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References
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Lectures: Tuesdays and Thursdays 11:20 AM -- 12:40 PM in the Math Tower,
 P-131.

Instructors: Jerry Jenquin and William D. Linch III.

Office Hours: Jerry's are 10 -- 11 AM on Tuesdays and Thursdays.
 William's are 1:30 -- 2:30 PM on Tuesdays and Thursdays.

Suggested Prerequisites We'll be assuming familiarity with the material
 covered in MAT 530 and 531. Some previous exposure to physics, while
 helpful, is by no means necessary.

Course Content: In this first semester we will cover Classical Newtonian
 Mechanics, Classical Relativistic Mechanics, and Electromagnetism.
 Specifically we hope to cover the following:

 Classical Newtonian Mechanics

Paths in Euclidean space and Newton's 2nd Law.
Phase space and symplectic geometry.
Hamiltonian mechanics in the Newtonian setting.
Variational principles, Lagrangian mechanics.
Symmetry and Noether's theorem.
The Euclidean group, symmetry, and conserved charges (a.k.a.
 Newtonian kinematics).
Time translation, energy, and dynamics.
Hamiltonian mechanics from Lagrangian mechanics.
Gravitational potentials and solvable systems.

 Classical Relativistic Mechanics

Geometry on Minkowski space.
Lagrangian for paths on Minkowski space.
The Poincare group, symmetry, and relativistic kinematics.
Reparameterization invariance.

 Electromagnetism

Differential forms, Stoke's theorem, currents, flows.
Hodge star for Euclidean, Lorentzian signatures and duality.
Electromagnetic fields and Maxwell's equations
PDE's on Minkowski space and Poincare symmetry
Laplace and wave equations, Green's operators, boundary conditions
Exact solutions: propagating waves, monopoles, instantons, ...
Lagrangian formulation of electromagnetism
Hamiltonian theory of electromagnetism
Gauge symmetry and connections on principal R-bundles
Magnetic sources, Dirac charge quantization, and principal U(1)-bundles
Generalizations in various directions.
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Texts and Online Notes: Although there are no official texts for this course
 here's a list of references for some of the topics we'll be covering and some of
 the prerequisite topics. In particular we recommend the following texts to
 complement the lectures.

1. Mathematical Methods of Classical Mechanics by V.I. Arnold.
2. A Course in Mathematics for Students of Physics by Paul Bamberg and

 Shlomo Sternberg.
3. Overview of Selected Topics in Physics by William D. Linch III. These

 notes offer a treatment closer to what one would find in a physics text.
 It's a work in progress.

We are also fortunate to have Gabriel Drummond-Cole's TeX'd course notes,
 annotated with physics commentary by William.

Lecture 1
Lecture 3
Lecture 4

Homework: We will provide several problem sets throughout the semester.
 The best way to learn the material is to attempt these problems and even
 come up with and solve some problems on your own.

Grades: Throughout the semester students will be expected to present
 homework solutions in class. The course grade will be determined solely by
 these presentations.

DSS advisory: If you have a physical, psychiatric, medical, or learning
 disability that could adversely affect your ability to carry out assigned course
 work, we urge you to contact the Disabled Student Services office (DSS),
 Educational Communications Center (ECC) Building, room 128, (631) 632-
6748..
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For the most part, the lectures will be heavily influenced by the first two
 references. We only mention the other references for those who would like to
 revisit some of the prerequisite topics or look into some of the more advanced
 topics.
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Part I

Classical Theory
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Chapter 1

Introduction, notation, and
preliminaries

1.1 Our guiding philosophy

This course is meant to be an introduction to the topics usually taught to under-
graduate physics major. These are classical mechanics in both the Newtonian and
Relativistic setting; classical electromagnetism; thermodynamics and statistical me-
chanics; and quantum mechanics. We have two audiences in mind: former physics
majors who have seen the general content before and pure math majors with an
interest is studying physical topics.

For the first audience, we present the physics in a way that emphasizes some
of the overall mathematical structure. This approach can be of great pedagogical
benefit by shining new light on old topics and preparing one for further study in field
and string theory, to which many of the mathematical ideas we discuss apply.

For the second audience, the mathematical structure is there for psychological
reasons, as well as pedagogical ones, softening the culture shock and yet introducing
math that is interesting in its own right. We also present specific examples and
solutions to get a hands-on feel for the physical ideas that they display.

In some cases, particularly when we cover quantum mechanics, some may find
our mathematical approach to be vague and hand-waving at best. While this is
somewhat regrettable, we will not apologize for it. One of the goals of this course is
to offer the students a sense (perhaps even an intuition) for how physicists achieve
progress, not in spite of eschewing mathematical rigor, but sometimes because of it.
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6 CHAPTER 1. INTRODUCTION, NOTATION, AND PRELIMINARIES

1.2 Physical and mathematical preliminaries

Dimensional analysis and “naturalness”
Vector fields, differential forms, and calculus



Chapter 2

Classical mechanics

2.1 Newtonian mechanics on Euclidean space

2.1.1 Space, time and particle

Space We will generally refer to space meaning the 3-dimensional real vector space
R3 = {x = (x, y, z) ∈ R×R×R} with the right-handed orientation and the Euclidean
inner product 〈· , ·〉 : R3 × R3 → R, to which we will refer as dot product. For
x,y ∈ R3, 〈x,y〉 = x · y. We describe all events by coordinate expressions as
that is the language most closely related to the realization of the event. We will
also switch freely between various confusing but conventional notations to describe
the coordinates. For example, it is common to write x ∈ R3 variously as xi for
i = 1, 2, 3 or just xi and also x = (x, y, z). Note that by convention x1 = x denotes
the “x-coordinate”, x2 = y denotes the “y-coordinate”, and x3 = z denotes the
“z-coordinate”. In this language, x · y =

∑3
i,j=1 δijx

iyj where δij is the Kronicker-
delta, equal to +1 when i = j and 0 otherwise. We will use the Einstein summation
convention meaning that when covariant and contravariant indices are repeated, a
summation over the full range of the indices is implied, that is, for a vector xi and
covector pi, pix

i =
∑3

i=1 pix
i.

