MAT 342 - Applied Complex Analysis MWF 10:00am-10:53am, Frey Hall 309, Fall 2013

Organizational Information

- Textbook: Complex Variables and Applications by James Ward Brown and Ruel V. Churchill, Ninth Edition, McGraw-Hill, 2013.
- Instructor: Chi Li , Office: Math Tower: 3-120, Office Hour: T/Th 1:30-3:30pm
- Grader: Raquel Perales Aguilar, Office: Math Tower 3-105, Office Hour: Th 2:303:30pm, MLC: T/Th 1-2pm

Homework, Syllabus, Grades, Exams

- Read the textbook: It's very important to read (and really understand) the text book both before and after the lecture since we don't have time to cover all the details from the book.
- Homework and Syllabus: Doing homework is very important for understanding the materials. Note that homework takes 20% of your total scores. Try to do the rest of exercises in the book for more practices. Homework will be collected every Wednesday in the lecture. 6 homework problems will be graded. Solutions to some problems will be provided.
- Midterm Exams : 2 midterms in class. Tentative Schedule: Mid 1: Oct. 3 ; Mid 2: Nov. 7.
- Final Exam : Dec. 16, 2:15pm-5:00pm.
- Grading Policy: The overall numerical grade will by computed by the formula: Homework 20\% + Midterm Exam 1 15\% + Midterm Exam 2 15\% + Final Exam 50\%.

Miscellaneous

- Wikipedia articles you may find useful (from the previous course page by Professor Leon Takhtajan)
- A very useful resource is the Math Learning Center (MLC) located in room S240-A of the mathematics building basement. The Math Learning Center is open every day and most evenings. Check the schedule on the door. Another useful resource are your teachers, whose office hours are listed above.
- Disability Support Services (DSS) Statement: If you have a physical, psychological, medical or learning disability that may impact your course work, please contact Disability Support Services, ECC (Educational Communications Center) Building, room 128 , (631) 632-6748. They will determine with you what accommodations, if any, are necessary and appropriate. All information and documentation is confidential. Students

Academic Integrity Statement: Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Faculty are required to report any suspected instances of academic dishonesty to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology \& Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required to follow their schoolspecific procedures. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at http//www.stonybrook.edu/commcms/academic_integrity/index.html

Critical Incident Management Statement: Stony Brook University expects students to respect the rights, privileges, and property of other people. Faculty are required to report to the Office of Judicial Affairs any disruptive behavior that interrupts their ability to teach, compromises the safety of the learning environment, or inhibits students' ability to learn. Faculty in the HSC Schools and the School of Medicine are required to follow their school-specific procedures.

Syllabus					
Week	Ch.	Topics From	Topics To	Homework	Notes
8/25	1	1: Sums/Products	9: Arguments	$\begin{aligned} & \text { P4: 2,11; P8: 5; P13: } \\ & \text { 4,5,6,8; P16: 2,13,14; } \\ & \text { P24: 7,9,10 } \\ & \text { P4: 1,4; P7: 1; P13: } \\ & \text { 1,2,7; P16: } 3,7,9,10 ; \\ & \text { P23: 1,2,4,6 } \end{aligned}$	HW1 Solution
9/1	1	10: Roots	12: Regions	Part 1: P31: 4,7,8; P34: 1,4,5,7,8; Part 2 P30: 1,2,3,5,6; P34: 2,3,6,9,10	Example of types of points HW2 Solution
9/8	2	13: Functions/Mappings	17: Limits at Infinity	Part1: P43: 1,2,3,4,5,8,9; P54: 1,3,5,7,10; ; Part 2 The rest exercises	HW3 Solution
9/15	2	18: Continuity	22: Examples of Derivatives	Part1: P55: 13; P61: 2,3,4,6,8,9; P70: 1,2; Part 2	HW4 Solution
9/22	2	23: Differentiability	28: Uniquely Determined	Part 1: P71: 3,4,5,6,8; P76: 1,2,4,6,7; Part 2	HW5 Solution
9/29	3	31: Exponential Function	32: Logarithmic Function	```Part 1: P79: 1,2,3; P89: 1,4,5,8,10,11,12; Part 2```	HW6 Solution
		Review	Midterm 1(solutions/statistics)	Practice Midterm 1	Practice Solution
10/6	3	33: Branches of Logarithms	38: Zeros/Singularities	P95: 1,4,5,10,11;P99: 1; P103: 1,2,3,9;P107: 2,5,8;	HW7 Solution
	4	41: Derivatives	42: Definite Integrals		
10/13	4	43: Contours	49: (Antiderivatives) Proof	P119: 2,3; P124: 2,6; P132:1,3,4,5,6,10,13; P147: 2 ; Part 2	HW8 Solution The example in class
10/20	4	50: CauchyGoursat Theorem	57: Consequences of Extension	$\begin{array}{lll} \text { P147: } & \text { P159: } & \text { P159: } \\ \text { 1,2,5,6,7; } & \text { P170: } \\ \text { 2,3,4,7; Part } 2 & \end{array}$	HW9 Solution

10/27	4	58: Louville Theorem	59: Maximum Modulus Principle	P138: 1,2,5; P171: 5,10; P177: 1,2,5,6,8; P185: 1,2; Part 2	HW10 Solution
	5	60: Sequences	61: Convergence of sequences		
11/3	6	62: Taylor series	64 Examples	$\begin{aligned} & \text { P196: } 2,3,4,6,7,9,11 ; \\ & \text { P205: } 1,2,4,5,6,7 \end{aligned}$	HW11 Solution
		Review	Midterm 2(solutions/statistics)	Practice Midterm 2	Practice 2 solution
11/10	6	65: \quad Negative powers	71: Integration/Differentiation	$\begin{array}{ll} \text { P218: } \quad \text { 1,3,4,6,8; } \\ \text { P237: } 1,2,4 ; \text { P242: } 1 \end{array}$	HW12 Solution
11/17	7	74: Isolated singular points	84: Behavior near singularities	$\begin{aligned} & \text { P246: 1,5,7; P264: 3- } \\ & \text { 8; P273: 2,4,6,11 } \end{aligned}$	HW13 Solution
11/24	7	$\begin{array}{l\|l} 85 & \text { Improper } \\ \text { Integrals } \end{array}$	86 Examples		
12/1	7	91 Integration along branch cut	94 Roche's Theorem Review	Practice Final Final Solutions and Overall Statistics	Practice Final solution

Exam Information for MAT 342

Fall 2014
Final Solutions and Overall Statistics: Final solutions

MEAN: 78; MEDIAN: 83; High Score: 97; Low Score: 30

Midterm 1: solution, SOLUTION

MEAN: 197.19; MEDIAN: 203; High Score: 250; Low Score: 80

Range	Grade
$238-250$	A
$227-232$	$\mathrm{~A}-$
$214-224$	$\mathrm{~B}+$
$190-204$	B
$178-187$	$\mathrm{~B}-$
164	$\mathrm{C}+$
152	C
$143-147$	$\mathrm{C}-$
$115-127$	D
80	F

The tentative curve for this midterm is shown in the picture. This is just to give you some idea of the distribution of the grades. The real curve will be made only after the final exam.

Midterm 2: SOLUTION

MEAN: 172.2; MEDIAN: 179.5; High Score: 250; Low Score: 41

Range	Grade
$226-250$	A
$210-223$	$\mathrm{~A}-$
$198-206$	$\mathrm{~B}+$
$170-192$	B
$165-167$	$\mathrm{~B}-$
$140-152$	$\mathrm{C}+$
132	C
$118-122$	$\mathrm{C}-$
100	D
<80	F

Index of /~chili/mat342f/hw1

Name Last modified Size Description

- Parent Directory	-
- $4 . \mathrm{y}$ 2.jg	2014-08-25 20:54 1.9M
- 5.jpg	2014-08-25 20:54 2.2M
- 7.jpg	2014-08-25 20:54 1.9M
- 8.jpg	2014-08-25 20:54 2.1M
- 13.jpg	2014-08-25 20:54 2.1M
- 14.jpg	2014-08-25 20:54 2.0M
- 16.jpg	2014-08-25 20:54 2.1M
- 17.jpg	2014-08-25 20:54 2.1M
- 23.jpg	2014-08-25 20:54 1.8M
-24.jpg	2014-08-25 20:54 2.1M
- $25 . \mathrm{jpg}$	2014-08-25 20:54 1.9M
國 sol1.pdf	2014-09-11 23:13 411K

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

P24
9. $\begin{aligned} & S=1+z+z^{2}+\cdots+z^{n} \Rightarrow(1-z) S=1-z^{n+1} \Rightarrow S=\frac{1-z^{n+1}}{1-z} \\ z \cdot S= & z+z^{3}+\cdots+z^{n}+z^{n+1}\end{aligned}$

