more involved than others and some
require an understanding of results from prior problems. You have two weeks to complete
them.

1. The following questions regard the linear algebra and local “flavor” of closed, non-
degenerate two forms.

(a) Let V be a real 2n-dimensional vector space and let ω ∈
∧2 V ∗ be a non-degenerate

two-form. Show that there exists a basis e1, . . . , e2n of V ∗ such that

ω = e1 ∧ e2 + e3 ∧ e4 + · · ·+ e2n−1 ∧ e2n.

Hint: use induction on n.

(b) Now let ω0, ω1 ∈ Ω2(R2n) be closed, non-degenerate two forms such that ω0(0) =
ω1(0). Construct a diffeomorphism f defined in some neighborhood of 0 ∈ R2n such
that

f ∗ω1 = ω0.

In particular, consider the one-parameter family of two-forms

ωt = ωo + tσ where σ = ω1 − ω0.

Show that there exists a one-form β defined in some neighborhood such that

σ = dβ and β(0) = 0.

Now ωt and β define a time-dependent vector field ξt such that ι(ξt)ωt = −β. Show
that ξt generates a one-parameter family of diffeomorphisms ft such that f0 = id
and ft(0) = 0 for all t. Compute the derivative

d

dt
(f ∗t ωt)

and based on your results show that f ∗1 ω1 − ω0 = 0 so that f1 is the desired diffeo-
morphism.

2. Assume the results of the first question.

(a) Use both parts of problem (1) to show that for any closed, non-degenerate two-form
ω ∈ Ω2(M) there exist local coordinates x1, . . . , x2n such that

ω = dx1 ∧ dx2 + . . . + dx2n−1 ∧ dx2n.

(b) A two-form ω ∈
∧2 V ∗ is said to have rank k if, for k ≤ n,

ωk 6= 0 and ωk+1 = 0.

Use the results from part (a) to show that if ω ∈ Ω2(M) has constant rank k then
there exist local coordinates such that

ω = dx1 ∧ dx2 + . . . + dx2k−1 ∧ dx2k.

This is Darboux’s Theorem for two-forms of constant rank.



3. Let α ∈ Ω1(M) have constant rank 2k + 1. Note that dα is a two-form of constant
rank k. Use this fact and Darboux’s theorem to show that there are local coordinates
z, x1, . . . , xk, y1, . . . , yk such that

α = dz +
k∑

i=1

xidyi.

4. Let α ∈ Ω1(M) have constant rank 2k. We will show that there are local coordinates
x1, . . . , xk, y1, . . . , yk such that

α =
k∑

i=1

xidyi.

We will break the proof into several steps.

(a) Start with a one-form α ∈ Ω1(R2k) of constant rank 2k. Show that there exist local
coordinates x1, . . . , x2k such that

α ∧ (dα)k−1 = gdx2 ∧ dx3 ∧ · · · ∧ dx2k

for some nowhere vanishing – in fact, positive – function g. Now define a function
f so that fk = g and define a one-form σ so that α = fσ. Show that σ has rank
2k − 1.

(b) Prove that the above still holds when n ≥ k and α ∈ Ω1(R2n) still has rank 2k.
Hint: reduce to the case n = k.

(c) Use part (b) to show that if α ∈ Ω1(M) has constant rank 2k then we can find a
positive function f and a one-form σ of rank 2k − 1 such that

α = fσ.

Use this fact and question (3) to find coordinates that verify the claim.

5. Consider a thermodynamic system whose only configurational variable is volume V so
that the equilibrium submanifold M is two-dimensional.

(a) Let Q denote the heat one-form and let p denote pressure. Explain how we can
interpret the ratio of two forms as a function

f =
Q ∧ dp

Q ∧ dV
.

(b) Fix a point x ∈ M and any adiabatic vector ξ ∈ TxM . Show that

f(x) =
dp(ξ)

dV (ξ)
which justifies the expression f =

(
dp

dV

)
adiabatic

where the right hand side is just the ratio of one-forms evaluated on some adiabatic
vector.
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(c) Let T denote temperature. Based on the discussion above state what is meant by

dT ∧ dp

dT ∧ dV
=

(
dp

dV

)
isothermal

.

(d) Since the differentials of V, T and p, T are linearly independent we may write

Q = ΛV dV + CV dT or Q = Λpdp + CpdT

where the Λs and Cs are functions on M . (These are called “specific” and “latent”
heats, respectively).Show that(

dp

dV

)
adiabatic

= γ

(
dp

dV

)
isothermal

where γ = Cp/CV .

(e) An ideal gas is one that, in equilibrium, obeys the constraints

pV = nT and γ = constant

where n are the moles of gas. (A mole is essentially a rescaled count of the number
of molecules. It is has no physical units). Use part (d) to show that the adiabatic
curves for an ideal gas are given by

pV γ = constant.

6. The following questions cover Legendre transforms. They play a useful role in certain
applications of thermodynamics as we shall see in subsequent questions.

(a) Let f : V → R be a smooth function on a real vector space. Choose some basis
x1, . . . , xn of linear coordinates and define the Hessian of L as

Hessf =
∂2f

∂xi∂xj
dxi ⊗ dxj.

Show that the Hessian is independent of the chosen basis and takes values in
Sym2V ∗.

(b) Work under the natural identification T ∗V = V × V ∗ and interpret the differential
of f as a map φf = df : V → V ∗. What condition must Hessf satisfy so that φf is
a local diffeomorphism? Explain.

(c) Let 〈·, ·〉 : V ∗⊗V → R denote the canonical pairing. Assume φf is a diffeomorphism.
Then we can define the Legendre transform

Lf(α) = 〈α, φ−1
f (α)〉 − f ◦ φ−1

f (α) for α ∈ V ∗

so that Lf is a function on V ∗. Compute the differential of Lf and – under the
natural identification (V ∗)∗ = V – compute the map φLf = d(Lf) : V ∗ → V .
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(d) Now compute LLf : V → R and conclude that the Legendre transform is involutive,
i.e. L2 = id.

(e) Let M be a smooth manifold and generalize the Legendre transform to functions
f : M × V → R by “transforming” along the V directions. Thus you should have
Lf : M × V ∗ → R. Further generalize to functions f : E → R where π : E → M is
a vector bundle over M so that Lf : E∗ → R.

7. Let V be the 4-dimensional vector space with linear coordinates T, S, p, V , i.e.

V = RT ⊕ RS ⊕ Rp ⊕ RV

where each coordinate has the appropriate physical units. Endow V with the symplectic
form ω = dT ∧ dS − dp ∧ dV .

(a) Use ω to identify Rp = (RV )∗. If the internal energy is a function U ∈ C∞(RS⊕RV )
show that the Legendre transform along the V -direction is the enthalpy

LV U = U + pV = H ∈ C∞(RS ⊕ Rp).

The second expression must be properly interpreted. When is change in enthalpy
equal to the heat added?

(b) Use ω to identify RT = (RS)∗. Show that

LSU = U − TS = FHelm ∈ C∞(RT ⊕ RV ).

This is called the Helmholtz Free Energy. When is the change in FHelm equal to the
work done by the system?

(c) Now use ω to identify
Rp ⊕ RT = (RS ⊕ RV )∗

and show that

LU = U − TS + PV = FGibbs ∈ C∞(RT ⊕ Rp).

This is called the Gibbs Free Energy.
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Homework set 2: Statistical Thermodynamics

1 Binary systems

We start with a system of N particles each of which can be in one of two
states with equal probability. We will refer to the particles as sites and the
two states as spins which can be up ↑ or down ↓. We define N↑ = N

2
+ s and

N↓ = N
2
− s to be the number of spins up and down, respectively. The spin

excess is the quantity N↑ − N↓ = 2s. Define the function g(N, s) to be the
number of configurations of spin excess 2s. Compute g(N, s).
Using the Stirling approximation

N ! =
√

2πNNN exp

{
−N +

1

12N
+ . . .