For any vector x we define the unit vector x̂ = |x|−1x where |x| ≡
√

x · x ≡ r.
The unit vectors in the x-, y-, and z-directions are denoted x̂, ŷ, and ẑ. The ori-
entation on space defines a cross-product × : R3 × R3 → R3. The right-handed
orientation is the one given by the right-hand rule x̂ × ŷ = +ẑ. This can be ex-
pressed using the totally anti-symmetric tensor εijk normalized to ε123 = +1, that is
εijk(x̂)i(ŷ)j(ẑ)k = 1, in terms of which for any two vectors a, b, (a×b)i = δii′εi′jka

jbk.
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8 CHAPTER 2. CLASSICAL MECHANICS

Time and Particle In the Newtonian picture of nature, there is a universal clock
defining time for all observers. We will denote this universal time by t ∈ R. In
general, particle motion is described, by definition, by a time-dependent vector x(t).1

The velocity v of a particle is the derivative with respect to time of its position
v(t) = ẋ(t) ≡ d

dt
x(t). Its acceleration a is the derivative of its velocity, or the second

derivative of its position a(t) = ẍ(t). We will often drop the argument of these
physical quantities, leaving their time-dependence implicit. It is also common to
denote the constant values of these quantities with a ‘naught’, e.g. x0 for constant
position vector. We define the linear momentum p(t) of a particle as the product of
its mass m and velocity ẋ, p = mẋ.

Symmetries The space symmetry group for Newtonian mechanics is given by the
Euclidean group SO(3) n R3 where the compact factor acts on the coordinates by
rotations xi 7→ Λi

jx
j : Λi

jδikΛ
k
l = δjl and the non-compact factor acts by translations

xi 7→ xi + ai. In Newtonian mechanics the time variable does not mix with the
spacial coordinates. We therefore have a separate symmetry factor R of translations
in time t 7→ t + c. The physical interpretation of these space-time symmetries is
that in writing equations, the origin and orientation of the coordinate system are
conventions and in particular are not physical. That is, only the relative coordinates
of space-time events are physical. In general, physical quantities are invariant under
the space-time symmetry group. In practice we will always fix this ambiguity by
specifying the coordinate system.

Note that when physical quantities are expressed in linear-algebraic language,
the transformation laws are simple, that is, linear. When a physical formalism is
expressed in the way, we say that the formalism is covariant – in this case with
respect to the space symmetry group SO(3) n R3 × R – and that the space-time
symmetry is manifest. It is always the case that a covariant formalism is expressed
in terms of unphysical quantities because covariance means that the symmetries
are manifest which means that they are realized linearly on the variables which, in
turn, means that the variables are not invariant under the symmetries and hence not
physical.

2.1.2 Newton’s Laws

Newton i: An object of mass m in rectilinear motion x(t) = v0t + x0 will stay in
rectilinear motion unless acted on by a force.

1This is the meaning of particle as opposed to an extended object for which we have to specify
a distribution of positions as a function of time.
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This statement defines the concept of kinematics or geodesic motion. It is equiv-
alent to the statement that free particle trajectories satisfy the equation

ẍ = 0. (2.1)

Which, in turn, is equivalent to the statement that, in the absence of force, momen-
tum is conserved

ṗ = 0. (2.2)

Note that the equation is SO(3) n R3 × R covariant. In a local lagrangian system,
the existence of a global symmetry implies, via Noether’s theorem, the existence
of a conserved current (c.f. section 2.1.5). Suffice it here to say that the current
associated to the translations is the momentum p. The kinematic equation (2.2)
expresses that it is conserved, that is, constant in time. Similarly, there is a current
associated to the rotational invariance – the angular momentum L = x× p. Noting
that p ‖ ẋ and using the kinematical equation, we see that the angular momentum is
conserved L̇ = 0. Finally, the current associated to a shift in the time variable is T =
1
2
mẋ2 = 1

2m
p2 and is called the (kinetic) energy (the normalization is conventional).

Again, the kinematic equations imply that it is conserved.

Newton ii: An object of mass m, when acted on by a force F will deviate from
rectilinear motion with an acceleration a = ẍ according to the relation

F(x, t) = ma(t) (2.3)

or, equivalently,

F(x, t) = ṗ(t). (2.4)

This is the statement of dynamics or the deviation from geodesic motion due
to an external influence. An equivalent way to express this is that the second law
defines the source 1

m
F(x, t) for the kinematic (read “source-less”) equation ẍ = 0 or

ṗ of the first law. In this sense, it defines what is meant by a force.
An important point to note is that the second law is linear in the force. This

implies that we have the
Principle of superposition: If there are 2 forces F1 and F2 acting on the same
particle, the effective force Ftotal the particle experiences is the vector sum of the indi-
vidual forces Ftotal = F1 +F2. In particular, two opposing forces of equal magnitude
and opposite direction applied to the same particle produce no net dynamics.

A second important point is that the second law can be interpreted as defining
the mass of an object to be the ratio of a stimulus |F| to the response |a| in its

motion by m = |F|
|a| . In this sense, we see that m refers to an inertial mass, that is, a

property describing its resistance to a change in motion.
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Newton iii: An object, when acted on by some agent with a force Faction will exert
a force Freaction on the agent of equal magnitude and opposite direction, id est,

Faction = −Freaction. (2.5)

This is a statement of linear momentum conservation during a collision. Intu-
itively, when pressing on an object with some force, the object presses back (other-
wise, we wouldn’t be able to feel it). The third law is the statement that the reaction
force is of precisely the same magnitude as the applied force.2

Newton’s law of universal gravitation Consider two objects, one of mass m1

and the other of mass m2. They will exert a gravitational force on one another given
by

Fgravitation = −G
m1m2

r2
r̂ (2.6)

where G ≡ 1
4πκ

≈ 6.67259× 10−11Nm2kg−2 is the least precisely known fundamental
constant of nature.