Let $z=e^{i \theta}$, then $1+e^{i \theta}+e^{2 i \theta}+\cdots+e^{n i \theta}=\frac{1-e^{(n+1) i \theta}}{1-e^{i \theta}}$

$$
\begin{aligned}
& \text { Lett hand side }=(1+\cos \theta+\cos (2 \theta)+\cdots+\cos (n \theta))+i(\sin \theta+\sin (x)+\cdots+\sin (n \theta)) \\
& \text { night hand side }=\frac{\left(1-e^{(n+1) i \theta}\right)\left(1-e^{-i \theta}\right)}{\left(1-e^{i \theta}\right) \cdot\left(1-e^{-i \theta}\right)}=\frac{1-e^{-i \theta}-e^{(n+1) i \theta}+e^{n i \theta}}{\left|1-e^{i \theta}\right|^{2}} \\
&=\frac{1-(\cos \theta-i \sin \theta)-(\cos (n+1) \theta+2 \sin (n+1) \theta)+(\cos (n \theta)+i \sin (n \theta))}{(1-\cos \theta)^{2}+\sin ^{2} \theta} \\
&=\frac{(1-\cos \theta-\cos (n+1) \theta+\cos (n \theta))+i(\sin \theta-\sin (n+1) \theta+\sin n \theta)}{1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta} 2 \operatorname{s\operatorname {sin}\frac {\operatorname {cos}\theta }{2}\frac {1}{2}} \\
&=\frac{(1-\cos \theta)+2 \sin \frac{\theta}{2} \sin \frac{2 n+1}{2} \theta+i\left(\sin \theta-2 \cos \frac{2 n+1}{2} \theta \cdot \sin \frac{\theta}{2}\right)}{2(1-\cos)} \\
&\left(u \sec \cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha \beta}{2}, \sin \alpha-\sin \beta=2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}\right) \\
&=\left(\frac{1-\cos \theta=2 \cdot \sin \frac{2 \theta}{2}}{2}+\frac{\sin \frac{\alpha+1}{2} \theta}{\left.2 \sin \frac{\theta}{2}\right)+i^{\prime} \cdot\left(\frac{\cos \frac{\theta}{2}-\cos \frac{\operatorname{con}+1)}{2} \theta}{2 \sin \frac{\theta}{2}}\right)}\right.
\end{aligned}
$$

comparing the real/imegnary part of both sides, we get:

$$
\begin{aligned}
& 1+\cos \theta+\cos (2 \theta)+\cdots+\cos (n \theta)=\frac{1}{2}+\frac{\sin \frac{2 n+1}{2} \theta}{2 \sin \frac{\theta}{2}} \\
& \sin \theta+\sin (2 \theta)+\cdots+\sin (n \theta)=\frac{\cos \theta}{2}-\cos \frac{2 n+1}{2} \theta \\
& 2 \sin \frac{\theta}{2}
\end{aligned}=\frac{\left.\sin \left(\frac{n+1}{2} \theta\right) \sin \frac{n}{2} \theta\right)}{\sin \frac{\theta}{2}}
$$

Index of /~chili/mat342f/hw2

Name Last modified Size Description

- Parent Direc	
- 30.JPG	2014-09-02 23:00 882K
- 31.JPG	2014-09-02 23:00 873K
- 34.JPG	2014-09-02 23:01 1.0M
- 35.JPG	2014-09-02 23:01 861K
㦴 Week2.pdf	2014-09-08 13:42 71K
氯 hw2-sol.pdf	2014-09-17 13:36 2.4M

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Homework 2: Part 2

1. Prove the following identity and explain its geometric meaning:

$$
\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)
$$

$\mathbf{2}^{*}$. Assume z_{1} and z_{2} are two different fixed complex numbers. Find the sets described by the following identities. (Hint: use geometric meanings)
(a)

$$
\operatorname{Re}\left(\frac{z-z_{1}}{z-z_{2}}\right)=0
$$

(b)

$$
\operatorname{Im}\left(\frac{z-z_{1}}{z-z_{2}}\right)=0
$$

- interior point: all points sufficiently near $Z_{0}\left(\right.$ inducting $\left.z_{0}\right)$ are inside S : z_{0}

$$
\{z \in \mathbb{C} ; \quad 0<|z|<1\}
$$

- exterior points: all points suffriently near z_{0} (incluching z_{0}) are NOT contarhed in S :

$$
\left\{z \in \mathbb{C} ;|z|>1, z \neq 1+\frac{1}{n} \text { for any } n=1,2,3, \cdots\right\} \text {. }
$$

- boundary points: every E-nbhd. contains at least one point in S and contains at least one point not in S.

$$
\{0\} \cup\left\{1+\frac{1}{n}, n=1,2,3, \cdots\right\} \cup\{z \in \mathbb{C} ;|z|=1\} \text {. }
$$

- Accumulation points: there is a sequence of DIFFERENT points inside S that approaches z_{0}.

$$
\{z \in \mathbb{C} ;|z| \leq 1\}
$$

- close $\bar{S}=S \cup \partial S=\{z \in \mathbb{C} ;|z| \leqslant \mid\} \cup\left\{1+\frac{1}{n}, n=1,2,3,-\right.$

Domain: nonempty + open + Connected.

Not Domash:

not open (and not closed)
conduits part of the boundary

$|z| \leq 1$
(closed).

$||m z|>1$
(not connected)

P31
4. (a) $(-1)^{\frac{1}{3}} \quad-1=1 e^{i \pi}$
primespal root $C_{0}=1^{\frac{1}{3}} e^{i \frac{\pi}{3}}=e^{i \frac{\pi}{3}}=\frac{1}{2}+i \frac{\sqrt{3}}{2}$
Sod root of unity: $\omega_{3}=e^{i \frac{2 \pi}{3}}$. So we can get the other roots by rotation:

$$
\begin{aligned}
& c_{1}=c_{0} \cdot w_{3}=e^{i \cdot \frac{\pi}{3}} e^{i \frac{2}{3}}=e^{i \pi}=-1 \\
& c_{2}=c_{0} \cdot w_{3}^{2}=e^{i \cdot \frac{\pi}{3}} \cdot e^{i \frac{4 \pi}{3}}=e^{i \frac{5 \pi}{3}}=e^{-i \frac{\pi}{3}}=\frac{1}{2}-i \cdot \frac{\sqrt{3}}{2}
\end{aligned}
$$

(b) $8^{-\frac{1}{6}}$ principal root $C_{0}=8^{\frac{1}{6}} e^{\frac{i 0}{6}}=\left(2^{3}\right)^{\frac{1}{6}}=\sqrt{2}$.

6-th root of uni ry $\omega_{6}=e^{i-\frac{2 \pi}{6}}$. So the other roots are:

$$
\begin{aligned}
& C_{1}=\sqrt{2} e^{i \frac{\pi}{3}}=\sqrt{2} \cdot\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=\frac{1+i \sqrt{3}}{\sqrt{2}} \\
& C_{2}=\sqrt{2} e^{i \frac{2 \pi}{3}}=\frac{-1+i \sqrt{3}}{\sqrt{2}}, \quad C_{3}=-\sqrt{2} \\
& C_{4}=\sqrt{2} e^{i \frac{4 \pi}{3}}=\frac{-1-i \sqrt{3}}{\sqrt{2}}, \quad C_{5}=\sqrt{2} \cdot e^{-i \frac{\pi}{3}}=\frac{1-i \sqrt{3}}{\sqrt{2}}
\end{aligned}
$$

7. $1+c+c^{2}+\cdots+c^{n-1}=\frac{c^{n}-1}{c-1}=0$.

P31
8. (a). $a z^{2}+b z+c=0$

$$
\begin{aligned}
& a\left(z^{2}+\frac{b}{a} z+\frac{c}{a}\right)=a \cdot\left(z^{2}+\frac{b}{a} z+\left(\frac{b}{2 a}\right)^{2}\right)-\frac{b^{2}}{4 a}+c . \\
&=a \cdot\left(z+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a} \\
& \Rightarrow\left(z+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}} \Rightarrow z+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& \Rightarrow z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

(b). $z^{2}+2 z+(1-i)=0 . \quad a=1, b=2, c=1-i$.

$$
\begin{aligned}
& \quad b^{2}-4 a c=4-41(1-i)=4 i=4 \cdot e^{i \cdot \frac{\pi}{2}} . \\
& \sqrt{b^{2}-4 a c}=2 \cdot e^{i\left(\frac{\pi}{4}+\frac{2 i k}{2}\right)} \stackrel{k=0,1}{=}\left\{\begin{array}{l}
2 \cdot e^{i \frac{\pi}{4}}=\sqrt{2}+i \sqrt{2} \\
2 \cdot e^{i \cdot \frac{3 \pi}{4}}=-\sqrt{2}-i \sqrt{2}
\end{array}\right. \\
& \Rightarrow \\
& z=\frac{-2 \pm(\sqrt{2}+i \sqrt{2})}{2}=-1 \pm \frac{1+i}{\sqrt{2}}
\end{aligned}
$$

so 2 oots are: $\left(-1+\frac{1}{\sqrt{2}}\right)+\frac{2}{\sqrt{2}},\left(-1-\frac{1}{\sqrt{2}}\right)-\frac{2}{\sqrt{2}}$

P34
(.(b) $|2 z+3|>4 \Leftrightarrow\left|z-\left(-\frac{3}{2}\right)\right|>2$

(f). $|z-4| \geqslant|z|$

open and comected
\Downarrow domain.
closed, Comected.
(e). $0 \leq \arg z \leq \frac{\pi}{4} \quad(z \neq 0)$

not dlised ($\dot{0}$ int inculyed pt.). comeited.