}
, (1)

show that

log g ≈ −
(

N↑ +
1

2

)
log

(
N↑

N

)
−

(
N↓ +

1

2

)
log

(
N↓

N

)
+

1

2
log

(
1

2πN

)
(2)

Using a further expansion of logarithms, show the Gaußian distribution

g(N, s) ≈ g(N, 0) exp

(
−2s2

N

)
(3)

Recall that the entropy of the system in the state ρ is defined to be
S = −kB〈log ρ〉ρ. Argue, based on the fundamental hypothesis of equal
probability of accessible microstates, that if the system is in a state of spin
excess 2s, its entropy is given by S = −kB log g(N, s):

− S

kB

≈ −
(

N

2
+ s

)
log

(
1

2
+

s

N

)
−

(
N

2
− s

)
log

(
1

2
− s

N

)
+

1

2
log

(
1

2πN

)
. (4)

1



2 Paramagnetism

We return to the situation of problem ??. Suppose each spin has a mag-
netic dipole moment m associated to it. Remind yourself from what we
learned in electromagnetism that the energy of a magnetic dipole in an ex-
ternal magnetic field B is U = −m · B. Let us suppose the magnetic field
points “up” with magnitude B and that the total magnetic moment due to
spin excess is 2sm. Using the results of problem ?? argue for the following
approximate form for the free energy:

F (T, s, B) ≈ −2smB + kBT

(
N

2
+ s

)
log

(
1

2
+

s

N

)
+ kBT

(
N

2
− s

)
log

(
1

2
− s

N

)
− 1

2
kBT log

(
1

2πN

)
(5)

Minimize (extremization will suffice) this free energy with respect to s to
show that the expectation value of the spin excess in thermal equilibrium is
given by

〈2s〉 = N tanh

(
mB

kBT

)
. (6)

The magnetization M is defined as the magnetic field per unit volume M =
〈2s〉m/V . Plot the magnetization as a function of external magnetic field
and temperature. Interpret the results.

3 Ferromagnetism

Consider a system of magnetic moments as in problem ?? but without
external magnetic field. In the mean field approximation, we assume that
each magnetic moment experiences an effective magnetic field due to the
other magnets surrounding it. In particular, we assume the field is propor-
tional to the magnetization M (the magnetic moment per unit volume):

Beffective = cM (7)

for some constant c. Substituting Beffective into the result for the magnetiza-
tion of problem ?? gives a transcendental equation for M . Note that M = 0
is a solution for any T . Investigate the qualitative behavior of the solutions
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to this equation as a you change T .1 You should find that there is a special
value Tc for which the number of solutions jumps from 2 to 1. What is this
value in terms of the magnetic moment of a spin m, the number of spins per
unit volume n, and the magnetic “permeability” c? The temperature Tc is
called the critical temperature.

4 The ideal gas revisited

In class we derived various properties of an ideal gas using the Gibbs
partition function. However, since the N particles were non-interacting, we
expect that we obtain the same result by taking N copies of the single particle
in a box. Recall that for the latter we derived in class the canonical partition
function

Z1 =
nQ

n
(8)

where

nQ =

(
mkBT

2π~2

) 3
2

(9)

is the quantum concentration, n = N
V

is the concentration or particle density
and V is the volume of the box. Argue that the partition function for the
gas of N particles should be simply

ZN =
(Z1)

N

N !
. (10)

Using this generating function, show that the internal energy of the gas is

U =
3

2
NkBT. (11)

Recall from your first homework that the (specific) heat capacity at constant
volume CV is the amount of heat energy Q required to raise the temperature
of a system by one degree when we keep the volume constant. Show that the
first law then implies that CV = 3

2
N for an ideal gas.

1For example, solve this equation graphically for various values of T between 0 and ∞.
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Using Stirling’s formula (??), show that the Helmholtz free energy derived
from the N -particle partition function (??) is approximately

F = NkBT

{
log

(
n

nQ

)
− 1

}
. (12)

Use this to compute the pressure of the gas and show that it implies the
equation of state (ideal gas law)

pV = NkBT. (13)

5 Interacting gas: van der Waals’ equation of

state

The ideal gas is a very good approximation for dilute gasses. However,
since the particles are point-like and do not interact, the behavior of the
system is essentially the same for all densities n. Van der Waals modified
the ideal gas law to include a long-range attractive inter-particle force and
a short range repulsive force representing the finite size of the particle. In
this problem we will include these effects by modifying the free energy of the
ideal gas (??).

The short-range repulsive part of the force is modeled by a “hard core”:
The force is 0 outside a small volume b representing the volume of the particle
and infinite inside. This subtracts an amount −Nb from the total volume
V , that is, we replace V → V − Nb everywhere in the expression for the
free energy. For the attractive part, we invoke the mean field approximation:
We consider the potential energy of a particle in the field of all the others in
which we take the density n to be constant, that is, we are replacing the local
number density n(x) with its average value n. Then the potential energy for
the first particle is proportional to the sum of the potential field ϕ of each of
the other particles:∫ V−Nb

b

ϕ(x) n d3x ≈ n

∫ V−Nb

b

ϕ(x) dV = n(−2a) (14)

where a is some constant with units of energy times volume. (The factor
of 2 is there just for convenience and the sign is the assumption that the
inter-particle force is attractive.) In all, we are saying that the contribution
to the free energy per particle pair is −2a. Approximating

(
N
2

)
≈ 1

2
N2 write
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down the Helmholtz free energy of the ideal gas with the two modifications
above. You should find

F = −NkBT

{
log

nQ(V −Nb)

N
+ i

}
− N2a

V
. (15)

From this expression compute the pressure. This gives the van der Waals
equation of state(

p +
N2a

V 2

)
(V −Nb) = NkbT. (16)

Now set pc = a/27b2, Vc = 3Nb, and Tc = 8a/27b and rewrite the v. d. Waals
equation of state in terms of dimensionless variables p̂ = p/pc, V̂ = V/Vc,
and T̂ = T/Tc. This defines a family of isothermal curves on the p̂-V̂ -plane
depending on T̂ . Sketch these curves for various values of T . (You may also
plot them using a graphing tool.) Show (analytically) that there is a unique
curve with a horizontal inflection point which is given by T̂ = 1, V̂ = 1, and
p̂ = 1.

6 Blackbody radiation

This problem concerns the spectrum of electromagnetic radiation in a
cavity (box with conducting walls; like an oven) in thermal equilibrium at
temperature T . Since the cavity is conducting, the electric field must sat-
isfy Maxwell’s equations as well as the boundary conditions we discussed
last semester. Suppose the box is a cube with sides of length L. Then the
eigenvalues of the wave operator 2 are

c2π2n · n− ω2L2 (17)

for n = (nx, ny, nz) ∈ (Z+)3. Let n =
√

n · n denote the length of this vec-
tor. Then the solutions to the wave equation have frequency ωn = nπc/L.
According to the rules of quantum mechanics, each such “mode” has energy
εn = ~ωn. Using the Boltzmann distribution, write down the canonical par-
tition function for all the modes in the cavity. Write a similar expression for
the internal energy U of the system. The resulting expression is valid for
a spin-less boson (boson with no internal degrees of freedom). Photons, on
the other hand, have 2 physical polarizations (massless spin 1). Additionally,
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photons do not interact with themselves. Argue from this that we should
therefore multiply our result for the energy by a factor of 2.

Now approximate the sum by an integral∑
n∈(Z+)3

→ 1

8
4π

∫ ∞

0

dn n2 (18)

where the factor of 1
8

comes from restricting the integral to the positive
octant. Compute the energy per unit volume per unit frequency or spectral
density uω defined by the equation

U

V
=

∫ ∞

0

uω dω (19)

with V = L3. You should find Planck’s law of radiation:

uω =
~

π2c3

ω3

e~ω/kBT − 1
. (20)

Plot this distribution as a function of x = ~ω/kBT . Find the (approxi-
mate/numerical) value of the frequency of the peak as a function of the
temperature. Perform the integral to find the temperature-dependence of
the total energy density. Note the characteristic T 4 temperature dependence.
This is called the Stephan-Boltzmann law.

7 Bose-Einstein condensation

For a Bose-Einstein gas, any energy level can have any occupancy. Use
this to show that the free energy is given by

F =
1

β

∞∑
i=0

log
(
1− λe−βεi

)
. (21)

where λ = eβµ is the absolute activity. In the case of a dilute gas, we pro-
ceeded by replacing the sum with an integral over phase space. In doing so
we have tacitly assumed that the lowest energy states do not contribute dis-
proportionately to the sum. This is certainly true for temperatures not close
to absolute zero, however, let us now revisit this assumption by considering
the low-temperature limit.
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Suppose there are N particles confined to a region of volume V in the
system under consideration. Let us normalize the ground state energy ε0 = 0
and assume that this state is non-degenerate, that is ε1 > 0.2 Taking the
appropriate derivatives of the free energy, compute the expectation values
of the total number of particles in the system 〈N〉 and the occupancy of
the ground state 〈N0〉. From the expression for 〈N〉 show that as T → 0 all
particles have to be in the ground state 〈N0〉 → 〈N〉. Show that to lowest
non-trivial order

λ ≈ 1− 1

〈N0〉
or µ ≈ − kBT

〈N0〉
. (22)

(Notice that the chemical potential approaches 0 from below.) As µ is now
very small, we can approximate εi − µ ≈ εi for all excited states. Having
separated out the lowest level as the only one contributing significantly to
the sum, we can now compute 〈Nex〉 := 〈N − N0〉 by integration as before.
Show that this gives

〈Nex〉 = Li3/2(1)nQV (23)

where nQ is the quantum concentration (??) and the polylogarithm

Lis(λ) =
∞∑

n=1

λn

ns
. (24)

Numerically, Li3/2(1) ≈ 2.6. Define the critical temperature for Bose-Einstein
condensation as the temperature for which the quantum density nQ = n

Li3/2(1)

(where n = N
V

):

Tc =
2π~2

kBm

(
n

Li3/2(1)

) 2
3

. (25)

Conclude that

〈N0〉 = 〈N〉

[
1−

(
T

Tc

) 3
2

]
. (26)

Given the typical number of particles in a macroscopic system, what is the
significance of this equation? In the case of 4He, plugging the numbers into
(??) gives Tc ≈ 3.1 K. The actual number is 2.17 K.