This formula is fundamentally different from the second law. Firstly, it introduces
a constant G which is claimed to be fundamental in the sense that it is the same
number no matter what material form the masses take.

Secondly and related to this, the masses m1,2 entering it could be called gravita-
tional masses since they describe a property of an object we are calling gravitation
and should probably have been called gravitational charge. A priori, this is a different
type of mass than the inertial mass entering the dynamical second law. Therefore,
Newton’s law of universal gravitation is making the bold assertion that gravitational
mass and inertial mass are equivalent.

Finally, we note that setting a2 = −Gm2

r2 r̂ to be the acceleration due to the gravity
of the mass m2 at a distance r from its position, we find the form Fgravitation = m1a2.
Taking m = m♁ to be the mass of the earth and r = r♁ its radius, we find the famous
acceleration due to gravity g = |a♁| ≈ 9.8ms−2.

2This law causes some confusion when used in conjunction with the second to the effect that if
the object pushes back with exactly the same force, the forces should cancel and there should be no
resulting dynamics. Indeed, there is no relative dynamics between the hand and the object, rather,
the object will accelerate relative to the ground against which we are also pushing when we try to
accelerate the object.
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2.1.3 Potentials

There are various drawbacks to the vector space formulation of Newtonian mechanics,
not the least of which is that all defining equations are vector equations. In most
cases of physical interest, drastic simplifications are made possible by switching to
a description in terms of energy. Suppose the force is holonomic ∇× F = 0. Then
we can define the potential energy function U(x, t) s.t. F = −∇U . The sign comes
from the observation that a force acts so as to decrease the potential energy. The
total energy E = T + U is the sum of the kinetic and potential energy. Just as the
kinetic energy was conserved in the absence of external forces, the total energy of a
system is conserved when the force is the gradient of the potential energy and the
latter does not depend explicitly on time: Ė = mẋ · ẍ +∇U · ẋ + ∂U

∂t
= 0 by Newton

ii. This is the famous principle of the conservation of energy. It is very powerful
because it is, in the cases in which it applies, equivalent to the second law but it is
a scalar equation, making it much easier to use.

2.1.4 Hamiltonian

Very closely related to the energy formulation of Newtonian mechanics is the Hamil-
tonian formalism. In this formulation, the fundamental variables are the position
xi and the momentum pi vs. the position and the velocity (c.f. section 2.1.5). A
physical trajectory is a graph in the phase space {xi, pi}3

i=1.
3 Note that the momen-

tum is treated as a 1-form in this formulation (which, as we will soon learn, is the
proper interpretation of this quantity). The dynamics is encoded in the Hamiltonian
H(x, p) which, when evaluated on a point in the phase space, is equal to the energy E
introduced in section 2.1.3. In particular, it is the sum of the kinetic energy function
T (p) which we take to be a function only of the momentum (usually T = 1

2m
p2)4 and

the potential energy function U(x) with we take to depend only on the position. We
can now easily show that the definition of momentum and the second law imply

Hamilton’s Equations

ẋi =
∂H

∂pi

3In general, the space parameterized by x may be any C2 3-manifold M . Then the phase space is
defined to be the co-tangent bundle T ∗M . From this point of view, it is easy to see the symplectic
structure.

4On a more general space the kinetic energy function will depend on x through the metric:
T = 1

2mgij(x)pipj .
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ṗi = −∂H

∂xi
(2.7)

The form of these equations5 displays an important aspect of the phase space, namely,
its symplectic structure: The phase space comes equipped with its Poincaré 1-form
pidxi and therefore the symplectic 2-form dpi ∧ dxi. This statement is often implicit
in a discussion of Hamilton’s equations in which one considers transformations of the
variables (x, p) which preserve the ‘form’ of Hamilton’s equations. These canonical
transformations are the symplectomophisms – smooth transformations on the phase
space coordinates which preserve the symplectic structure.

From the Poincaré 1-form and a phase space trajectory γ (a path in phase space)
we can construct the action (functional)

S[γ] =
∫

γ
pidxi. (2.8)

A useful generalization of the phase space includes the time coordinate as an
additional variable. This 7-dimensional space is called the extended phase space.
Similarly to the action functional (2.8) on the un-extended phase space, from the
Poincaré 1-form and the Hamiltonian function we can construct the action functional6

S[γ] =
∫

γ

[
pidxi −H(x, p)dt

]
. (2.9)

It is important to remember that (xi(t), pi(t)) are functions of the time parameter
t. As such, we are allowed to “vary” them. That is, we consider an infinitesimal
deformation of the trajectory γ → γ′ = γ + δγ. The variational or functional
derivative of the action functional is defined to be the linear part of S[γ′], that is

δS

δγ
≡ lim

δγ→0
S[γ + δγ]. (2.10)

This notation δ for ∂ for the functional derivative is customary in the calculus of
variations.

The path has two linearly independent variations in the x-direction and the p-
direction. It is therefore possible to define the partial variations in these directions.
The following notation is customary (and, hopefully, self-explanatory)

δS = δxi δS

δxi
+ δpi

δS

δpi

. (2.11)

5Note that the Hamilton equations (2.7) are coupled ordinary differential equations of the first
order which contain the same information as Newton’s second law which is second order.

6Note that this is (the negative of) an integrated Legendre transformation of H(x, p).
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The action is called stationary when δS = 0. Since the x- and p-variations are
independent, stationary action implies

0 =
δS

δxi
= −ṗi −

∂H

∂xi

0 =
δS

δpi

= ẋi − ∂H

∂pi

(2.12)

and we recover Hamilton’s equations (2.7).7 This is the principle of stationary action;
the physical trajectories in phase space are those which extremize (usually minimize)
the action.

This point of view has many advantages. Firstly, it generalizes the intuitive
idea that physical processes are such that they minimize the energy. Secondly, a
modification of this formalism (c.f. section 2.1.5) us a very powerful tool to solve
complicated concrete problems in analytical dynamics especially dynamical systems
defined in terms of constrained degrees of freedom. Finally, the principle of stationary
action will fit seamlessly into the description of quantum mechanical systems c.f.
chapter ??. There we will see that quantum mechanical corrections to classical
mechanics have the interpretation of deviations δγ of the phase space trajectories.