Generated by Camscanner

P35
4. (a) $-\pi<\operatorname{Agz} z<\pi(z \neq 0)$.

(b). $|\operatorname{Re} z|<|z| \Leftrightarrow|x|<\sqrt{x^{2}+y^{2}} \Leftrightarrow x^{2}<x^{2}+y^{2}$

$$
\Leftrightarrow y^{2}>0 \Leftrightarrow y \neq 0 .
$$

(c) $\begin{aligned} & \operatorname{Re}\left(\frac{1}{z}\right) \leqslant \frac{1}{2} \Leftrightarrow \frac{\frac{1}{z} \frac{\bar{z}}{1| |^{2}}}{\Leftrightarrow} \frac{x}{x^{2}+y^{2}} \leqslant \frac{1}{2} \Leftrightarrow\left\{\begin{array}{r}x^{2}+y^{2}-2 x \geqslant 0 \\ (x, y) \neq(0,0) .\end{array}\right. \\ & \Leftrightarrow(x-1)^{2}+y^{2} \geqslant 1\end{aligned}$

$$
\Leftrightarrow\left\{\begin{array}{l}
(x-1)^{2}+y^{2} \geqslant 1 \\
(x, y) \neq(0,0) .
\end{array}\right.
$$

P35
(d)

$$
\begin{array}{ll}
\operatorname{Re}\left(z^{2}\right)>0 & \Leftrightarrow x^{2}-y^{2}>0 \Leftrightarrow \\
\operatorname{Re}\left(\left(x^{2}-y^{2}\right)+2 i x y\right) & \\
& |x|>|y|
\end{array}
$$

 closure
5. $|z|<1$ or $|z-2|<1$ not connected.

7. (a) $z_{n}=i^{n}-1 \cdot$ For a point to be an accumulation
$-1^{0}, 1 \mathrm{pt}$, there must be a sequence of no ceccumeletion pt. different pts (in the set) approaching z_{0}.
(b) $z_{n}=\frac{i^{n}}{n}$.

0 is the only accumulation pt.
(c). $0 \leq \operatorname{Arg} z<\frac{\pi}{2}$
accumulation Pta:
 all pts in the lis quadrant.
$\xrightarrow[-1-e^{\prime}]{\left.(-1)^{n} \cdot(1+i)^{i}\right)}$
2 accumbletron 1$)_{3}$: $1+i$ and $-1-i$.

Generated by CamScanner

P35
8. A set contains each of its accumulation pts §
closed set.
PF: " \Rightarrow " Suppose S contains each of its accumulation pts, we want to show S is closed, ie. S contains all of its boundary points.
Let z_{0} be any boundary pt. We prove z_{0} is contained in S by contradiction. Suppose $z_{0} \notin S$. For any E-nbhd. of z_{0}, there exports some pout $z \in S$ in this neighbored U_{ε}, because z_{0} is a boundary point. Netetloot z is not the center since $z \circ \notin S$. So we get that any deleted ε-able. U_{ε}^{*} contains some point $z \in S$.
So we know that z_{0} is an accumulation point. By our assumption, $z_{0} \in S$. Contradiction.
So. $z_{0} \in S . \Rightarrow S$ contains each of its boundary pts. \Rightarrow Sis closed.

HW2 Part 2:

$$
\begin{aligned}
1 \cdot\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2} & =\left(z_{1}+z_{2}\right)\left(\bar{z}_{1}+\bar{z}_{2}\right)+\left(z_{1}-z_{2}\right)\left(\bar{z}_{1}-\overline{z_{2}}\right) \\
& =\left|z_{1}\right|^{2}+z_{1} \bar{z}_{2}+z_{2} \bar{z}_{1}+\left|z_{2}\right|^{2}+\left|z_{1}\right|^{2}-\bar{z}_{1} \overline{\overline{ }}_{2}-z_{2} \bar{z}_{1}+\left|z_{2}\right|^{2} \\
& =2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right) .
\end{aligned}
$$

$z_{1} \quad$ two

For any parallelogram, the sum of squares of diagonals is equal to the sum of squares of four sides.
$2^{*}(a)$
$\operatorname{Re} \frac{z-z_{1}}{z-z_{2}}=0 \Leftrightarrow \frac{z-z_{1}}{z-z_{2}}=i y$ for some $y \in \mathbb{R}$.
$\Leftrightarrow z_{1}-z=(y y)(z-z)$ for some $y \in \mathbb{R}$, and $z \neq z_{2}$

$\Leftrightarrow \overrightarrow{z z_{1}} \perp \overrightarrow{z z_{2}}$ and $z \neq z_{2}$
$\Leftrightarrow z$ lies on the circle passing throb $z_{1} \& z_{2}$ that has $\overline{Z_{1} z_{2}}$ as a dramoter.
(b)

$$
\text { In } \frac{z-z_{1}}{z-z_{2}}=0 \Leftrightarrow \frac{z-z_{1}}{z-z_{2}}=\infty \text { for some } x \in \mathbb{R}
$$

$\Leftrightarrow z-z_{1}=x \cdot\left(z-z_{2}\right)$ for some $x \in \mathbb{R}$ and $z \not z z_{2}$.
$\Leftrightarrow \quad \vec{z}_{1} / / \vec{z}_{2}$ and $z \neq z_{2}$
$\Leftrightarrow z$ lies on the straight line passing througzike, and $z \neq z_{2}$

Index of /~chili/mat342f/hw3

Name Last modified Size Description

Parent Directory	-
43.JPG	$2014-09-0719: 25800 \mathrm{~K}$
44.JPG	$2014-09-0719: 25871 \mathrm{~K}$
54.JPG	$2014-09-0719: 25783 \mathrm{~K}$
55.JPG	$2014-09-0719: 25854 \mathrm{~K}$
55a.JPG	$2014-09-1519: 34854 \mathrm{~K}$
Week3.pdf	$2014-09-0813: 38585 \mathrm{~K}$
LW3-sol.pdf	$2014-09-2123: 34753 \mathrm{~K}$

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Homework 3: Part 2

$\mathbf{1}^{*}$: Find the image of the following shaded domains on the z-plane under the map $w=z^{2}$.

(a) $x^{2}-y^{2}>1, x<0$

(b) $x^{2}-y^{2}<1, x>0, y>0$

(c) $x y>1, y>0$

(d) $x y>-1, x<0, y>0$
$p 44.5$.

$$
w=z^{2} \Leftrightarrow\left\{\begin{array}{l}
u=x^{2}-y^{2} \\
v=2 x y
\end{array}\right.
$$

8.

$$
\xrightarrow{z^{2}} \stackrel{z^{2}}{\substack{z^{3}}}
$$

9. $w=i z=i(x+i y)=-y$ +ix. vector field: $(x, y) \mapsto\langle\langle-y, x\rangle$.

$449(b)$
$w=\frac{z}{|z|}=\frac{x+y y}{\sqrt{x^{2}+y^{2}}}$ vector field: $(x, y) \mapsto\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle$.

Pat 2. 1*(a).

(b).

(c)

(d)

Index of /~chili/mat342f/hw4

Name Last modified Size Description

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Homework 4: Part 2

$\mathbf{1}^{*}$: Assume that the unit sphere embedded in \mathbb{R}^{3} is given by the equation:

$$
a^{2}+b^{2}+c^{2}=1
$$

Assume that the complex plane sits in \mathbb{R}^{3} as the plane given by $\{c=0\}$.