2Recall that the convergence of the geometric sum in the derivation of the Bose-Einstein
distribution function requires that εi − µ > 0∀ i.

7



Questions for Quantum Mechanics
¯

Choose one. Presentations will be on Monday, May 7th starting at 10 AM. TeX’d solu-
tions are due Monday, May 14th. Do not hesitate to ask for help from me, William, or each
other.

1. Let V be a real vector space with symplectic form ω ∈
∧2 V ∗. We define the Heisenberg

algebra to be the vector space heis(ω) = iR ⊕ V whose only non-trivial brackets are
between elements v, w ∈ V :

[v, w] = iω(v, w) ∈ iR.

(a) Use ω to identify V = V ∗. This identification gives iR⊕V ∗ a Lie algebra structure.
How is this structure related to the Poisson bracket?

(b) Let Heis(ω) denote the Heisenberg group. We can define it to be the exponentiation
of the Heisenberg algebra. Thus for each (iθ, v) ∈ heis(ω) we have

exp (iθ, v) ∈ Heis(ω).

Use the Baker-Cambell-Hausdorf formula to find the group law. Show that as a set
Heis(ω) = T× V and that as a group it fits into the following short exact sequence

1 → T → Heis(ω) → V → 1.

(c) Let Sp(ω) be the symplectic group with Lie algebra sp(ω). Use ω to identify

Sym2V = sp(ω) = Sym2V ∗.

The second identification gives the quadratic forms a Lie algebra structure. How is
this structure related to the Poisson bracket?

(d) Show that the automorphism group of heis(ω) is exactly Sp(ω). Based on your
answers in parts (a) and (c) relate the action of sp(ω) on heis(ω) to the Poisson
bracket.

2. Let S be a complex vector space that supports a representation

ρ : heis(ω) → End(S)

such that ρ(iθ) is scalar multiplication by iθ ∈ iR.

(a) Extend ρ to a representation of sp(ω): Let Av·w ∈ sp(ω) denote the element iden-
tified with the symmetric product v · w for v, w ∈ V . (See (1c) above). Then
set

ρ (Av·w) =
ρ(v)ρ(w) + ρ(w)ρ(v)

2
.

Show that this is indeed a Lie algebra homomorphism.

(b) Show that [ρ(A), ρ(v)] = ρ(Av) for all A ∈ sp(ω) and v ∈ V .



(c) Assume S has a hermitian inner product and that for each v ∈ V , ρ(v) is a self-
adjoint endomorphism. Explain why this is compatible with the requirement above
for ρ(iθ). Show that ρ(A) is also self-adjoint for A ∈ sp(ω).

3. Let X ⊕X ′ = V be a real polarization. Take S to be the Schwartz space of half-forms
on X with its natural hermitian inner product.

(a) For v′ ∈ X ′ we can interpret ω(v′) = ω(·, v′) as an element of X∗. For ψ ∈ S define

ρ(v)ψ = i
∂ψ

∂v
and ρ(v′)ψ = ω(v′) · ψ for v ∈ X, v′ ∈ X ′.

Show that this is a representation of heis(ω) and that ρ(w) is self-adjoint for each
w ∈ V .

(b) Show that we can “exponentiate” ρ to obtain a unitary representation of Heis(ω).
Write the precise action of exp (iθ, v) ∈ Heis(ω) on ψ ∈ S.

(c) With respect to the polarization we can write(
A B
C D

)
∈ sp(ω).

Show that D = −A∗ and that both C and B are symmetric with respect to ω. Use
(2a) above to compute

ρ

(
0 B
0 0

)
, ρ

(
0 0
C 0

)
, ρ

(
A 0
0 −A∗

)
.

4. As above, (V, ω) is a symplectic vector space and {·, ·} is the corresponding Poisson
bracket. The Weyl algebra W (ω) is defined as the associative algebra over C generated
by the real vector space V ∗ subject to the relations

ab− ba = i{a, b}, a, b ∈ V ∗.

(a) Show that a representation of heis(ω) on which iR acts by scalar multiplication
extends to an representation of W (ω) on which C acts by scalar multiplication.
Show that if heis(ω) acts irreducibly then so does W (ω).

(b) Given a real polarization V = X⊕X ′ show that W (ω) is isomorphic to the algebra
of differential operators on X with polynomial coefficients.

(c) Let ~ ∈ R>0 be the parameter that models the quantum scale. Show that heis(ω) ∼=
heis(ω/~) and that Sp(ω) = Sp(ω/~). Which associative algebra does W (ω/~)
approach in the classical limit?

5. Let S2
r ⊂ R3 be the sphere of radius r. We would like to consider “quantizing” this

compact manifold. Let x, y, z be the standard linear coordinates on R3. The algebra of
polynomial functions on S2

r is

P = C[x, y, z]/(x2 + y2 + z2 − r2).
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(a) Compute the standard symplectic form Ω on S2
r – the one derived from the embed-

ding in Euclidean R3 – in terms x, y, z.

(b) Let {·, ·} be the Poisson bracket for Ω. Show that {x, y} = z with cyclic permuta-
tions holding as well. Conclude that the “linear” functions in P are isomorphic to
so3.

(c) Based on problem (4) it is natural think of the “Weyl algebra” W (Ω) as the associa-
tive algebra over C generated by x, y, z subject to the relations given by xy−yx = iz
with cyclic permutations and x2 + y2 + z2 = r2. Based on (b) show that

W (Ω) ∼= U(so3)/(X
2 + Y 2 + Z2 = r2)

where U(so3) is the universal enveloping algebra for so3 and X, Y, Z ∈ so3 are the
elements identified with x, y, z respectively.

(d) As in problem (4), when we “quantize” S2
r we want our Hilbert space to be an irre-

ducible representation of W (Ω) such that C ⊂ W (Ω) acts by scalar multiplication.
On the other hand, standard representation theory tells us that for irreducible rep-
resentations of so3 the X2 +Y 2 +Z2 must act as scalar multiplication by n(n+2)/4
for some integer n. Based on part (c) what restrictions do we have on the radius to
obtain a non-trivial Hilbert space?

6. Consider V = Rx ⊕ Rp with symplectic form ω = dp ∧ dx.
(a) Show that the subspace W = C · (ex + iep) is a positive complex polarization.

(b) Let Mp(V ) denote the metaplectic group. Describe the subgroup Ũ(W ) ⊂Mp(V )
that preserves W .

(c) Recall the irreducible unitary representation of Heis(ω) on H = L2(Rx) defined in
class. Also recall that there is a natural unitary action of Mp(V ) on H. Derive the
Schrödinger equation

i
∂ψ

∂t
=

1

2
(− ∂2

∂x2
+ x2)ψ

from the action of the one-paremter group exp(tJ/2) ∈ Ũ(W ) on H. Here

J =

(
0 −1
1 0

)
with respect to the basis ex, ep.

(Hint: Use the natural isomorphism between representations of Heis(ω)

H = Sym•(W ∗)⊗HW

and that HW ⊗HW = W ).

7. Let M be a smooth manifold with a symplectic form ω. Assume that there is a one-form
α such that dα = ω. Given ξ ∈ X(M) we define a new operator on functions

∇ξ = ξ + imα(ξ)

where mf denotes multiplication by the function f .
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(a) Show that for ξ, η ∈ X(M) we have

∇ξ∇η −∇η∇ξ −∇[ξ,η] = iω(ξ, η).

(b) Let ξg denote the symplectic gradient of g ∈ C∞(M). Define an operator on
functions

ĝ = i∇ξg +mg

Show that [ĝ, f̂ ] = i{̂f, g}.
(c) Let M = T ∗X and let α be the canonical one-form and take ω = dα. Let x1, . . . , xn

be local coordinates on X and let p1, . . . , pn be the corresponding linear coordinates

along the fibers of T ∗X. Write explicit formulas for x̂i and p̂n.

(d) Restrict x̂i and p̂n to the subspace C∞(X) ⊂ C∞(T ∗X). Write explicit formulas
for these restricted operators.
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Homework set 4: Quantum Mechanics

Abstract

This homework assignment consists of 4 problems. Each student is required
to complete all problems and submit his TEX-ed solutions by email or otherwise
by Monday, May 14th. I wrote the problems myself so if you think there may
be a typo or mistake in the problem, please let me know.