2.1.5 Lagrangian

A complementary formulation of Newtonian mechanics is the Lagrangian formu-
lation. The Lagrangian formulation is a “Legendre transform of the Hamiltonian
formulation”. Indeed, the space replacing the phase space of Hamiltonian mechanics
is the space parameterized by positions qi and velocities q̇i.8 The Lagrangian function
L(qi, q̇i) is the Legendre transform of the Hamiltonian H(xi, pi)

L(qi, q̇i) = piq̇
i −H(x, p). (2.13)

Plugging in the form H = T + U and substituting pi = mq̇i we find that L = T −U .
By the definition of the action (2.9), the Lagrangian function is the unintegrated
action density

S[γ] =
∫

γ
L(q, q̇) (2.14)

7In the first equation, we have integrated the time derivative by parts. This is legal since the
surface term is proportional to δx which vanishes when evaluated at the endpoints of the path
(recall that we vary the path but keep the endpoints fixed).

8For a general space M the Lagrangian formalism is defined on the tangent bundle TM . It is
conventional in this context to denote the positions by qi instead of xi.



14 CHAPTER 2. CLASSICAL MECHANICS

where γ is re-interpreted as a section of the tangent bundle.9 The stationary phase
principle in this case implies the Euler-Lagrange equation

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0. (2.15)

The advantages of the Lagrangian formalism over the Hamiltonian one include
the use of the stationary action principle to solve complicated problems in anaytical
dynamics and the possibility to easily manifest Lorentz invariance in relativistic
theory (c.f. ??).

Noether’s theorem Consider a time-independent infinitesimal transformation of
coordinates qi 7→ q′i ≈ qi + εi under which the action is invariant S 7→ S, that is, a
symmetry of the theory. Now promote the parameter εi → εi(t) to a function. The
resulting change in the action must be proportional to ε̇ since, when ε is constant,
the transformation is a symmetry. Given this, there must be a function Ji(q, q̇, t)

such that δS =
∫

ε̇iJi = εiJi|−
∫

εiJ̇i. The first term is the “surface term” εJ |tfti – the
difference of the quantity εJ at the final time tf and the initial time ti. The second
term vanishes by the equation of motion. (Prove it!) When ε is constant, we see
that J is conserved J(tf ) = J(ti). Such conserved functions arising from symmetries
of the theory are called Noether currents. In this case the symmetry is a translation
and the current is Ji = ∂L/∂q̇i, which is the definition of the momentum. In the
absence of external forces, this is indeed conserved.

With an eye to the future we will refer to a time-independent symmetry as a
global symmetry. Noether’s theorem is the statement that for every global symmetry
of the action, there is a conserved current and vice versa.

2.1.6 Examples

Gravitational potentials and solvable systems.
Potential theory and the need for fields.

9Usually this whole story is reversed: One defines the Lagrangian function as the difference
between the potential and kinetic energy functions and develops the Lagrangian formalism and
stationary action principle. Subsequently the Legendre transformation to the Hamiltonian function
is performed. It is then proven that the resulting Hamiltonian is independent of q̇ and the phase
space picture is developed.



Index

4-momentum, 20
4-vector, 20

Action
Point particle

Nambu-Goto, 23
Action (functional)

Phase space, 12

Boost, 18

Calculus of variations, 12
Canonical transfomation, 12
Charge

Electric, 15
Convention

Early-late, 24
Einstein summation, 7
Mostly plus vs. mostly minus, 17
Right-hand rule, 7
West coast vs. east coast, 17

Covariance, 8
Current

Conserved, 9

Dynamics, 9

Energy
Kinetic, 9
Potential, 11
Rest, 20

Energy-momentum, 20
Euler-Lagrange equation, 14

event, 21

Force, 9
As a source, 9
Electro-static, 15
Holonomic, 11
Magnetostatic, 16

Formalism
Vier-bein, 24

Frame
Coordinate, 18
Inertial, 18
Rest, 18

Functional derivative, 12

Hamilton
-’s equations, 11
-ian formalism, 11
-ian function, 11

Index
Curved, 24
Flat, 24

Kinematics, 9
Kronicker delta, 7

Lagrangian function, 13
Law

Ampere’s, 16
Biot-Savart, 16
Coulomb’s, 15
Electro-static force, 15

15



16 INDEX

Faraday’s, 16
Gauß’, 16
Magneto-static, 16

Legendre transformation, 12
As relating Hamiltonian and Lagrangian

formulations, 13
Light cone, 21

Forward, 21
Line element, 20
Lorentz

Group, 17
Transformation, 18

Magnetic monopole, 16
Mass

Gravitational, 10
Inertial, 9

Mass shell
Condition, 21

Moment
Magnetic dipole, 16

Momentum
Angular, 9
Linear, 8

Noether current, 14
Null interval, 21

Orientation of space, 7

Paradox
Twin, 19

Particle, 8
Phase space, 11

Extended, 12
Poincaré
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[Course overview.]

Let’s get started with Newtonian mechanics. The prerequisite is that you know what a
manifold is. I won’t assume Riemannian geometry. I’m trying to keep things simple, so
things will be on flat affine spaces. If you want to sup it up in your head as we go along, feel
free.

So classical mechanics, we’re talking about the physics (and math) of a single particle moving
in some Euclidean space. So if you want to play along at home it could be a Riemannian
manifold. The mathematical models are paths x, maps from time M1 → X where X is a
Euclidean target space. (or possibly a Riemannian manifold). Do I need to define a Euclidean
space? Sorry, I guess that’s a little bit insulting.

All right, so there are two spaces that are going to color our approach to this, M1 and X.
Let’s look at the structure of both of these spaces.

Okay, so time has physical significance. We attribute certain mathematical structure to it to
correspond to this. In particular,

1. It’s affine, meaning that it’s not necessarily a vector space. How do you add two
instances in time? You can’t. You can talk about how much time has passed, so it’s
an affine space over a one dimensional vector space T ∼= R.