Figure 1: Stereographic Projection
(a) Show that the stereographic projection from the north pole $N=(0,0,1)$ is given by the following formulas:

- (from the complex plane to the sphere) $z \mapsto(a, b, c)$ is given by:

$$
a=\frac{2 \operatorname{Re}(z)}{1+|z|^{2}}, b=\frac{2 \operatorname{Im}(\mathrm{z})}{1+|z|^{2}}, c=\frac{|z|^{2}-1}{|z|^{2}+1} .
$$

- (from the sphere to the complex plane) $(a, b, c) \mapsto z$ is given by:

$$
z=\frac{a+b i}{1-c}
$$

(b) Show that, under the stenographic projection, the neighborhood at infinity $\left\{z ;|z|>\frac{1}{\epsilon}\right\}$ corresponds to the following neighborhood of the north pole:

$$
\left\{(a, b, c) \in \mathbb{R}^{3} ; c>\frac{1-\epsilon^{2}}{1+\epsilon^{2}}, a^{2}+b^{2}=1-c^{2}\right\} .
$$

P55. 13. a set S is unbounded \Longleftrightarrow every noble. of the pt. at infury pf: contains at least one point ins.
S unbounded $\Leftrightarrow \forall R>0, \exists z \in S$, and $|z|>R$.

$$
\Leftrightarrow \forall \varepsilon>0, \exists z \in S \text {, and }|z|>\frac{1}{\varepsilon}
$$

\Leftrightarrow every e-nbhed. of ∞ contains at least 1 pt in S
\Leftrightarrow every ubled of ∞
PG. $2(a) \cdot f(z)=3 z^{2}-2 z+4 \Rightarrow f^{\prime}(z)=6 z-2$.
(b) $f(z)=\left(2 z^{2}+i\right)^{5} \Rightarrow f^{\prime}(z)=5 \cdot\left(2 z^{2}+i\right) \cdot 4 z$.
(c). $f(z)=\frac{z-1}{2 z+1}\left(z+-\frac{1}{2}\right) \Rightarrow f^{\prime}(z)=\frac{1 \cdot(2 z+1)-(z-1) \cdot 2}{(2 z+1)^{2}}=\frac{3}{(2 z+1)^{2}}$
(d) $f(z)=\frac{\left(1+z^{2}\right)^{4}}{z^{2}}(z \neq 0) \Rightarrow f^{\prime}(z)$
$f\left(z_{2}\right)=0=9\left(h_{0}\right)$.
4

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)} & =\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{g(z)-g\left(z_{0}\right)}=\lim _{z \rightarrow z_{0}} \frac{\frac{f(z)-f\left(z_{0}\right)}{z}}{\frac{g(z)-g\left(z_{0}\right)}{z-z_{0}}}=\frac{\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z--_{0}}}{\lim _{z \rightarrow z_{0}} \frac{g(z)-g\left(z_{0}\right)}{z-z_{0}}} \\
& =\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}
\end{aligned}
$$

P61:

$$
\delta(a) f(z)=\operatorname{Re} z
$$

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\lim \frac{\operatorname{Re} z-\operatorname{Re} z_{0}}{z-z_{0}}=\lim _{z \rightarrow z_{0}} \frac{\operatorname{Re}\left(z-z_{0}\right)}{z-z_{0}}=\lim _{\Delta z \rightarrow 0} \frac{\operatorname{Re} \Delta z}{\Delta z} \text { verticelly } 0 .
$$

(b). $f(z)=\operatorname{Im} z$.

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{e}\right)}{z-z_{0}}=\lim _{z \neq z_{0}} \frac{\operatorname{Im}(z)-I_{m}\left(z_{0}\right)}{z-z_{0}}=\lim _{z \rightarrow z_{0}} \frac{I_{m}\left(z-z_{0}\right)}{z-z_{0}}=\lim _{\Delta x \rightarrow 0} \frac{I_{m}(z)}{\Delta z}<1 \text { vertrcelly. horicotedy }
$$

9

$$
\begin{aligned}
& f(z)= \begin{cases}\frac{\bar{z}^{2}}{z} & z \neq 0 \\
0 & z=0\end{cases} \\
& \lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z-0}=\lim _{z \rightarrow 0^{+}} \frac{\frac{\bar{z}^{2}}{z} 0}{z}=\lim _{z \rightarrow 0} \frac{\bar{z}^{2}}{z^{2}}=\lim _{\Delta z \rightarrow 0} \frac{(\Delta \bar{z})^{2}}{(\Delta z)^{2}}
\end{aligned}
$$

honzontelly $\frac{\overline{(\Delta z})^{2}}{(\Delta z)^{2}}=\frac{(\Delta x)^{2}}{(\Delta x)^{2}}=1$.
vertically $\frac{(\Delta z)^{2}}{(\Delta)^{2}}=\frac{(-i \Delta y)^{2}}{(i \Delta y)^{2}}=\frac{-\Delta y^{2}}{-\Delta y^{2}}=1 . \quad \Rightarrow \begin{array}{r}\text { limit does NOT } \\ \text { exost. }\end{array}$

$$
\Delta x=\Delta y: \frac{(\overline{\Delta z})^{2}}{(\Delta z)^{2}}=\frac{(\Delta x-i \Delta x y)^{2}}{(\Delta x+i \Delta x)^{2}}=\frac{(\Delta x)^{2} \cdot(-2 i)}{(\Delta x)^{2} \cdot 2 i}=-1
$$

P70. 1. (a) $f(z)=\bar{z} \Leftrightarrow\left\{\begin{array}{l}u=x \\ v=-y\end{array} \Rightarrow\left\{\begin{array}{l}u_{x}=1 \neq v_{y}=-1\end{array}\right.\right.$
(b).

$$
\begin{aligned}
& 2{ }^{\prime \prime} y
\end{aligned}
$$

(c). $f(z)=2 x+i x y^{2} \Leftrightarrow\left\{\begin{array}{l}u=2 x \\ v=x y^{2}\end{array} \Rightarrow \begin{cases}u_{x}=2 & v_{y}=2 x y \\ u_{y}=0 & v_{x}=-y^{2}\end{cases}\right.$ CR eqs: $\left\{\begin{array}{l}2=2 x y \\ \theta=-y^{2}\end{array}\right.$ no solution $\Rightarrow f^{\prime}(z) D N E$.
(d) $f(z)=e^{x} \cdot e^{-i y}=e^{x}(\cos y-2 \sin y) \Leftrightarrow\left\{\begin{array}{l}u=e^{x} \cdot \cos y \\ v=-e^{x} \sin y .\end{array}\right.$

CR eq. $\left\{\begin{array}{l}u_{x}=e^{x} \cos y=-e^{x} \cdot \cos y=v y \\ u_{y}=-e^{x} \cdot \sin y=+e^{x} \sin y=-v_{x}\end{array} \Rightarrow\left\{\begin{array}{l}\cos y=-\cos y \\ -\sin y=\sin y .\end{array}\right.\right.$
$\Rightarrow \cos y=\sin y=0$ no solution $\Rightarrow f^{\prime}(z)$ DNE at any pt.
2.(d) $f(z)=\cos x \cdot \cos h y-i \sin x \sinh y . \Leftrightarrow\left\{\begin{array}{l}u=\cos x \cdot \cosh y \\ v=-\sin x \cdot \sinh y\end{array}\right.$

$$
\begin{aligned}
& u_{x}=-\sin x \cdot \cosh y . \quad u_{y}=\cos x \cdot \sinh y \\
& v_{x}=-\cos x \cdot \sinh y \cdot v_{y}=-\sin x \cdot \cosh y
\end{aligned} \Rightarrow\left\{\begin{array}{l}
u_{x}=v_{y} \\
u_{y}=-v_{x}
\end{array}\right.
$$

$\Rightarrow f^{\prime}(z)$ evists cond is equal to $u_{x}+i V_{x}$
$-\sin x \cdot \cosh y-i \cdot \cos x \cdot \sinh y$

$$
\begin{aligned}
& \tilde{u}_{x}=-\cos x \cos h y, \tilde{u}_{y}=-\sin x \cdot \sinh y \quad \\
& \tilde{v}_{x}=\sin x \cdot \sinh y, \tilde{v}_{y}=-\cos x \cdot \cos h y \Rightarrow\left\{\begin{array}{l}
{ }^{\prime \prime} \tilde{v} \\
\tilde{u}_{x}=\tilde{v}_{y} \\
\tilde{u}_{y}=-\tilde{v}_{x}
\end{array}\right.
\end{aligned}
$$

$\Rightarrow f^{\prime \prime}(z)$ eoists and is equal to $\tilde{u}_{x}+i \bar{v}_{x}$
11
$-\cos x \cdot \cosh y+i \cdot \sin x \cdot \sin h y$.