1 Harmonic Oscillator

This problem concerns the quantum analogue of a mass m on a spring of
stiffness k in one dimension. Classically, the restoring force is proportional to
the displacement x as F = −kx. Defining the angular frequency ω =

√
k/m

(check the units), write down the Schrödinger equation. Define the annihilation
operator

â =
1√
2m

(p̂− imωx̂) . (1)

It’s Hermitian conjugate â† is called the creation operator. Compute the com-
mutator [a, a†]. Define the Hermitian operator n̂ = â†â and compute its com-
mutator with the creation and annihilation operators. Write the Hamiltonian
in terms of these operators. Let |n〉 denote the eigenvectors of n̂ with eigen-
value n as usual. Show that â† |n〉 is an eigenvector of n̂ with eigenvalue (n+1).
Show the analogous statement for â |n〉. Define the Fock vacuum |0〉 such that
a |0〉 = 0. This is the unique normalizable state of lowest energy. Check that it
has energy E0 = 1

2~ω called the ground state energy, 0-point energy, or vacuum
energy.

Solve the position-space Schrödinger equation for the ground state wave
function ψ0(x) = 〈x| 0〉 and normalize it. You should find

ψ0(x) =
1

π1/4√x0
exp

(
− x2

2x2
0

)
(2)
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where x0 =
√

~/mω is the characteristic length scale of the harmonic oscillator
with mass m and angular frequency ω.

The Fock space is spanned by the states |n〉 ∝ (â†)n |0〉. The wave functions
can thus be found by repeated differentiation of the ground state wave function
ψ0(x) to be

ψn(x) =
1√
2nn!

Hn

(
x

x0

)
ψ0(x) (3)

where

Hn(z) = (−1)nez2 dn

dzn
e−z2

(4)

are the Hermite polynomials.

2 Scattering off a localized source

Consider the following form for a potential in the 1-dimensional Schrödinger
equation:

V (x) = −αδ(x) . (5)

What are the units of α? For α > 0 (< 0) this represents the idealized form of a
localized impurity at x = 0 which attracts (repels) the otherwise free particle
for which we are solving the Schrödinger equation. Write the Schrödinger
equation in position space and integrate the equation from [−ε, ε]. Take the
ε → 0 to show that the wave function experiences a discontinuity in it’s first
derivative across x = 0 proportional to its value at x = 0:

∆ψ′(0) = − 2
x0
ψ(0) (6)

where x0 = ~2/mα has the units of length.

Bound state Show that there is a unique energy E < 0 for which a nor-
malizable solution to the Schrödinger equation exists. Show that the energy
of this state is

E = − α

2x0
. (7)

Write down the wave function for this bound state.
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Scattering states Let us now consider the positive energy solutions to the
Schrödinger equation. Away from x = 0 the potential vanishes so that the
solution takes the form

ψ(x) =
{
Areikx +Ale−ikx x < 0
Breikx +Ble−ikx x > 0

(8)

where the As and Bs are some complex coefficients and

~k =
√

2mE . (9)

Argue, by considering the time dependence of the complete wave function
Ψ(x, t) that the terms labeled with the subscripts r and l represent right- and
left-moving waves respectively.1 Scattering events are usually such that a wave
comes in from the left- or the right-hand side but not both at once. Let us
consider as the initial condition a right-moving wave coming in from the left –
that is no left-moving incoming wave from the right. This means that we are
setting Bl = 0. Find the relations between the remaining coefficients from the
continuity of the wave function and the jump in the derivative.

We interpret the situation as follows: A right-moving wave comes in from
the left with an “intensity” set by the amplitude Ar. It is reflected back to
x = −∞ with amplitude Al and transmitted to x = +∞ with amplitude
Br. Since the wave function is not normalizable, we cannot compute the
absolute reflection and transmission probabilities. However, we can compute
the transmission and reflection coefficients

T =
|Br|2

|Ar|2
, R =

|Al|2

|Ar|2
. (10)

Show that

T =
1

1 + (mα2/2~2E)
, R =

1
1 + (2~2E/mα2)

. (11)

Comment on the various limits of these equations. Note that contrary to the
case of the bound state wave function, the scattering states do not care about
the sign of α. Free particles will scatter identically off of a point-like impurity
regardless of whether it is attractive or repulsive. However, the particle can get
stuck on the impurity only if the force is attractive. Note that the coefficients
are singular precisely at the bound state energy (7).

For a general localized potential the analogous story is of course much more
complicated. However the basic lesson that we can infer from the calculation

1These should be called partial waves. Recall that the positive-energy solutions for definite k
are not normalizable and are therefore not physical states. However, the physical wave functions
are normalizable superpositions of these “partial wave functions” called wave packets.
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above is that the Schrödinger equation gives us the coefficients Al and Br in
terms of Ar and Bl. That is, there exists a unitary scattering matrix S such
that (

Al

Br

)
= S

(
Ar

Bl

)
. (12)

In the example above, we also saw that the S-matrix had a pole at the bound
state energy. This is a generic phenomenon implying that finding the analytic
form of the S-matrix is the same thing as solving the Schrödinger equation.

3 Angular momentum and spin

Angular momentum in three dimensions is given by the pseudo-vector

L = x× p . (13)

Write the corresponding operator in the position space representation and
show that its components satisfy the commutation relations

[L̂i, L̂j ] = i~ εijkL̂k (14)

where repeated indices are summed. This indicates that the 3 operators {L̂i}
cannot be simultaneously diagonalized. We work in a basis in which the z-
component of L̂ is diagonal. States can therefore be labeled by the eigenvalue
of L̂z but this does not suffice to identify the state.

Prove that on the other hand the square of the angular momentum gener-
ator (not to be confused with the y-component!) is a scalar, i.e. rotationally
invariant:

[L̂2, L̂z] = 0 . (15)

We will henceforth drop theˆnotation for operators. Let |λ, µ〉 denote a simul-
taneous eigenvector with L2 eigenvalue λ~2 and Lz eigenvalue µ~:

L2 |λ, µ〉 = λ~2 |λ, µ〉 , Lz |λ, µ〉 = µ~ |λ, µ〉 . (16)

Define the operators L± = Lx ± iLy and show that

[Lz, L±] = ±~L± . (17)

Use this to show that the vector L± |λ, µ〉 has Lz eigenvalue (µ± 1)~.
Thus for every λ we get a tower of states with different Lz eigenvalues.

Since the Lz component of the angular momentum is bounded by the total
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angular momentum of the state there is a lowest state |λ, µ−〉 and highest
state |λ, µ+〉 such that

L± |λ, µ±〉 = 0 . (18)

Show that

L2 = L±L∓ + L2
z ∓ ~Lz , (19)

and use this result on the highest state to obtain λ = µ+(µ++1). Similarly, the
lowest state gives λ = µ−(µ−− 1). Use these results to argue that µ− = −µ+.

The Lz eigenvalue of a state with L2 eigenvalue equal to λ goes under the
action of L+ from −µ+ to µ+ in n integer steps for some n. Therefore, µ+ = n

2
is either integer or half-integer. Switching to more standard notation, we take
µ+ = ` and label the Lz eigenvalues by m:

L2 |`,m〉 = ~2`(`+ 1) |`,m〉 , Lz |`,m〉 = ~m |`,m〉 . (20)

Normalization of the state gives

L± |`,m〉 = ~
√
`(`+ 1)−m(m± 1) |`,m± 1〉 . (21)

Note that this means that L± |`,±`〉 = 0.
The value ` of the state is called the angular momentum or spin. In the

algebraic determination of the allowed values we find that 2` is an integer.
When realized on a function space, however, only the states with integer ` are
recovered. This is the case of orbital angular momentum with generator (13).
The algebraic realization implies that we can consider also internal angular
momentum which is what is usually meant by the term spin. To distinguish
these cases, we reserve the symbol L for the orbital part and write S for the
internal part. We also change the notation `→ s but keep m.

Show that a matrix realization of the angular momentum operators is Ŝi =
~
2σ

i where σi are the Pauli spin matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (22)

Argue that the spin up and down states are represented by

|↑〉 =
(

1
0

)
, |↓〉 =

(
0
1

)
. (23)

Show that

S+ = ~
(

0 1
0 0

)
, S− = ~

(
0 0
1 0

)
, (24)

are nilpotent of order 2 and map |↓〉 ↔ |↑〉. Compute Ŝ2 on these states. What
is their spin?
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4 Identical Particles

Consider a system consisting of two particles 1 and 2 at r1 and r2. If
the 1-particle states are denoted by ψa(r1) and ψb(r2), the 2-particle state for
distinguishable particles would simply be the product

ψd(r1, r2) = ψa(r1)ψb(r2) . (25)

Now consider the case when particle 1 is identical to particle 2, for example,
both are electrons. In fundamental theory any electron is necessarily identi-
cal to any other electron: it is labeled by its mass m, spin s and that’s it.2

Contrary to classical particles which can be colored or continuously tracked,
painting a quantum particle or observing it continuously would necessarily
change the particle’s state. Therefore, 1-particle quantum states are neces-
sarily indistinguishable in principle. In quantum mechanics such states are
constructed by not committing to which particle 1 or 2 is in state ψa or ψb:

ψφ(r1, r2) = A
[
ψa(r1)ψb(r2) + eiφψa(r1)ψb(r2)

]
. (26)

Claim: Of these only the symmetric and anti-symmetric states occur in nature.
The symmetric states describe identical bosons and the anti-symmetric ones
describe identical fermions.3 It follows from anti-symmetry of the wave func-
tion that identical fermions obey the Pauli exclusion principle: The amplitude
of finding two identical fermions in the same state ψa = ψb is 0.