2. There are units, like seconds or hours. What sort of mathematical structure would units
be associated with? A norm, a metric. In particular we have a translation invariant
metric on affine time. In other words, T has an inner product on it.

3. We could potentially also attribute to it an orientation, a differentiation between going
forward and backward. We’ll hold off on that for now.

To have a cogent discussion, we want to do math, so I want to fix some affine coordinate
t : M1 → R. We want to choose this so that |dt| = 1.
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The structure, excluding the third, gives us a symmetry group that we will talk about again
and again. The symmetry group is the Euclidean group for M1, which includes translations
and reflections. So there is a short exact sequence 1→ Translations→ Euc(M1)→ O(T )→
1. That’s the structure we associate to the domain.

Now what structure do we have in the range?

1. X is an affine space over a vector space V.

2. There is a (translation invariant) metric so that V is an inner product space. This
measures distance on Ed.

If you’re playing along with Riemannian geometry, these are the conditions that

1. X is a smooth manifold

2. X has a Riemannian metric

3. The metric is complete so we can work globally on X.

Let’s go back to the Euclidean space. Again there is an associated symmetry group Euc(Ed),
where you have translations and then reflections and rotations. Again you have a short exact
sequence

1→ V︸︷︷︸
translations

→ Euc(Ed)→ O(V )→ 1.

For a general Riemannian manifold the group of isometries will be smaller, meaning lower
dimensional. Sometimes this group will even be trivial.

There is one last piece of data that we need to define classical mechanics on X. We have the
model of maps from affine Euclidean time into a Riemannian manifold. The last piece of
data is

• a potential energy function V : X → R.

• A mass n > 0 of the particle.

A quick note on units. In this course we’ll come across a few fundamental units. In classical
mechanics we’ll only come across mass, length, and time. Energy will have units mL2/t2.

Actually, these are the only basic units. This is an empirical fact. We will see that extensions
of classical mechanics will introduce new fundamental constants such as the speed of light c
with units L/T (special relativity), a fundamental angular momentum ! with units ML2/T
(quantum mechanics), etc. but must reduce to classical mechanics in the appropriate limit,
e.g. c→∞ and !→ 0. Therefore, no new fundamental units are introduced even when more
fundamental physics is uncovered.
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Now we can finally define what classical mechanics is, or at least the classical mechanics
of the system. So all togethher, for any target space X, all possible particle motions are
modeled on paths P = Map(M1, X). We’ll assume that the paths are smooth. Don’t worry
about putting a Frechet topology or whatever on this.

This is again actually an empirical fact. Discontinuous paths imply the disappearance and
reappearance (at a later time) of particles while a kink in the path amounts to an instanta-
neous change in the particle’s velocity. In order to change a Newtonian particle’s velocity
discontinuously one must apply an infinite force. Infinite forces are considered pathological
and any use of such a thing should be considered only as an approximation.

Now given the potential energy function V the actual particle motions are paths x such that
they satisfy Newton’s second law

mẍ(t) = −V ′(x(t)) = −∇V (x(t))

In the physics literature this equation is variously written as mẍ = −∇V as a “vector”
equation or as mẍi = −∂V /∂xi in “components”. Here x is a coordinate for the point x and
xi are its components (in some orthonormal coordinate system) where the indices i = 1, 2, 3
label the linearly independent directions. A common notation is (x1, x2, x3) = (x, y, z). The
index on xi is defined to be ‘up’ and is lowered with the metric or its inverse. In Euclidean
space the placement of the indices (upper or lower) doesn’t matter as the metric gij = δij

is just the Kronicker symbol but the more general case such as in Riemannian geometry or
“curvilinear coordinates” (e.g. spherical coordinates) it, of course, matters a great deal.

We’re going to look at the space of solutions to this equation M , the space of states. A
solution is a state. It’s also called a phase space. Let me mention some properties right off
the bat.

• It will be clear soon that M is a smooth manifold, so we can do calculus on it.

• The affine Euclidean group for time Euc(M1) acts on M on the right so in particular
time translation acts on it. So Ts(x)(t) = x(t− s).

• One other thing, the potential was a function of X. It can also be a function of time, so
that the symmetry is broken. So Euc(M1) no longer preserves the space of solutions.

Let me argue that this is a smooth manifold. Let’s see this by breaking some symmetry.
Choose an instant t0 in time and by picking this we break the affine symmetry. Then there’s
a natural map M → TEd = V × Ed given by x '→ (ẋ(t), x(t)). This is a bijection and you
can just transfer the differentiable structure across.

The physical intuition behind this diffeomorphism is the intuitively obvious fact that when you
want to specify a particles trajectory, it suffices to give the initial position, its initial velocity,
and the potential field in which the particle motion occurs (i.e. the force which acts on it).
For example, the parabolic trajectory of a baseball depends on the gravitational potential field
(in this case V = mgz with g ≈ 9.8ms−2) the hight of the ball upon release and its velocity
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(speed and direction) upon release. Newton formulated his second law to be second order in
time derivatives precisely to accommodate this empirical fact.

Now we have a picture of what the space of solutions looks like. Let me give you some
examples.

Example 1 The free particle
This is the case where it’s moving in Euclidean space and V = 0. Then Newton’s second law
says mẍ = 0. Then M = {x(t) = p + vt|p ∈ Ed, v ∈ V }. So given a t0, the map takes p + vt
to (v, p). In this case the map doesn’t depend on t.

Example 2 This is a little less trivial but just as famous. It’s the spring or harmonic
oscillator.
Implicitly you have to have a distinguished point where the spring is stable. I may as well
take X = R1. Then the potential energy is V = 1

2kx2, where the units of k are M
T 2 .

Then Newton’s second law says mẍ(t) = −kx(t). Then M = {p cos(
√

k
m t)+

√
m
k v sin(

√
k
m t)|p, v ∈

R}. So then p cos(
√

k
m t) +

√
m
k v sin(

√
k
m t) t=0'→ (v, p).