$$
\begin{gathered}
11 \\
-f(z)
\end{gathered}
$$

Part 2

1. (a). From the complex plane to the sphere:

$$
z=(x, y) \rightarrow(x, y, 0) \in \mathbb{R}^{3} .
$$

parametric equation of L :

$$
a=t x, b=t y, c=1-t \quad((a, b, c)=t(x, y, 0)+(1-t)(0,0,1)
$$

Q lies on the sphere $\Rightarrow\left(t_{x}\right)^{2}+(t y)^{2}+(1-t)^{2}=1$

$$
\Rightarrow t^{2}\left(x^{2}+y^{2}\right)=2 t
$$

coordindes of Q :

$$
\begin{array}{cc}
\Rightarrow a=\frac{2 x}{1+x^{2}+y^{2}}, & b=\frac{2 y}{1+x^{2}+y^{2}}, \quad c=1-\frac{2}{\mid+x^{2}+y^{2}}=\frac{t=\frac{2}{1+x^{2}+y^{2}}}{x^{2}+y^{2}-1} \\
\frac{2 \operatorname{Re} z}{1+|z|^{2}}, & \frac{2 \ln _{m} z}{1+|z|^{2}}, \\
\frac{|z|^{2}-1}{|z|^{2}+1}
\end{array}
$$

(b) From the sphere to the complex plane:

Fix $Q \in$ sphere, Line $L: \quad(a \neq t), b(t), c(t))=t(a, b, c)+(1-t)(0,0,1)$ $\left(a_{0}, b_{0}^{\prime \prime}, c_{0}\right)$
P satisfies: $t\left(+(1-t)=0 \Rightarrow t=\frac{1}{1-c}\right.$

$$
(t a, t b, t c+1-t)
$$

$$
\begin{gathered}
1-(1-c) t \\
\Rightarrow P=\left(\frac{a}{1-c}, \frac{b}{1-c}, 0\right)=\frac{a+b i}{1-c}
\end{gathered}
$$

by (a)
(b).

$$
\begin{aligned}
|z|>\frac{1}{\varepsilon} \Leftrightarrow & \left|\frac{a+b i}{1-c}\right|>\frac{1}{\varepsilon} \\
& \frac{\sqrt{a^{2}+b^{2}}}{1-c}=\frac{\sqrt{1-c^{2}}}{1-c} \quad\left(\begin{array}{c}
\left.a^{2}+b^{2}=1-c^{2}\right) . \\
\text { on the sphere. }
\end{array}\right. \\
\Leftrightarrow & \frac{1-c^{2}}{(1-c)^{2}}> \\
& \frac{1}{\varepsilon^{2}} \Leftrightarrow \frac{1+c}{1-c}>\frac{1}{\varepsilon^{2}} \\
& \frac{(1+c)^{\prime}(1-c)}{(1-c)^{2}}=\frac{1+c}{1-c} \\
\Leftrightarrow & \varepsilon^{2}+c \cdot \varepsilon^{2}>1-c \Leftrightarrow c \cdot\left(1+\varepsilon^{2}\right)>1-\varepsilon^{2} \\
\Leftrightarrow & c>\frac{1-\varepsilon^{2}}{1+\varepsilon^{2}} \quad \& \quad a^{2}+b^{2}=1-c^{2} .
\end{aligned}
$$

3. From results obtained in Secs. 21 and 23 , determine where $f^{\prime}(z)$ exists and find its value when
(a) $f(z)=1 / z$;
(b) $f(z)=x^{2}+i y^{2}$;
(c) $f(z)=z \operatorname{Im} z$.

Ans. (a) $f^{\prime}(z)=-1 / z^{2}(z \neq 0)$;
(b) $f^{\prime}(x+i x)=2 x ;$
(c) $f^{\prime}(0)=0$.
4. Use the theorem in Sec. 24 to show that each of these functions is differentiable in the indicated domain of definition, and also to find $f^{\prime}(z)$:
(a) $f(z)=1 / z^{4} \quad(z \neq 0)$;
(b) $f(z)=e^{-\theta} \cos (\ln r)+i e^{-\theta} \sin (\ln r) \quad(r>0,0<\theta<2 \pi)$.

$$
\text { Ans. (b) } f^{\prime}(z)=i \frac{f(z)}{z}
$$

5. Solve equations (2), Sec. 24 for u_{x} and u_{y} to show that

$$
u_{x}=u_{r} \cos \theta-u_{\theta} \frac{\sin \theta}{r}, \quad u_{y}=u_{r} \sin \theta+u_{\theta} \frac{\cos \theta}{r}
$$

Then use these equations and similar ones for v_{x} and v_{y} to show that in Sec. 24 equations (4) are satisfied at a point z_{0} if equations (6) are satisfied there. Thus complete the verification that equations (6), Sec. 24, are the Cauchy-Riemann equations in polar form.
6. Let a function $f(z)=u+i v$ be differentiable at a nonzero point $z_{0}=r_{0} \exp \left(i \theta_{0}\right)$. Use the expressions for u_{x} and v_{x} found in Exercise 5, together with the polar form (6), Sec. 24, of the Cauchy-Riemann equations, to rewrite the expression

$$
f^{\prime}\left(z_{0}\right)=u_{x}+i v_{x}
$$

in Sec. 23 as

$$
f^{\prime}\left(z_{0}\right)=e^{-i \theta}\left(u_{r}+i v_{r}\right)
$$

where u_{r} and v_{r} are to be evaluated at $\left(r_{0}, \theta_{0}\right)$.
7. (a) With the aid of the polar form (6), Sec. 24, of the Cauchy-Riemann equations, derive the alternative form

$$
f^{\prime}\left(z_{0}\right)=\frac{-i}{z_{0}}\left(u_{\theta}+i v_{\theta}\right)
$$

of the expression for $f^{\prime}\left(z_{0}\right)$ found in Exercise 6.
(b) Use the expression for $f^{\prime}\left(z_{0}\right)$ in part (a) to show that the derivative of the function $f(z)=1 / z(z \neq 0)$ in Exercise $3(a)$ is $f^{\prime}(z)=-1 / z^{2}$.
8. (a) Recall (Sec. 6) that if $z=x+i y$, then

$$
x=\frac{z+\bar{z}}{2} \quad \text { and } \quad y=\frac{z-\bar{z}}{2 i}
$$

By formally applying the chain rule in calculus to a function $F(x, y)$ of two real variables, derive the expression

$$
\frac{\partial F}{\partial \bar{z}}=\frac{\partial F}{\partial x} \frac{\partial x}{\partial \bar{z}}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial F}{\partial x}+i \frac{\partial F}{\partial y}\right)
$$

(b) Define the operator

$$
\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

suggested by part (a), to show that if the first-order partial derivatives of the real and imaginary components of a function $f(z)=u(x, y)+i v(x, y)$ satisfy the CauchyRiemann equations, then

$$
\frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left[\left(u_{x}-v_{y}\right)+i\left(v_{x}+u_{y}\right)\right]=0 .
$$

Thus derive the complex form $\partial f / \partial \bar{z}=0$ of the Cauchy-Riemann equations.

25. ANALYTIC FUNCTIONS

We are now ready to introduce the concept of an analytic function. A function f of the complex variable z is analytic in an open set S if it has a derivative everywhere in that set. It is analytic at a point z_{0} if it is analytic in some neighborhood of z_{0}.*

Note how it follows that if f is analytic at a point z_{0}, it must be analytic at each point in some neighborhood of z_{0}. If we should speak of a function that is analytic in a set S that is not open, it is to be understood that f is analytic in an open set containing S.

An entire function is a function that is analytic at each point in the entire plane.
EXAMPLES. The function $f(z)=1 / z$ is analytic at each nonzero point in the finite plane since its derivative $f^{\prime}(z)=-1 / z^{2}$ exists at such a point. But the function $f(z)=|z|^{2}$ is not analytic anywhere since its derivative exists only at $z=0$ and not throughout any neighborhood. (See Example 3, Sec. 19.) Finally, since the derivative of a polynomial exists everywhere, it follows that every polynomial is an entire function.

A necessary, but by no means sufficient, condition for a function to be analytic in a domain D is clearly the continuity of f throughout D. (See the statement in italics near the end of Sec. 19.) Satisfaction of the Cauchy-Riemann equations is also necessary, but not sufficient. Sufficient conditions for analyticity in D are provided by the theorems in Secs. 23 and 24.

Other useful sufficient conditions are obtained from the rules for differentiation in Sec. 20. The derivatives of the sum and product of two functions exist wherever the functions themselves have derivatives. Thus, if two functions are analytic in a domain D, their sum and their product are both analytic in D. Similarly, their quotient is analytic in D provided the function in the denominator does not vanish at any point in D. In particular, the quotient $P(z) / Q(z)$ of two polynomials is analytic in any domain throughout which $Q(z) \neq 0$.

[^0] $c \neq 0$, the property $z \bar{z}=|z|^{2}$ of complex numbers tells us that
$$
f(z) \overline{f(z)}=c^{2} \neq 0
$$
and hence that $f(z)$ is never zero in D. So
$$
\overline{f(z)}=\frac{c^{2}}{f(z)} \quad \text { for all } z \text { in } D,
$$
and it follows from this that $\overline{f(z)}$ is analytic everywhere in D. The main result in Example 3 just above thus ensures that $f(z)$ is constant throughout D.