Let ψd denote the 2 distinguishable particle state (25). Denote by ψ± the
bosonic and fermionic identical particle states (26) with φ = 0 and φ = π,
respectively, normalized by the choice A = 1/

√
2. Denote the expectation

value of the square of the separation ∆ = 〈(r1 − r2)2〉 for the distinguishable
(∆d), bosonic (∆+), and fermionic (∆−) cases. Write the result as

∆± = ∆d ∓X (27)

and give a formula for X. Show that if the single particle wave functions
overlap, X > 0. This X term is called an exchange force. Although it is not
really a force in any conventional sense, explain the name paying particular
attention to the differing consequences for bosons and fermions.

2Actually, that is not it: It should also be labeled by lepton number, etc. Part of the job of a
fundamental theory is to discover the exhaustive list of these “quantum numbers”. This however,
does not change the point that any two 1-particle states are identical.

3In relativistic quantum mechanics one can go on to prove that all particles with integer spin
are bosons while particles with half-integer spin are fermions.
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Hi guys,

Gabriel told me he won’t TeX up his problem because he thinks there’s something
wrong with his face. So instead of a nicely typed solution you get this vaguely
informative note from me. Have a nice summer.

Jerry
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Problem 1. Let S be a vector space with a representation

ρ : heis(ω) → End(S)

such that ρ(iθ) acts by scalar multiplication.

(Note that by Problem 1, I mean problem 2.)

First we establish and identity we will need in the sequel.

ρ(v)ρ(w)− ρ(w)ρ(v) = [ρ(v), ρ(w)]
= ρ([v, w])
= ρ(iω(v, w))
= iω(v, w) · 1S

(a) Extend ρ to a represenation of sp(ω) by

ρ(Av·w) =
1
2
(ρ(v)ρ(w) + ρ(w)ρ(v))

We check that the new ρ is indeed a Lie algebra homomorphism. Let {pi, qi} be
symplectic coordinates on V . It suffices to check that the Lie bracket is preserved
for symplectic matrices corresponding to symmetric pairs of basis vectors. Two
cases are easy:

ρ[Api·pj , Apk·pl
] = [ρApi·pj , ρApk·pl

] = 0

and
ρ[Aqi·qj , Aqk·ql

] = [ρAqi·qj , ρAqk·ql
] = 0

The other cases are a real pain — I can’t get them to come out right, so I’m
skipping them.

(b) Show that [ρ(A), ρ(v)] = ρ(Av) for A ∈ sp(ω) and v ∈ V . First observe that
A = Ax·y for some x and y in V . We compute:

[ρ(A), ρ(v)] = [
ρ(x)ρ(y) + ρ(y)ρ(x)

2
, ρ(v)]

=
1
2
(ρ(x)ρ(y)ρ(v) + ρ(y)ρ(x)ρ(v)− ρ(v)ρ(x)ρ(y)− ρ(v)ρ(y)ρ(x))

=
1
2
(ρ(x)ρ(v)ρ(y) + iω(y, v)ρ(x) + ρ(y)ρ(v)ρ(x) + iω(x, v)ρ(y)

−ρ(x)ρ(v)ρ(y) + iω(x, v)ρ(y)− ρ(y)ρ(v)ρ(x) + iω(v, y)ρ(x))
= ρ(x)iω(y, v) + ρ(y)iω(x, v)
= ρ(Ax·yv)

(c) Let S have a Hermitian inner product such that ρ(v) is self-adjoint for all v.
Show that this is compatible with the condition that iθ acts by scalar multiplication
and show that ρ(A) is self-adjoint.

Since, ρ([v, w]) = ρ(iω(v, w)) is skew-adjoint for all v and w, we must check that
[ρ(v), ρ(w)] is skew-adjoint when ρ(v) and ρ(w) are self-adjoint. Indeed:
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2

[ρ(v), ρ(w)]† = (ρ(v)ρ(w)− ρ(w)ρ(v))†

= (ρ(v)ρ(w))† − (ρ(w)ρ(v))†

= ρ(w)†ρ(v)† − ρ(v)†ρ(w)†

= ρ(w)ρ(v)− ρ(v)ρ(w)
= −[ρ(v), ρ(w)]

Yet another computation shows:

ρ(Av·w)† =
1
2
(ρ(v)ρ(w) + ρ(w)ρ(v))†

=
1
2
((ρ(v)ρ(w))† + (ρ(w)ρ(v))†)

=
1
2
(ρ(w)†ρ(v)† + ρ(v)†ρ(w)†)

=
1
2
(ρ(w)ρ(v) + ρ(v)ρ(w))

= ρ(Av·w)

Hoo-ray.



Joseph Walsh
May 14, 2007
Jerry’s QM Homework
Question 3:

Proof. (a) ρ is defined for all w ∈ V if we extend by linearity: w = x+ x′ for some x ∈ X, x′ ∈ X ′, and we
define ρ(w) = ρ(x) + ρ(x′). To extend the domain of ρ to all of heis(ω), we define ρ(iθ)ψ = iθψ for all
iθ ∈ iR and all ψ ∈ S. To show that ρ is a Lie algebra homomorphism, we must show that it preserves
brackets. Clearly ρ(iθ) commutes with ρ(w) for all w ∈ V . It is also obvious that [ρ(x1), ρ(x2)] =
[ρ(x′1), ρ(x

′
2)] = 0 = ρ(iω(x1, x2)) = ρ(iω(x′1, x

′
2)) for all x1, x2 ∈ X and x′1, x

′
2 ∈ X ′. For x ∈ X,

x′ ∈ X ′,

[ρ(x), ρ(x′)]ψ = i
∂

∂x
(ω(x′)ψ)− iω(x′)

∂

∂x
ψ

= i
∂

∂x
(ω(·, x′))ψ

= iω(x, x′)ψ
= ρ(iω(x, x′))ψ

for all ψ ∈ S. Here, we used the fact that ω(·, x′) is a linear functional on X, and so is its own derivative.
Interpreting ∂

∂x as a directional derivative, we obtained ∂
∂xω(·, x′) = ω(x, x′). Thus, for all w1, w2 ∈ V ,

if w1 = x1 + x′1, w2 = x2 + x′2, then

[ρ(w1), ρ(w2)] = [ρ(x1) + ρ(x′1), ρ(x2) + ρ(x′2)]
= [ρ(x1), ρ(x2)] + [ρ(x1), ρ(x′2)] + [ρ(x′1), ρ(x2)] + [ρ(x′1), ρ(x

′
2)]

= ρ(iω(x1, x2)) + ρ(iω(x1, x
′
2)) + ρ(iω(x′1, x2)) + ρ(iω(x′1, x

′
2))

= ρ(iω(x1 + x′1, x2 + x′2))
= ρ(iω(w1, w2))

So indeed, ρ preserves brackets.

The hermitian inner product on S is given by 〈ψ, φ〉 =
∫

X
ψφ̄. So show that ρ(w) is self-adjoint for all

w ∈ V , it suffices to show that ρ(x) and ρ(x′) are self-adjoint for all x ∈ X and x′ ∈ X ′. Indeed, if we
know this, then if we decompose w = x+ x′,

〈ρ(w)ψ, φ〉 = 〈(ρ(x) + ρ(x′))ψ, φ〉 = 〈ρ(x)ψ, φ〉+ 〈ρ(x′)ψ, φ〉
= 〈ψ, ρ(x)φ〉+ 〈ψ, ρ(x′)φ〉 = 〈ψ, (ρ(x) + ρ(x′))φ〉 = 〈ψ, ρ(w)φ〉

As ρ(x′) is multiplication by a real-valued functional ω(·, x′) for all x′ ∈ X ′, ρ(x′) is obviously self-
adjoint. Thus, it suffices to prove that ρ(x) is self-adjoint for all x ∈ X. To do this, we show that
〈ρ(x)ψ, φ〉 − 〈ψ, ρ(x)φ〉 = 0.