There are other things I can point out about the space of solutions. We have the symmetry
group of the domain that acts on the solutions. What about the symmetry group of the
target? How does that naturally act on the space of solutions? it acts on the left, but only
those isometries that preserve the potential. An isometry that changes the potential will not
preserve the space of solutions. What’s true about the two group actions? They commute.
The time group will have to do with dynamics, the target group with kinematics. If X = Ed,
and V = 0, so that we’re talking about the free particle, then the entire Euclidean group acts
on the space of solutions, since everything preserves the 0 potential. In particular, if A is an
affine Euclidean transformation and its derivative is in O(V ), then p + vt '→ Ap + (dA · v)t.

Let me wrap up what I’ve said today, which isn’t much. In summary, we’ve discerned that
the space of solutions M to Newton’s second law has the following structure:

• There’s a right action by the Euclidean time group Euc(M1) acting by right composition
with the inverse.

• There’s a left action by potential-preserving isometries of X, Isom(X, V ).

• For t0 ∈M1 there’s a natural diffeomorphism M
t0∼= TX.

Next time I hope to make this fit in with the idea of a symplectic structure.
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[Is the exact sequence from last time secretly Noether’s theorem?]

We’ll see Noether’s theorem later. Let me recap what we’ve seen so far. So far we’ve seen
particle motion, and the structure of the phase space M which are paths from the affine time
to the target satisfying Newton’s second law

{x : M1 → X|ẍ = −V ′(x(t))}

This has a right action by Euc(M1), a left action by Isom(X, V ) and a for each t0 ∈ M1 a

natural diffeomorphism M
t0∼= TX.

We saw something about symplectic geometry on a smooth manifold M2n. This means there
is a two form ω ∈ Ω2(M) such that ωn is nowhere vanishing (nondegeneracy) and dω = 0
(closed).

The thing that will play a big role today is the symplectic gradient which takes smooth func-
tions on a symplectic manifold into vector fields C∞(M) → X (M) via f %→ ξf characterised
by ι(ξf ) = df. This gives us the Poisson bracket {·, ·} which makes C∞(M) a Lie algebra.
This is given by {f, g} = ω(ξf , ξg). Then this map ξ is a homomorphism of Lie algebras.

There is a typo in the equation above. The formula for ξf should be ι(ξf )ω = df , or in
components (local coordinates) ξi

f = ωij∂jf . The Poisson bracket is given in local coordinates
zi by

{f, g} =
∂f

∂zi
ωij ∂g

∂zj
. (1)

Note that ξf = −{f, ·} which is handy to keep in mind.

The symplectic form on the cotangent bundle is compatible with the coordinates of the latter in

the sense that it takes the form ω =
(

0 −1
1 0

)
in the basis where (zi) = (xi) for i = 1, . . . , n

and (zi) = (pi) for i = n + 1, . . . , 2n. (Compare ω = dpi ∧ dxi.) Then the Poisson bracket
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takes the form often found in physics books

{f, g} =
∂f

∂xi

∂g

∂pi
− ∂g

∂xi

∂f

∂pi
. (2)

By the way, I should mention that the use of components such as ξi
f instead of the full

vector ξf which in local coordinates x is given by ξi
f (x)∂/∂xi is actually not really coordinate

dependent. As pointed out by Penrose, the expression ξi
f can be understood merely as a

notation which keeps track of the tensorial nature of ξf which is that of a vector in this case.
Of course this does not apply to the coordinates themselves which prompted Penrose to use a
different label e.g. ξa vs. xi. However, modulo such caveats the notation is a powerful way of
keeping track of covariance of complicated expressions for objects composed of multiple tensor
quantities with derivatives, etc. acting on them. Finally, note that the coordinate basis vector
∂/∂xi ≡ ∂i is written as ∂a in Penrose’s notation. Physicists generally have never hear of
this Penrose notation and never distinguish a coordinate index i from an abstract index a.

The prime example of a symplectic manifold is when M = T ∗X, the cotangent bundle. Then
ω = dθ where θ is the God-given one-form on T ∗X.

Recall that in local coordinates on T ∗X θ = pidxi where the xi are local coordinates in the
base and the momenta pi are local coordinates on the fibre of T ∗x X.

Why is this interesting to us in the context of particle motion? These diffeomorphisms give
us a relationship, but we want to get from the tangent to the cotangent bundles. So we

use the Riemannian metric to get M
t0∼= TX ∼= T ∗X. So now the rest of this class will be

spent investigating, take the natural structure on T ∗X and pull it back by M . So we have
a symplectic structure for each t0 and these could depend on the choice of t0. So this is
breaking the symmetry.

Recall that the M ∼= TX isomorphism comes from the map xi(t) %→ (xi(t0), ẋi(t0)) which
takes a solution to Newton ii, that is, a specific particle motion, and maps it to the particle
coordinate at t = t0 and its velocity at t = t0. The second isomorphism takes (xi, ẋi) %→
(xi,mgij(x)ẋj) and, in physics at least, depends explicitly on the mass parameter.

This brings us to Hamiltonian mechanics. The goal of Hamiltonian mechanics is to encode
the symmetries of our phase space into the Lie algebra of smooth functions with the Poisson
bracket (C∞(M), {·, ·}).

To point out, to be grandiose, where this fits in the grand scheme of physical systems, there’s
usually a phase space, and another space (of observables). There should be a duality ∼
between them, as observables are evaluated on states. In our particular situation in classical
mechanics, our state space is our phase space. Our observables are the functions on our phase
space. These would be things like momentum and energy that we can assign to a particular
particle path.

Strictly speaking, and perhaps shockingly, these are not observables. The problem is that these
quantities are coordinate dependent. The (potential) energy, for example is only defined up to
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a constant since it appears with a derivative in Newton ii. Therefore, only energy differences
are physical. Similarly, the momentum is only defined up to a constant vector and only the
relative momentum between us and the particle is physical. This is the reason the observables
are required to be scalar functions on the phase space; they are not allowed to transform
non-trivially under a change of coordinates.