EXERCISES

1. Apply the theorem in Sec. 23 to verify that each of these functions is entire:
(a) $f(z)=3 x+y+i(3 y-x)$;
(b) $f(z)=\cosh x \cos y+i \sinh x \sin y$;
(c) $f(z)=e^{-y} \sin x-i e^{-y} \cos x$;
(d) $f(z)=\left(z^{2}-2\right) e^{-x} e^{-i y}$.
2. With the aid of the theorem in Sec. 21, show that each of these functions is nowhere analytic:
(a) $f(z)=x y+i y$;
(b) $f(z)=2 x y+i\left(x^{2}-y^{2}\right)$;
(c) $f(z)=e^{y} e^{i x}$.
3. State why a composition of two entire functions is entire. Also, state why any linear combination $c_{1} f_{1}(z)+c_{2} f_{2}(z)$ of two entire functions, where c_{1} and c_{2} are complex constants, is entire.
4. In each case, determine the singular points of the function and state why the function is analytic everywhere else:
(a) $f(z)=\frac{2 z+1}{z\left(z^{2}+1\right)}$;
(b) $f(z)=\frac{z^{3}+i}{z^{2}-3 z+2}$;
(c) $f(z)=\frac{z^{2}+1}{(z+2)\left(z^{2}+2 z+2\right)}$.
Ans. (a) $z=0, \pm i$;
(b) $z=1,2$;
(c) $z=-2,-1 \pm i$.
5. According to Example 2, Sec. 24, the function

$$
g(z)=\sqrt{r} e^{i \theta / 2} \quad(r>0,-\pi<\theta<\pi)
$$

is analytic in its domain of definition, with derivative

$$
g^{\prime}(z)=\frac{1}{2 g(z)}
$$

Show that the composite function $G(z)=g(2 z-2+i)$ is analytic in the half plane $x>1$, with derivative

$$
G^{\prime}(z)=\frac{1}{g(2 z-2+i)}
$$

Suggestion: Observe that $\operatorname{Re}(2 z-2+i)>0$ when $x>1$.
6. Use results in Sec. 24 to verify that the function

$$
g(z)=\ln r+i \theta \quad(r>0,0<\theta<2 \pi)
$$

is analytic in the indicated domain of definition, with derivative $g^{\prime}(z)=1 / z$. Then show that the composite function $G(z)=g\left(z^{2}+1\right)$ is analytic in the quadrant $x>0, y>0$, with derivative

$$
G^{\prime}(z)=\frac{2 z}{z^{2}+1}
$$

Suggestion: Observe that $\operatorname{Im}\left(z^{2}+1\right)>0$ when $x>0, y>0$.
7. Let a function f be analytic everywhere in a domain D. Prove that if $f(z)$ is real-valued for all z in D, then $f(z)$ must be constant throughout D.

27. HARMONIC FUNCTIONS

A real-valued function H of two real variables x and y is said to be harmonic in a given domain of the $x y$ plane if, throughout that domain, it has continuous partial derivatives of the first and second order and satisfies the partial differential equation

$$
\begin{equation*}
H_{x x}(x, y)+H_{y y}(x, y)=0 \tag{1}
\end{equation*}
$$

known as Laplace's equation.
Harmonic functions play an important role in applied mathematics. For example, the temperatures $T(x, y)$ in thin plates lying in the $x y$ plane are often harmonic. A function $V(x, y)$ is harmonic when it denotes an electrostatic potential that varies only with x and y in the interior of a region of three-dimensional space that is free of charges.

EXAMPLE 1. It is easy to verify that the function $T(x, y)=e^{-y} \sin x$ is harmonic in any domain of the $x y$ plane and, in particular, in the semi-infinite vertical strip $0<x<\pi, y>0$. It also assumes the values on the edges of the strip that are indicated in Fig. 31. More precisely, it satisfies all of the conditions

$$
\begin{gathered}
T_{x x}(x, y)+T_{y y}(x, y)=0 \\
T(0, y)=0, \quad T(\pi, y)=0 \\
T(x, 0)=\sin x, \quad \lim _{y \rightarrow \infty} T(x, y)=0
\end{gathered}
$$

which describe steady temperatures $T(x, y)$ in a thin homogeneous plate in the $x y$ plane that has no heat sources or sinks and is insulated except for the stated conditions along the edges.

Homework 5: Part 2

1. Let $w=f(z)$ be differentiable at any point in a domain D. Suppose $f(z)$ is one-to-one, that is $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ if $z_{1} \neq z_{2}$. We can define a inverse function $z=f^{-1}(w)$ such that it satisfies:

$$
f\left(f^{-1}(w)\right)=w \text { and } f^{-1}(f(z))=z
$$

Suppose $f^{\prime}(z) \neq 0$. Use the definition to prove that $z=f^{-1}(w)$ is differentiable and its derivative is given by:

$$
\frac{d}{d w}\left(f^{-1}(w)\right)=\frac{1}{f^{\prime}\left(f^{-1}(w)\right)}
$$

2. Any branch of the multivalued function $z^{1 / n}$ can be seen as an inverse function of $f(z)=z^{n}$. Use Part 1 to prove that for any branch of the multivalued function $z^{1 / n}$, we have:

$$
\frac{d}{d z} z^{1 / n}=\frac{1}{n z^{\frac{n-1}{n}}}=\frac{1}{n} z^{\frac{1}{n}-1} .
$$

(Note that z and w are just names of variables (dummy variables) and we can interchange them)

71:3 (a) $f(z)=\frac{1}{z}=\frac{1}{x+y y}=\frac{x-y y}{x^{2}+y^{2}} \Leftrightarrow\left\{\begin{array}{l}u=\frac{x}{x^{2}+y^{2}} \\ v=-\frac{y}{x^{2}+y^{2}} .\end{array}\right.$

$$
\begin{aligned}
& u_{x}=\frac{1}{x^{2}+y^{2}}-\frac{2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}, u_{y}=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
& v_{x}=\frac{2 y \cdot x}{\left(x^{2}+y^{2}\right)^{2}}, v_{y}=-\frac{1}{x^{2}+y^{2}}+\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \Rightarrow\left\{\begin{array}{l}
u_{x}=v_{y}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
u_{y}=-v_{x}=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}
\end{array} \Rightarrow f^{\prime}(z) \text { exists when } z \neq 0\right.
\end{aligned}
$$

and $f^{\prime}(z)=u_{x}+i v_{x}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+i \cdot \frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}=\frac{-\bar{z}^{2}}{|z|^{2}}=-\frac{1}{z^{2}}$
(b)

$$
\begin{aligned}
& f(z)=x^{2}+i y^{2}=u+i v \\
& \begin{array}{l}
u_{x}=2 x, u_{y}=0 \\
v_{x}=0, v_{y}=2 y
\end{array} \quad \text { CReqs. }\left\{\begin{array}{l}
2 x=2 y \\
0=-0
\end{array} \Rightarrow x=y .\right.
\end{aligned}
$$

so $f^{\prime}(z)$ ewists when $x=y$ and at these peints.

$$
\begin{aligned}
& f^{\prime}\left(z_{1}\right)=u_{x}+i v_{x}=2 x+i \cdot 0=2 x \\
& x+i x
\end{aligned}
$$

(c) $f(z)=z \cdot I_{m z}=(x+i x) \cdot y=x y+i y^{2} \Leftrightarrow\left\{\begin{array}{l}u=x y \quad u_{x}=y, u_{y}=x \\ v=y^{2}\end{array} \quad, v_{x}=0, v y_{y}=2 y\right.$, $v_{x}=0, v_{y}=2 y$
$C R$ eqs $\left\{\begin{array}{l}y=2 y \Rightarrow x=0=y . \Rightarrow f^{\prime}(z) \text { exorts only aten } z=0 \text { and } \\ x=-0\end{array} \Rightarrow x\right.$

$$
f^{\prime}(0)=\left(u_{6}+i v_{x}\right)(0)=0 .
$$

$$
\text { 4. (a) } f(z)=\frac{1}{z^{4}}=\frac{1}{r^{4} e^{i 4 \theta}}=r^{-4} \cdot e^{-4 i \theta}=r^{-4} \cos (4 \theta) \cdot r^{-4} \sin (4 \theta)
$$

$$
r u_{r}=r \cdot(-4) \cdot r^{-5} \cdot \cos (4 \theta)=-4 r^{-4} \cos (4 \theta) . \quad U_{\theta}=-r^{-4} \cdot 4 \sin (4 \theta) .
$$

$$
r v_{r}=+4 \cdot r-4 \cdot \sin (4 \theta), \quad v_{\theta}=-r-4.4 \cdot \cos (4 \theta)
$$

$$
\Rightarrow\left\{\begin{array}{l}
r u_{r}=v_{\theta}=-4 r^{-4} \cos (4 \theta) . \\
r v_{r}=-u_{\theta}=4 r^{-4} \sin (4 \theta)
\end{array} \Rightarrow f(z) \text { is diffacentade when } z \neq 0\right.
$$

$$
\begin{aligned}
f^{\prime}(z) & =e^{-i \theta} f_{r}=e^{-i \theta}\left(u_{r}+i v_{r}\right)=e^{-i \theta} \cdot\left(-4 \cdot r^{-5} \cos (4 \theta)+i \cdot 4 \cdot r^{-5} \sin (4 \theta)\right) \\
& =-4+r^{-5} \cdot e^{-i \theta} \cdot e^{-4 i \theta}=-4 \cdot r^{-5} \cdot e^{-5 i \theta}=-4 \cdot z^{-5}
\end{aligned}
$$