〈ρ(x)ψ, φ〉 − 〈ψ, ρ(x)φ〉 =
∫

X

i
∂ψ

∂x
φ̄− ψi

∂φ

∂x

= i

∫
X

∂ψ

∂x
φ̄+ ψ

∂φ

∂x

= i

∫
X

∂

∂x
(ψφ̄)

= i

∫
X

(dιx + ιxd)(ψφ̄)

Here we interpreted ∂
∂x as a Lie derivative with respect to the constant vector field that has value x

at every point and applied Cartan’s formula. Since ψφ̄ is a top form, we get 〈ρ(x)ψ, φ〉 − 〈ψ, ρ(x)φ〉 =
i
∫

X
dιx(ψφ̄) = 0, as we are integrating an exact form on a boundaryless space.

1



(b) Exponentiating ρ(iθ) for (iθ, 0) ∈ heis(ω) yields a unitary operator, namely multiplication by eiθ. To
obtain a unitary operator from exponentiating an element x ∈ X or x′ ∈ X ′, we first must multiply by
i. Indeed, exp(iρ(x′)) is multiplication by the function exp(iω(·, x′)), which is a unitary operation since
ω is real-valued. exp iρ(x) acts on ψ by translation by −x, which again is clearly a unitary operation.
For w ∈ V , let x ∈ X, x′ ∈ X ′ be such that w = x+ x′. Since iθ commutes with w, exp(iθ, w) acts on
ψ ∈ S by eiθ exp(i(ρ(x) + ρ(x′)))ψ. By the Baker-Campbell-Hausdorff formula,

exp(iρ(x′)) exp(iρ(x)) = exp
(
iρ(x′) + iρ(x) +

1
2
[iρ(x′), iρ(x)]

)
= exp

(
iρ(x′) + iρ(x)− 1

2
[ρ(x′), ρ(x)]

)
= exp

(
iρ(x′) + iρ(x)− i

2
ω(x′, x)

)
= exp (iρ(x′) + iρ(x)) e−iω(x′,x)/2.

(All the higher terms in the sequence vanish since they involve commutators with iω(x′, x).) Therefore,
exp(iθ, x+ x′) acts on ψ(t) by eiθ exp(i(ρ(x) + ρ(x′)))ψ(t) = eiθeiω(x′,x)/2 exp(iω(t, x′))ψ(t− x).

(c) Let {ei}n
i=1 be a basis for X, and let {fi}n

i=1 be the basis for X ′ corresponding via ω to the dual basis of

{ei}n
i=1. With respect to this basis for V , ω has the block matrix form,

(
0 −1
1 0

)
. Since

(
A B
C D

)
is in sp(ω), it is subject to the relation(

A B
C D

) (
0 −1
1 0

)
=

((
A B
C D

) (
0 −1
1 0

))t

.

Working out the multiplication yields(
B −A
D −C

)
=

(
Bt Dt

−At −Ct

)
.

Therefore, B and C are symmetric, and D = −At = −A∗ as desired. If F ∈ sp(ω), we associate the
element 1

2

∑
ui

∑
vj
ω(ui, Fvj)ui ⊗ vj ∈ Sym2V with F , where ui and vj both run over the entire basis

{ek, fk|1 ≤ k ≤ n} of V . If F =
(

0 B
0 0

)
, and B = (bij) with respect to the bases {fj} for X ′ and

{ei} for X, then ω(fi, Ffj) = −bij , and ω(·, F ·) = 0 for all other combinations of basis vectors of V .

Thus,
(

0 B
0 0

)
is associated to the polynomial 1

2

∑n
i=1

∑n
j=1 −bijfi⊗fj =

∑n
i=1

∑n
j=i −bij

fi⊗fj+fj⊗fi

2 .

Thus, using problem 2a and the fact that ρ(fi) and ρ(fj) commute yields ρ
(

0 B
0 0

)
is multipli-

cation by
∑n

i=1

∑n
j=i −bijω(·, fi)ω(·, fj). Similarly, ρ

(
0 0
C 0

)
is the application of the operator∑n

i=1

∑n
j=i −cij

∂
∂ei

∂
∂ej

.

Now if F =
(
A 0
0 −A∗

)
, and A = (aij) with respect to the basis {ei} of X, then ω(ei, F ej) =

ω(fi, Ffj) = 0 for all i, j. Also, ω(ei, Ffj) = ω(ei,−ajkfk) = −aji = −ω(fj , akiek) = ω(fj , F ei). So the

2



symmetric polynomial associated to F is
∑n

i=1

∑n
i=1 −aji

(
ei⊗fj+fj⊗ei

2

)
. Therefore,

ρ

(
A 0
0 −A∗

)
=

n∑
i=1

n∑
j=1

−aij

√
−1

2

(
∂

∂ei
ω(fj) + ω(fj)

∂

∂ei

)

=
n∑

i=1

n∑
j=1

−aij

√
−1

2

(
2ω(fj)

∂

∂ei
+ [

∂

∂ei
, ω(fj)]

)

=
n∑

i=1

n∑
j=1

−aij

√
−1

2

(
2ω(fj)

∂

∂ei
+ ω(ei, fj)

)

=
n∑

i=1

n∑
j=1

−aij

√
−1

2

(
2ω(fj)

∂

∂ei
+ δij

)

=
n∑

i=1

n∑
j=1

−aij

√
−1

(
ω(fj)

∂

∂ei

)
+

n∑
i=1

−aii

√
−1

2

=

 n∑
i=1

n∑
j=1

−aij

√
−1ω(fj)

∂

∂ei

−
√
−1
2

tr(A)

3



4. (V, ω) is a symplectic vector space and {·, ·} is the corresponding Poisson bracket. The Weyl
algebra W (ω) is defined as the associative algebra over C generated by the real vector space V ∗

subject to the relations
ab− ba = i{a, b}, a, b ∈ V ∗.

so that
W (ω) = T (C⊗ V ∗)/(ab− ba− i{a, b})

(a) Show that a representation of heis(ω) on which iR acts by scalar multiplication extends to a
representation of W (ω) on which C acts by scalar multiplication. Show that if heis(ω) acts
irreducibly then so does W (ω).

Consider the isomorphim V
ω' V ∗, defined by a = ω(·, va), for some va ∈ V . Under the

isomorphism we can identify heis(ω) with iR⊕ V ∗, where the bracket is given by,

[iθa + a, iθb + b] = i{a, b} (1)

where we identify V ∗ ⊂ C∞(V ) as linear functionals.
Then we consider a representation of heis(ω),

ρ : iR⊕ V ∗ → End(S)

for some vector space S, assuming that iR acts by scalar multiplication. So, we have for any
(iθa + a), (iθb + b) ∈ heis(ω),

ρ([iθa + a, iθb + b]) = [ρ(iθa + a), ρ(iθb + b)]

by property of ρ being a Lie-Algebra homomorphism.
Now we extend ρ to W (ω), thinking of V ∗ ⊂ W (ω). Given some basis of V ∗, {ai}, then {1⊗ai}
generates T (C⊗ V ∗), so that it’s sufficient to define a representation, ρ̃ : W (ω) → End(S) on
the generators defined by,

ρ̃(1⊗ ai) = ρ(ai) (2)

and

ρ̃(ak1 · · · akn
) = ρ̃(ak1) · · · ρ̃(akn

) (3)
= ρ(ak1) · · · ρ(akn

)

and then extend linearly, since ρ is an algebra homomorphism.
Claim: ρ̃ is a representation of W (ω).
Pf.: We must show that ρ̃ is well defined (since W (ω) consists of equivalence classes) and an
associative Lie Algebra homomorphism.
By (??) and the linear extension, it is a Lie Algebra homomorphism and by (??) it preserves
associativity, making ρ̃ an associative Lie Algebra homomorphism. Thus, we have left to show
well-definedness.
It is sufficient to show that ρ̃ is well-defined on generators, so consider a, b generators of W (ω).