One would expect that the symmetries of the phase space should translate into symmetries
of the symplectic structure. Let me talk about that, and symplectomorphisms. I’m never
going to write out symplectomorphism again. I probably spelled it wrong in the first place.
I’ll call them whatever in the future, unless you want me to call them, like Bob. That might
look bad in Gabe’s notes.

Weinstein coined the term symplectic, from taking the Greek equivalent for the Latin word
for complex. Before it was the Abelian linear group. It sounds like a Victorian word, like
perambulator. It’s the Greek root for intertwined.

Let (M,ω) be a symplectic manifold. Then ϕ ∈ Diff(M) is a symplectomorphism if and
only if ϕ∗ω = ω. Let me give you some examples related to the cotangent space. Since this
happened automatically, we might think that any diffeomorphism from a diffeomorphism of
the underlying manifold would be a symplectomorphism. That is the case.

If M = T ∗X, ω = dθ and ϕ ∈ Diff(X), then

ϕ : T ∗X
∼→ T ∗X

by (x, p) %→ (ϕ(x), (dxϕ−1)∗p). So to check that this is a symplectomorphism, you just check
that this preserves θ.

Let us denote the symplectomorphism on the coordinates zi of M by ϕ : zi %→ z̃i(z). In the
case of the tangent bundle this gives (xi, pj) %→ (x̃i, ∂xk

∂x̃j pk) which is just the statement that
pi is a 1-form. It is then obvious that θ = pidxi is invariant.

Let’s look at a subclass where X = Ed, so M = V ∗ × Ed and let ϕ = A ∈ Euc(Ed). So for
x ∈ Ed and p ∈ V ∗ then Φ(x, p) = (Ax, (dA−1)∗p) is a symplectomorphism.

In the linear category last time this is analogous to the subgroup, we said GL(L) ⊂ Sp(L⊕L∗),
and this is the general analogue of this linear statement.

The reason I harped on these examples is because when we talked about particles, there are
transformations on the target space. The diffeomorphisms will give us special symplectomor-
phisms on the phase space.

Now I want to talk about infinitessimal symplectomorphisms. So ξ ∈ X (M) is an infinitessi-
mal symplectomorphism if and only if Lie(ξ)ω = 0. This leads us to a special subset of vector
fields Xω = {ξ ∈ X (M)|Lie(ξ)ω = 0}. This sits inside X (M) as a subalgebra, preserving
the Lie bracket.

So as long as you stick with diffeomorphisms isotopic to the identity, these are the same
requirements.
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Maybe it is a good little exercise to show that the linear part of the finite symplectomorphism
is the infinitesimal symplectomorphism. That is, check explicitly that (ϕ∗ − 1)ω ≈ Lie(ξ)ω.

Okay, now the symplectic gradient. For any f ∈ C∞(M) I get a vector field ξf . I claim that
this lives in Xω(M). To see this note that

(Lie(ξf )ω) = d ◦ ι(ξf )ω + ι(ξf )dω = 0,

because ι(ξf )ω = df and dω = 0.

So what if I want to look at a particular symmetry. Can I find corresponding obervables?
Does every infinitessimal symmetry have a corresponding observable? The answer will depend
on H1. The short answer is no. The long answer brings up the exact sequence

f !! ξf

0 !! H0
dR

!! Ω0(M) !! Xω
!! H1

dR
!! 0

ξ !! [ι(ξ)ω]

So if [ι(ξ)ω] .= 0 then ξ has no corresponding observables. If ξ ∈ Xω has an observable, it
has many, only unique up to the constants.

This is not what a physicist would call many since it is as small as possible without be-
ing trivial. As we will probably see soon, the ambiguity inherent in some potentials can be
hugh sometimes involving an infinite number of functions. These ambiguities called gauge
invariances have become one of the central themes in theoretical physics.

Okay, now time translation. In classical mechanics, there is always a distinguished one-
parametery group of time translations. Let’s just assume for now that ξt is the corresponding
infinitessimal generator of time translation, that is, ι(ξ)ω is exact.

So we have a choice of corresponding observables. Pick one, up to a constant. Finally we meet
the energy. This is the Hamiltonian, which in the sense of these infinitessimal symmetries, is
negative the corresponding observable for time translation. In other words, energy, once you
take the symplectic gradient, it generates motion which is the negative of time translation.
So that is {x %→ x ◦ Ts, s ∈ R}.

This is an example of our previous observation that ξf = −{f, ·}. The statement that there
is a distinguished 1-parameter group of translations is equivalent to the statement that there
is a distinguished observable f = H, the Hamiltonian. Time translation is usually written as
ξt = d

dt so that our formula becomes

d
dt

= −{H, ·}. (3)
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Exercise: Hamilton’s equations follow by plugging the coordinates xi and pi into the equation
above. Write down Hamilton’s equations. Given the relation pi = mẋi, show that Hamilton’s
equations are equivalent to Newton ii.
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Recall that for certain ξ ∈ Xω(M ) (those for which the topological obstruction disappears)
there exists a corresponding observable Oξ ∈ C∞(M ) such that −dOξ = ι(ξ)ω.

This describes the infinitessimal symmetry ξ via ξf = {Oξ, f} for any f ∈ C∞(M ).

We got as far as saying that there are a particular set of symmetries we’re concerned with.
There are the infinitessimal symmetries of time translation, ζ ∈ Xω(M ), and this has the
observable Oζ where −Oζ is the energy or Hamiltonian. For a path x, H(x) = m2|ẋ(t)|2 +
V (x(t)). For x ∈ M this is independent of t.

[Is that obvious?]

Yes, I’ll get to it in a second. That’s where we left off last time. Any questions?

Before I finish off Hamiltonian dynamics, let me make some tangential but useful remarks
about observables. Most of the observables we see in this class will be something like O(t,f),
defined for any time t ∈ M1 and f : X → R. Then

O(t,f)(x) = f(x(t)).

Let me give another example, two examples.