(b). $f(\theta)=e^{-\theta} \cdot \cos (\ln r)+i \cdot e^{-\theta} \cdot \sin (\ln r) \quad(r>0,0<\theta<2 \pi)$.

$$
\begin{aligned}
& U_{r}=-e^{-\theta} \cdot \sin (\ln r) \cdot \frac{1}{r}, \quad U_{0}=-e^{-\theta} \cos (\ln r) \text {. } \\
& V_{r}=e^{-\theta} \cdot \cos (\ln r) \cdot \frac{1}{r}, \quad V_{\theta}=-e^{-\theta} \cdot \sin (\ln r) \text {. } \\
& \Rightarrow\left\{\begin{array}{l}
r u_{r}=v_{\theta}=-e^{-\theta} \cdot \sin (\ln r) . \\
r v_{r}=-u_{\theta}=e^{-\theta} \cdot \cos (\ln r) .
\end{array} \Rightarrow f^{\prime}(z) \text { is differentable for } 1>0\right. \\
& f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i v_{r}\right)=e^{-t \theta}\left(-\frac{1}{r} \cdot e^{-\theta} \operatorname{Sin}(\ln r)+\frac{i}{r} e^{-\theta} \cdot \operatorname{Cos}(\ln r)\right) \\
& =\frac{i}{r e^{i \theta}} \cdot(\cos (\ln r)+i \sin (\ln r)) e^{-\theta}=\frac{i^{i}}{z} f(z) \text {. }
\end{aligned}
$$

$$
\text { 5. } \begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& \theta=\tan ^{-1} \frac{y}{x} \Rightarrow r_{x}=\frac{x}{\sqrt{x^{2}+y^{2}}}=\frac{1-\cos \theta}{r}=\cos \theta, r y=\frac{y}{\sqrt{x^{2}+y^{2}}}=\sin \theta . \\
& \theta_{x}=\frac{-\frac{y}{x^{2}}}{1+\frac{y^{2}}{x^{2}}}=-\frac{y}{x^{2}+y^{2}}=-\frac{r \cdot \sin \theta}{r^{2}}=-\frac{\sin \theta}{r} \\
& \theta_{y}=\frac{\frac{1}{x}}{1+\frac{y^{2}}{x^{2}}}=\frac{x}{x^{2}+y^{2}}=\frac{r \cdot \cos \theta}{r^{2}}=\frac{\cos \theta}{r}
\end{aligned}
$$

So

$$
\begin{aligned}
u_{x} & =u_{r} \cdot r_{x}+u_{\theta} \cdot \theta_{x}=u_{r} \cdot \cos \theta-u_{\theta} \cdot \frac{\sin \theta}{r}, v_{x}=v_{r} \cdot \cos \theta-v_{\theta} \cdot \frac{\sin \theta}{r} \\
u_{y} & =u_{r} \cdot r_{y}+u_{\theta} \cdot \theta_{y}=u_{r} \cdot \sin \theta+u_{\theta} \cdot \frac{\cos \theta}{r}, v_{y}=v_{r} \cdot \sin \theta+v_{\theta} \cdot \frac{\cos \theta}{r} \\
u_{x}-v_{y} & \left.=u_{r} \cdot \cos \theta-u_{\theta} \frac{\sin \theta}{r}-\left(v_{r} \sin \theta+v_{\theta} \frac{\cos \theta}{r}\right)=\frac{\cos \theta}{r} \cdot\left(r \cdot u_{r}-v_{\theta}\right)+\frac{\sin \theta}{r}\left(-u_{\theta}-r v_{r}\right)\right) \\
u_{y}+v_{x} & \left.=u_{r} \cdot \sin \theta+u_{\theta} \cdot \frac{\cos \theta}{r}+v_{r} \cos \theta-v_{\theta} \frac{\sin \theta}{r}=\frac{\cos \theta}{r} \cdot\left(u_{\theta}+r v_{r}\right)+\frac{\sin \theta}{r} \cdot\left(r u_{r}-v_{\theta}\right)\right)
\end{aligned}
$$

So $\left\{\begin{array}{l}r u_{r}=v_{\theta} \\ u_{\theta}=-r v_{r}\end{array} \Rightarrow\left\{\begin{array}{l}u_{x}-v_{y}=0 \\ u_{y}+v_{x}=0\end{array}\right.\right.$
6. $f^{\prime}(z)=u_{x}+v_{x}=\left(u_{r} \cdot \cos \theta-u_{\theta} \cdot \frac{\sin \theta}{r}\right)+i \cdot\left(v_{r} \cdot \cos \theta-v_{\theta} \cdot \frac{\sin \theta}{r}\right)$.
$=(\cos \theta) \cdot\left(u_{r}+i v_{r}\right)+\frac{\sin \theta}{r} \cdot\left(-u_{\theta}-i^{c} v_{\theta}\right)$
$=(\cos \theta) \cdot\left(u_{r}+i^{\prime} v_{r}\right)+\frac{\sin \theta}{r} \cdot\left(r \cdot v_{r}-i \cdot r u_{r}\right)$.
$=(\cos \theta) \cdot\left(u_{r}+i v_{r}\right)-i \cdot \sin \theta \cdot\left(u_{r}+i v_{r}\right)$
$=(23 \theta-i \sin \theta)\left(u_{r}+i v_{r}\right)=e^{-i \theta}\left(u_{r}+i v_{r}\right)$
8.

$$
\begin{aligned}
\frac{\partial f}{\partial \bar{z}} & =\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial z}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial \bar{z}}=\frac{\partial f}{\partial x} \cdot \frac{1}{2}+\frac{\partial f}{\partial y} \cdot\left(-\frac{1}{2 i}\right) \\
& =\frac{1}{2} \cdot \frac{\partial f}{\partial x}+\frac{i}{2} \frac{\partial f}{\partial y}=\frac{1}{2} \cdot\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) \\
& =\frac{1}{2} \cdot\left(\frac{\partial}{\partial x} \cdot(u+i v)+i \frac{\partial}{\partial y} \cdot(u+i v)\right) \\
& =\frac{1}{2} \cdot\left(u_{x}+i v_{x}+i \cdot\left(u_{y}+i v_{y}\right)\right)=\frac{1}{2} \cdot\left(u_{x}+i v_{x}+i u_{y}-v_{y}\right) \\
& =\frac{1}{2} \cdot\left(u_{x}-v_{y}\right)+\frac{r^{i}}{2} \cdot\left(u_{y}+v_{x}\right) .
\end{aligned}
$$

So $\frac{\partial f}{\partial \bar{z}}=0 \Leftrightarrow\left\{\begin{array}{l}u_{x}=v_{y} \\ u_{y}=-v_{x} .\end{array} \Leftrightarrow f\right.$ is analytic

P76. 1. (a). $f(z)=3 x+y+i(3 y-x)$.
$\begin{array}{l}u_{x}=3 \quad u_{y}=1 \\ v_{x}=-1 \quad v_{y}=3\end{array} \Rightarrow C R$ eqs are satified for all $\left.6, y\right)$
$\Rightarrow f$ is entive i'.e. analyoir at all pts.
(b)

$$
\begin{aligned}
& f(z)=\cosh x \cdot \cos y+i \sinh x \sin y \\
& u_{x}=\sinh x \cdot \cos y, u_{y}=-\cosh x \cdot \sin y \\
& v_{x}=\cosh x \cdot \sin y, v_{y}=\sinh x \cdot \cos y
\end{aligned}
$$

$$
\Rightarrow \text { CReqs. sabisfied for all } \text { lory) }
$$

$\Rightarrow f$ entire.
2. (c). $f(z)=e^{y} \cdot e^{x x}=e^{y} \cdot(\cos x+\sin x)$.