Need: ρ̃(ab) ?= ρ̃(ba + i{a, b}):

ρ̃(ab) = ρ(a)ρ(b), (by (??))
= ρ(b)ρ(a) + ρ([a, b]), (since ρ is a Lie Algebra homom.)
= ρ̃(ba) + iρ({a, b}), (by (??))
= ρ̃(ba + i{a, b}) (linearity). �

1



Claim: C acts by scalar multiplication Pf.: Consider any 0-tensor, λ⊗ 1 ∈ W (ω).
Then by property of tensor and linearity of rhoW ,

ρ̃(λ⊗ 1) = λρ̃(1⊗ 1), (property of tensor and linearity of ρ̃)
= λρ(1), (??)
= λ · id, (ρ is homom.) �

Claim: ρ̃ acts irreducibly if ρ acts irreducibly
Pf.: Consider any T ⊆ S and assume that it’s invariant under action by ρ̃.
Want to show that T = φ or T = S.
But an isomorphic copy of C⊗ V ∗ is contained in W (ω) is the form of 1-tensors, so that

ρ̃|{1−tensors} = ρ

Thus, irreducibility of ρ implies that T = φ or T = S. �

(b) Given a real polarization V = X ⊕ X ′ show that W (ω) is isomorphic to the algebra of
differential operators on X with polynomial coefficients, D.
Take linear coordinates {xi, pj}0≤i,j≤n on V ∗ = X∗ ⊕ (X ′)∗, then they generate W (ω) as an
algebra.
D is generated by {xi, ∂

∂xj }0≤i,j≤n as an algebra.
Define ϕ : W (ω) → D on generators by,

ϕ(xj) = xj

ϕ(pj) = −i
∂

∂xj
(4)

Extending ?? with associative product and linearly and using multi-index notation,

ϕ(λx
~kp~l) = λi|

~l|x
~k

(
∂

∂x

)~l

Thus, ϕ is a linear associative algebra homomorphism.
It is bijective, because it maps generators to generators surjectively and injectively.
It remains to show that ϕ preserves the Lie-bracket. It is sufficient to do so for generators.
Since V has a real polarization, we have in W (ω) that the only non-trivial bracket is,

[xj , pk] = −iδj
k

Similarly, in D, both the xi’s and ∂
∂xj ’s commute, respectively. Thus, the only non-trivial

bracket is [xj , ∂
∂xk ]. For any f ∈ C∞,

[xj ,
∂

∂xk
] = (xj ,

∂

∂xk
)f

= xj ∂

∂xk
f − ∂

∂xk
(xjf)

= xj ∂f

∂xk
− δj

kf − ∂f

∂xk
xj

= −δj
kf

2



ϕ([xj ,
∂

∂xk
]) = ϕ(iδj

k) = iδj
k

[ϕ(xj), ϕ(pk)] = −i[xj ,
∂

∂xk
] = iδj

k

Thus, ϕ preserves the Lie bracket. �

(c) Let ~ ∈ R>0 be the parameter that models the quantum scale. Show that heis(ω) ∼= heis(ω/~)
and that Sp(ω) = Sp(ω/~). Which associative algebra does W (ω/~) approach in the classical
limit?
Here we are using the representation of heis(ω) = iR⊕ V . Define ϕ : heis(ω/~) → heis(ω) by,

ϕ(v) =
√

~ v

Claim: ϕ is Lie algebra isomorphism.
Pf.: Multiplication by a scalar is an isomorphism of algebras, so that it’s sufficient to show
that ϕ preserves the Lie bracket:

[ϕ(v), ϕ(w)] =
[

v√
~
,

w√
~

]
= iω

(
v√
~
,

w√
~

)
= ϕ

(
i
ω

~
(v, w)

)
= ϕ([v, w]). �

Claim: Sp(ω) = Sp(ω/~).
Pf.: We have that,

L ∈ Sp(ω) ⇔ ∀v, w ∈ V, ω(Lv, Lw) = ω(v, w)

⇔ ∀v, w ∈ V
ω

~
(Lv, Lw) =

ω

~
(v, w), (divided both sides by ~)

⇔ L ∈ Sp(ω/~). �

In the extension of heis(ω) to W (ω), the bracket must satisfy,

i

~
[a, b] = i{a, b}

so that in the classical limit,

lim
~→0

[a, b] = lim
~→0

i~{a, b} = 0

Thus, in the limit,

W (ω) = T (C⊗ V ∗)/(ab− ba− i~{a, b}) → T (C⊗ V ∗)/(ab− ba) = Sym(C⊗ V ∗)

3



MAT 561 Mathematical Physics II: HW3a 5/14/2007 Andrew Stimpson

Let S2
r ∈ R3 be the sphere of radius r. We would like to consider “quantizing” this compact

manifold. Let x, y, z be the standard linear coordinates on R3. The algebra of polynomial functions
on S2

r is
P = C[x, y, z]/(x2 + y2 + z2 − r2).

(a) Compute the standard symplectic form Ω on S2
r (the one derived from the embedding into

Euclidean R3) in terms of x, y, z.

Computation: The standard symplectic form on S2
r is the volume form, which is obtained

by contracting the volume form on R3 with a radial vector field that has unit length on the
sphere, and then pulling it back to S2

r .

Let ϕ : S2
r ↪→ R3 be our embedding. Let ∂x = ∂

∂x be a vector field on R3 and likewise for y
and z. Let

ρ =
1
r2

(x∂x + y∂y + z∂z) .

Then
ω = ιρ(dx ∧ dy ∧ dz) =

1
r2

(x dy ∧ dz + y dz ∧ dx + z dx ∧ dy)

as a 2-form on R3. If we let the x, y, z denote the pullback along ϕ of the respective coordinate
functions, then

Ω = ϕ∗ω =
1
r2

(x dy ∧ dz + y dz ∧ dx + z dx ∧ dy)

as a 2-form on S2
r . ¥

(b) Let {·, ·} be the Poisson bracket for Ω. Show that {x, y} = z with cyclic permutations holding
as well. Conclude that the “linear” functions in P are isomorphic to so3.

Proof: The Poisson bracket with respect to Ω is defined by

{f, g} = dg(gradΩ(f)) where ιgradΩ(f)(Ω) = −df.

Let ξ̃ = z∂y − y∂z be a vector field on R3. Note that on at a point in ϕ(S2
r ) ⊂ R3,

ιξ̃(ω) =
1
r2

[
x(zdz + ydy)− y2dx− z2dx

]
=

x

r2
(zdz + ydy + xdx)− dx

Note that because
〈
ξ̃, ρ

〉
= 0 with the standard metric on R3, ξ̃ is in the image of the injection

ϕ∗ : TS2
r ↪→ TR3

∣∣
ϕ(S2

r )
. Let ϕ∗(ξ) = ξ̃

∣∣∣
ϕ(S2

r )
. Since (xdx+ydy + zdz) ∈ ker(ϕ∗), we have that

ιξ(Ω) = ϕ∗(ιξ̃(ω)) = ϕ∗
( x

r2
(zdz + ydy + xdx)− dx

)
= −d(ϕ∗x)

Therefore, gradΩ(x) = ξ and {x, y} = dy(ξ) = z. By cyclically permuting x, y, z in the above
argument (note that ω is invariant under such permutations), we obtain that {y, z} = x and
{z, x} = y. Thus (the linear functions in P with the Poisson bracket) are isomorphic to so3

as Lie algebras. ¥

1



(c) Based on problem (4), it is natural to think of the “Weyl algebra” W (Ω) as the associative
algebra over C generated by x, y, z subject to the relations given by xy − yx = iz with cyclic
permutations and x2 + y2 + z2 = r2. Based on (b), show that

W (Ω) ∼= U(g)/
(
X2 + Y 2 + Z2 = −r2

)

where U(g) is the universal enveloping algebra for g := C ⊗ so3 and X, Y, Z ∈ so3 are the
elements identified with x, y, z respectively.

Proof: We define the universal enveloping algebra for g as

U(g) = T (g)/ 〈R〉

where

T (g) =
∞⊕

k=0

(g)⊗k

is the tensor algebra of the vector space g,

R = {ab− ba− [a, b] | a, b ∈ so3} ,

and 〈R〉 is the two-sided algebra ideal generated by R. Because {X, Y, Z} are a basis for so3,
{X ′ = iX, Y ′ = iY, Z ′ = iZ} are a basis for C⊗ g, and 〈R〉 is generated by

R′ =
{
(X ′Y ′ − Y ′X ′)− iZ ′, (Y ′Z ′ − Z ′Y ′)− iX ′, (Z ′X ′ −X ′Z ′)− iY ′} .

Thus,
U(g)/

(
X2 + Y 2 + Z2 = −r2

) ∼= T (g)
/〈{

X ′2 + Y ′2 + Z ′2 − r2
} ∪R′〉 ,

which is precisely the definition (in terms of generators and relations) that we have for W (Ω).
¥

(d) As in problem (4), when we “quantize” S2
r , we want our Hilbert space to be an irreducible

representation of W (Ω) such that C ⊂ W (Ω) acts by scalar multiplication. On the other
hand, standard representation theory tells us that for irreducible representations of so3, the
element X2 + Y 2 + Z2 must act as scalar multiplication by n(n + 2)/4 for some integer n.
Based on part (c), what restrictions do we have on the radius to obtain a non-trivial Hilbert
space?

Answer: Complex representations of so3 are in 1-1 correspondence with representations of
U(g) (i.e., U(g)-modules). Thus an irreducible representation of W (Ω) such that C ⊂ W (Ω)
acts by scalar multiplication (i.e., a simple W (Ω)-module) corresponds to an irreducible rep-
resentation of g such that X2 + Y 2 + Z2 acts by scalar multiplication by −r2. However,
because of what was said above, for this to be a non-trivial vector space, −r2 = n(n + 2)/4
for some integer n, which implies that n = −1 =⇒ r = 1/2. ¥
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MAT 561 HW 3 Problem 6
Consider V = Rx + Rp with symplectic form ω = dp ∧ dx. Take C ⊗R V =

W ⊕ W , with W = C(ex + iep) and W = C(ex − iep).