1. If X = Ed, then we can take f = xi, and in this case O(t,f) the xi coordinate of the
particle at time t.

2. The Hamiltonian, this is the energy of the particle at time t.

A jet of a function is essentially its Taylor series. The first type of observable depended on
the 0-jet of the path; the Hamiltonian depends on the 1-jet. O(t,f) is local in time, meaning
it only depends on finitely many of these, only depends on a small neighborhood of a given
time.

So what’s the upshot? The structure on M is as follows. We have what is called a Hamil-
tonian system. That’s the phase space with its symplectic structure and our function H, so
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the couple (M ,H). So this is a symplectic manifold and a distinguished observable (energy)
such that −ξH is the infinitessimal time translation.

Let’s look at the symmetries of this extended structure. Global symmetries are symplectomor-
phisms that preserve H. The infinitessimal symmetries are infintessimal symplectomorphisms
ξ ∈ X (M ) such that Lie(ξ)H = 0. Now we’re going to look at these symmetries in terms of
observables.

Here “extended structure” should not be confused with the (closely related) “extended phase
space” which is used in the construction of the Hamiltonian form of the variational principle.
Extended phase space is just the Cartesian product of the original phase space (the cotangent
bundle T ∗X of the configuration space X) with the time M1 ∼= R.

So if Q is an observable that corresponds to an infinitessimal symmetry, then we have the
following relation: {H,Q} = 0. Now, for any observable, never mind that it’s a symmetry of
any system, time translation flow on phase space is induced by H. So we get that Ȯ = {H,O}.

This equation deserves its own line:
dO

dt
= {H,O} . (1)

In the operator formalism of quantum mechanics this will be the equivalent of the Schrödinger
equation.

Exercise: Show that the classical evolution equation (1) is equivalent to Hamilton’s equa-
tions.

Recall that you already showed that Hamilton’s equations (with the condition that the mo-
mentum is given in terms of the velocity by pi = mẋi or, equivalently, that the Hamiltonian
factorizes as H = 1

2mp2 + V (x)) are equivalent to Newton’s second law. Therefore, once we
fix the identification TX ∼= T ∗X, the evolution equation (1) is equivalent to Newton ii.

Now we use the observable energy to tell us how things change with time. So now, thus, what
we can conclude, assuming that the observable is a symmetry of the Hamiltonian system, for
Q, if Q induces a symmetry of the Hamiltonian system, then we havea conservation law. We
have that Q̇ = {H,Q} = Lie(−ξH)Q = Lie(ξQ)H = 0.

So look at Ḣ. This is {H,H} which is zero. So H is conserved. Such observables, here’s
more jargon, are called, and this is why I used Q, are called conserved charges.

So here’s the big idea , big enough to put in a box. Symmetries imply conservation laws.

Exercise 1 Compute these conserved charges. The physical situation is the free particle in
Euclidean space. We have the huge symmetry group, which is the isometries of Ed.

Compute the conserved charges for translations and for rotations. These will be momentum
and angular momentum.

The term linear momentum is sometimes used to distinguish these two types of momenta.
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Okay, let’s talk about Lagrangian mechanics. For particles we have solutions to Newton’s
second law, M ⊂ P = Map(M1, X). The idea of Lagrangian mechanics is to describe M as
the critical submanifold of a function S : P → R.

This function S is called the action, and M would be paths x such that δS(x) = dPS(x) = 0.
So δ is the exterior derivative on P.

This is the variational principle: we want the action to be stationary with respect to variations
δxi(t) (which form a basis of H∗(P)) in the path xi(t). This philosophy can be motivated
in various ways with various degrees of rigor. One such (rigorless) way is the following.
In Newtonian mechanics, particle motion tends to minimize the potential energy; if a ball
is sitting on an inclined plane it will roll to the bottom. The action principle is the precise
embodiment of this intuition.

[Is this why physicists want a path integral?]

That’s for quantum mechanics.

The Path Integral and the Principle of Least Action: A preview Quantum theory
introduces a fundamental unit of action ~ called Planck’s constant. The path integral Z is
the probability amplitude for a particle at position xi at time ti to be found at a xf at a later
time tf . It is given (schematically) by

Z =
∫ x(tf )=xf

x(ti)=xi

[dx(t)] exp
(

i

~
S[x(t)]

)
(2)

The boundary conditions on the path are indicated by the “limits of integration” and [dx(t)] is
a “measure” on the space of paths P. This formula expresses the fact that the probability of
finding a particle at xf at time tf given that it was at xi at time ti is given by a sum over all
paths (a.k.a. “histories”) with these boundary conditions weighted by a unimodular complex
number whose phase is the action (~ = 1 in natural units). Now consider the classical limit
~ → 0. When the action is away from its stationary point, any small deviation in the path
causes wild fluctuations in the exponential with “frequency” 1

~ →∞. The claim is that these
fluctuations average to 0 so that the path integral has, in the classical limit, support only on
those paths for which the action is extremal, that is δS = 0. The principle of least action
therefore follows naturally from the quantum principle of “sum over histories”.

So these equations, call these x paths, they satisfy what are called Euler-Lagrange equations.
We’ll eventually see that these are just Newton’s second law. Let me just continue with the
philosophical baloney. This sort of variational principle is also found in geometry, where it
used to obtain nice PDEs, like the harmonic PDE.

The terms “Newton’s second law”, “Euler-Lagrange equation” and “Hamilton’s equations”
are all examples of “equations of motion”. The phrase “equation of motion” or eom is used
interchangeably (and non-commitally) with any of these.

The Lagrangian approach gives us back our phase space, but it gives us a lot more than
that. The symplectic form was borrowed and depended on a time t. In the Lagrangian
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approach, we’ll get, the information embedded in this Lagrangian mechanics, which are
the Euler Lagrange equations and the submanifold M , but also a family of one-forms on
M parameterized by time. Finally, these one-forms will give us the symplectic structure
naturally, and that won’t depend on t.

I’ve kept you guys ten minutes long, I apologize. But in this sense, physicists equate “theory”
with a particular Lagrangian, which has all of this information in it.

[I thought it was the action?]

That’s the integral of the Lagrangian, which I think is more basic.
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