1 Part a

To see that W is a positive complex polarization, one has to check that iω(w, w) >

0 for any w ∈ W . We only have to check for ex + iep:

iω(ex − iep, ex + iep) = i(−i ∗ 1 − 1 ∗ i) = i(−2i) = 2 > 0

2 Part b

Take v = vxex+vpep. Note that ω(v, w) = det

((

vp wp

vx wx

))

. For A ∈ End(V ),

ω(Av, Aw) = det

(

A ∗

(

vp wp

vx wx

))

.

If A ∈ Sp(V ), then ω(Av, Aw) = ω(v, w) so by above arguments detA = 1.
Therefore, Sp(V ) ≈ SL2(R).

U(W ) can be computed as follows:

(

a b

c d

) (

1
i

)

= λ

(

1
i

)

(

a + bi

c + di

)

=

(

λ

iλ

)

a + bi = d − ci

Hence A =

(

a b

−b a

)

, with ad−bc = a2 +b2 = 1. It follows that U(W ) ≈ T.

Since the double cover of the circle is the circle, we have Ũ(W ) = T

3 Part c

In this problem, we’ll use the fact that the representation of Heis(ω) is H =

Sym•(W ∗) ⊗HW to compute the Schrödinger equation by looking at the action
of the given evolution operator on a dense subset of H.

The action of exp(tJ) on W is given by:

(

cos t − sin t

sin t cos t

) (

1
i

)

= e−it

(

1
i

)

So the action on W ∗ is multiplication by eit.

1



Since H⊗2 = W ∗, we may choose the action of exp(tJ) to be eit/2.
Let z be a generator of W ∗. Then, Sym•(W ∗) = C[z]. One sees that

d

dt
(etJ (zn

⊗ w))

∣

∣

∣

∣

t=0

= i(n +
1

2
)(zn

⊗ w)

where w is some element of HW .
(Note that either choice of the action on HW would give us the same eigen-

values and eigenvectors.)
z d

dz
is an operator on C[z] that has eigenvalues n with corresponding eigen-

vectors zn. One sees that these are the only eigenvalues and eigenvectors of this
operator, and by a simple basis argument that this is the only such operator.

To get the desired operator on H = C[z] ⊗HW , we have to add 1
2 ∗ id.

So we have H = z d
dz

+ 1
2 .

The representation of Heis(ω) is given by ẑ = z, and ẑ = d
dz

.

We have ̂zz = ẑẑ+ẑẑ
2 , so one can rewrite:

H = ẑẑ +
1

2

=
ẑẑ + ẑẑ

2
+

ẑẑ − ẑẑ

2
+

1

2

= ̂zz +
1

2
([ẑ, ẑ] + 1)

= ̂zz

The last line follows from [ d
dz

, z] = id.
To write H as an operator on L2(Rx), we must convert everything with

respect ot the real decomposition. So z = 1
√

2
(x + ip), z = 1

√
2
(x − ip), where x

and p are the coordinates with respect to the real polarization. By noting that
x̂ = x and p̂ = −i ∂

∂x
, we obtain the desired result:

H = ̂zz =
x̂2 + p2

2
=

x̂2

2
+

p̂2

2
=

1

2

(

−
∂2

∂x2
+ x2

)

2



Jerry’s Quantum Mechanics Homework

MAT 561

Christopher Bay

May 7, 2007

Let M be a smooth manifold with a symplectic form ω. Assume that there is a one-form α such that dα = ω.
Give ξ ∈ X (M) we define a new operator on functions

∇ξ = ξ + imα(ξ)

where mf denotes multiplication by the function f .

1. For ξ, η ∈ X (M) we have
∇ξ∇η −∇η∇ξ −∇[ξ,η] = iω(ξ, η).

Proof. Let g ∈ C∞(M). Then,

{∇ξ∇η −∇η∇ξ −∇[ξ,η]}g = ∇ξ(∇ηg)−∇η(∇ξg)−∇[ξ,η]g

= ∇ξ(ηg + iα(η)g)−∇η(ξg + iα(ξ)g)− ([ξ, η]g + iα([ξ, η])g)
= ξ(ηg) + iα(ξ)(ηg) + i(ξα(η))g + iα(η)(ξg) + iα(ξ)α(η)g
−{η(ξg) + iα(η)(ξg) + iη(α(ξ))g + iα(ξ)(ηg) + iα(ξ)α(η)g}
−{ξ(ηg)− η(ξg) + iξ(α(η))g − iη(α(ξ))g − iω(ξ, η)g}.

In the last part of the last equality we have used the identity

ω(ξ, η) = dα(ξ, η) = ξ(α(η))− η(α(ξ))− α([ξ, η]).

All of the terms except the very last one cancel in pairs, proving the desired equality.

2. Let ξg denote the symplectic gradient of g ∈ C∞(M). Define an operator on functions

ĝ = i∇ξg
+mg.

Then [f̂ , ĝ] = i{̂f, g}.

1



Proof. For any h ∈ C∞(M),

[f̂ , ĝ]h = f̂(ĝh)− ĝ(f̂h)

= f̂(i∇ξg
h+ gh)− ĝ(i∇ξf

h+ fh)
= −∇ξf

(∇ξg
h) + if(∇ξg

h) + i∇ξf
(gh) + fgh

+∇ξg
(∇ξf

h)− ig(∇ξf
h)− i∇ξg

(fh)− fgh.

Now use part 1 (for the terms with two ∇’s) and expand the other terms using the definitions.

[f̂ , ĝ]h = iω(ξg, ξf )h+∇[ξg,ξf ]h+ if(ξgh)− α(ξg)fh
+iξf (gh)− α(ξf )gh− ig(ξfh) + α(ξf )gh− iξg(fh) + α(ξg)fh

= i{g, f}h+∇[ξg,ξf ]h+ if(ξgh) + i(ξfg)h+ ig(ξfh)− ig(ξfh)− i(ξgf)h− if(ξgh)
= i{g, f}h+∇[ξg,ξf ]h+ i(ξfg)h− i(ξgf)h
= i{g, f}h+∇[ξg,ξf ]h+ i{f, g}h− i{g, f}h
= −∇[ξf ,ξg ]h+ i{f, g}h
= i(i∇{f,g}h+ {f, g}h)

= i{̂f, g}h.

Here we have used that the Poisson bracket is defined by {f, g} = ω(ξf , ξg), as well as the fact that f 7→ ξf
is a Lie algebra homomorphism.

3. Let M = T ∗X and let α be the canonical one-form and take ω = dα. Let x1, . . . , xn be local coordinates
on X and let p1, . . . , pn be the corresponding linear coordinates along the fibers of T ∗X. Then x̂i and p̂i
are given by

x̂i = −i ∂
∂pi

+mxi ,

p̂i = i
∂

∂xi
.

Proof. The canonical one-form α is defined by α =
∑
i pidx

i, so ω =
∑
i dpi ∧ dxi. By definition, a

symplectic gradient satisfies ω(ξf , ·) = −df . Therefore ξxi = −∂/∂pi and ξpi
= ∂/∂xi. One also checks

that α(ξxi) = −α(∂/∂pi) = 0 and α(ξpi
) = α(∂/∂xi) = pi. So for any f ∈ C∞(T ∗X),

x̂if = i∇ξxi f + xif

= iξxif − α(ξxi)f + xif

= (−i ∂
∂pi

+mxi)f

2



and

p̂if = i∇ξpi
f + pif

= iξpif − α(ξpi)f + pif

= (i
∂

∂xi
)f.

4. The restrictions of the operators x̂i and p̂i to C∞(X) are given by

p̂i |C∞(X)= i
∂

∂xi
,

x̂i |C∞(X)= mxi .

Proof. To properly define the restrictions, one should be slightly careful and compose with the maps
π : T ∗X → X (the bundle projection) and ι : X → T ∗X (inclusion as the zero-section) in the appropriate
places. But doing this just verifies what is already clear. Since ∂/∂pi ≡ 0 and for any function of the form
f ◦ π, f ∈ C∞(X), the identities follow immediately from 3.

3
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 Jerry Jenquin

Contact
Research
Classes
Culture

This semester (Spring 2007) I'm co-teaching one course. MAT 561 is a
 graduate course that covers the math and physics of thermodynamics,
 statistical and quantum mechanics. The goal is to relay the topics to a
 mathematical audience in a way that provides both a stepping stone to more
 advanced topics and some insight into physical intuition.

The various ways to contact me are listed in the contact link. The best way is
 via email, which I check habitually.

http://www.math.stonybrook.edu/~jjenquin/research.html


http://www.math.stonybrook.edu/~jjenquin/culture.html[12/7/2015 10:06:16 AM]

 Jerry Jenquin

Contact
Research
Classes
Culture

 Nothing here, as of yet.
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