$$
u_{x}=-e^{y} \cdot \sin x, u_{y}=e^{y} \cdot \cos x
$$

$$
v_{x}=e^{y} \cdot \cos x, v_{y}=e^{y} \cdot \sin x
$$

$$
C R \text { eqs } \Rightarrow \begin{cases}-\sin x=+\sin x & n g \\ \cos x=-\cos x & \text { solution }\end{cases}
$$

\Rightarrow not differentrable at any
(a) $f(x)=x y+i y$.
$U_{x}=y, u_{y}=x$
$U_{0}=0, v_{y}=1$.\quad CReqs $\left\{\begin{array}{l}y=1 \\ x=-0\end{array} \quad \Rightarrow f\right.$ is differentiable orly of
$\Rightarrow f$ is noulere analyor.
(b). fis tonlydifferentrable cot $(0,0$) (not ditferentrable in a inbled) $2 x y+i\left(x^{2} y^{2}\right) . \quad \Rightarrow$ nowhere anolyoz

P76:
4.(c). $f(z)=\frac{z^{2}+1}{(z+2)\left(z^{2}+2 z+2\right)}$

Singular points soltsity $(z+2) \cdot\left(z^{2}+2 z+2\right)=0 \Rightarrow z=2 \cdot \frac{-2 \pm \sqrt{2^{2}-4 \times 2}}{11}$

$$
-1 \pm \frac{\sqrt{-4}}{2}=-1 \pm i
$$

$f(z)$ is analyse anal from singular points by the differentiation rules: If two functions are anelytre in a domain D, then their quotient is andyric in D provided the function in the denominator does not vanish at any point in D.

$$
\text { 6. } g(z)=\ln r+i \theta . \quad u_{r}=\frac{1}{r}, \quad u_{\theta}=0 . \Rightarrow\left\{\begin{array}{l}
r u_{r}=v_{\theta}=1 \\
v_{r}=0, v_{\theta}=1 \\
u_{\theta}=-r v_{r}=0
\end{array}\right.
$$

$\Rightarrow g(z)$ is cunalyit. and $g^{\prime}(z)=e^{-i \theta}\left(\mu_{r}+i v_{r}\right)=e^{-i \theta} \frac{1}{r}=\frac{1}{r e^{i \theta}}=\frac{1}{z}$.
For the composite $G(z)=g\left(z^{2}+1\right), x>0, y>0$.

$$
1+z^{2}=\left(x^{2}-y^{2}\right)+2 i x y+1=\left(1+x^{2}-y^{2}\right)+2 i x y \stackrel{\substack{x>0 \\ y>0}}{\Longrightarrow} \operatorname{Im}\left(1+z^{2}\right)>0 .
$$

so the image of $\{x>0, y>0\}$ under $\left(z^{2}+1\right)$ is contained in the upper half plate which lies in the domain $\{1 \rightarrow 0,0<\theta<2 \pi\}$ of $g(z)$. So by chan rule, we kurwthat GIt is analyse in $\left\{x>0, y_{00}\right\}$ and

$$
G^{\prime}(z)=g^{\prime}\left(z^{2}+1\right) \cdot 2 z=\frac{2 z}{1+z^{2}}
$$

Generated by CamScanner

P77.7. $f(z)$ is real valued $\Leftrightarrow \overline{f(z)}=f(z)$.
$f(z)$ analytic and real valued in $D \Rightarrow \overline{f(z)}=f(z)$ is analytic in $\Rightarrow f(z)$ and $\overline{f(z)}$ are both curalytie in $D \Rightarrow f(z)$ is constant.

$$
\left(\left\{\begin{array}{l}
u_{x}=v_{y} \\
u_{y}=-v_{x}
\end{array} \&\left\{\begin{array}{l}
u_{x}=(-v)_{y} \\
u_{y}=-(-v)_{x}
\end{array} \Rightarrow u_{x}=u_{y}=v_{x}=v_{y}=0 .\right) .\right.\right.
$$

Pant 2: 1. For any freed $w_{0} . \quad \begin{aligned} & z=f^{-1}(\omega) \\ & z_{0}=f^{-1}\left(\omega_{0}\right)\end{aligned}$

$$
\begin{aligned}
& \text { Pant L: 1. tor cony fred } w_{0} \quad z_{0}=f^{-1\left(w_{0}\right)} \\
& \begin{aligned}
\frac{d}{d w} f^{-1}\left(w_{0}\right) & =\lim _{w \rightarrow w_{0}} \frac{f^{-1}(w)-f^{-1}\left(w_{0}\right)}{w-w_{0}}=\lim _{z \rightarrow z_{0}} \frac{z-z_{0}}{f(z)-f\left(z_{0}\right)} \\
& =\frac{1}{\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}}=\frac{1}{f^{\prime}\left(z_{0}\right)}=\frac{1}{f^{\prime}\left(f^{-1}\left(w_{0}\right)\right)}
\end{aligned}
\end{aligned}
$$

2. Let $f(z)=z^{n}=w \Rightarrow z=f^{-1}(w)=w^{\frac{1}{n}}$ by 1, $\frac{d}{d w} w^{\frac{1}{n}}=\frac{d}{d w} f^{-1}(w)=\frac{1}{f^{\prime}\left(f^{-1}(w)\right)}$

$$
\begin{aligned}
& =\frac{1}{n \cdot z^{n-1} \left\lvert\, z=f^{\prime}(w)=w^{\frac{1}{n}}\right.}=\frac{1}{n\left(w^{\frac{1}{n}}\right)^{n-1}} \\
& =\frac{1}{n \cdot w^{n-1}}=\frac{1}{n} \cdot w^{\frac{1}{n}}-1 \\
\Rightarrow \frac{d}{d z} z^{\frac{1}{n}} & =\frac{1}{n} z^{\frac{1}{n}-1} .
\end{aligned}
$$

EXAMPLE 2. The function $f(z)=e^{-y} \sin x-i e^{-y} \cos x$ is entire, as is shown in Exercise $1(c), \mathrm{Sec} .26$. Hence its real component, which is the temperature function $T(x, y)=e^{-y} \sin x$ in Example 1, must be harmonic in every domain of the $x y$ plane.

EXAMPLE 3. Since the function $f(z)=1 / z^{2}$ is analytic at every nonzero point z and since

$$
\frac{1}{z^{2}}=\frac{1}{z^{2}} \cdot \frac{\bar{z}^{2}}{\bar{z}^{2}}=\frac{\bar{z}^{2}}{(z \bar{z})^{2}}=\frac{\bar{z}^{2}}{\left|z^{2}\right|^{2}}=\frac{\left(x^{2}-y^{2}\right)-i 2 x y}{\left(x^{2}+y^{2}\right)^{2}},
$$

the two functions

$$
u(x, y)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \quad \text { and } \quad v(x, y)=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

are harmonic throughout any domain in the $x y$ plane that does not contain the origin.

Further discussion of harmonic functions related to the theory of functions of a complex variable appears in Chaps. 9 and 10, where they are needed in solving physical problems, such as in Example 1 here.

EXERCISES

1. Let the function $f(z)=u(r, \theta)+i v(r, \theta)$ be analytic in a domain D that does not include the origin. Using the Cauchy-Riemann equations in polar coordinates (Sec. 24) and assuming continuity of partial derivatives, show that throughout D the function $u(r, \theta)$ satisfies the partial differential equation

$$
r^{2} u_{r r}(r, \theta)+r u_{r}(r, \theta)+u_{\theta \theta}(r, \theta)=0,
$$

which is the polar form of Laplace's equation. Show that the same is true of the function $v(r, \theta)$.
2. Let the function $f(z)=u(x, y)+i v(x, y)$ be analytic in a domain D, and consider the families of level curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$, where c_{1} and c_{2} are arbitrary real constants. Prove that these families are orthogonal. More precisely, show that if $z_{0}=\left(x_{0}, y_{0}\right)$ is a point in D which is common to two particular curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ and if $f^{\prime}\left(z_{0}\right) \neq 0$, then the lines tangent to those curves at $\left(x_{0}, y_{0}\right)$ are perpendicular.

Suggestion: Note how it follows from the pair of equations $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ that

$$
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \frac{d y}{d x}=0 \quad \text { and } \quad \frac{\partial v}{\partial x}+\frac{\partial v}{\partial y} \frac{d y}{d x}=0 .
$$

3. Show that when $f(z)=z^{2}$, the level curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ of the component functions are the hyperbolas indicated in Fig. 32. Note the orthogonality of the two families, described in Exercise 2. Observe that the curves $u(x, y)=0$ and $v(x, y)=0$ intersect at the origin but are not, however, orthogonal to each other. Why is this fact in agreement with the result in Exercise 2?

FIGURE 32

4. Sketch the families of level curves of the component functions u and v when $f(z)=1 / z$, and note the orthogonality described in Exercise 2.
5. Do Exercise 4 using polar coordinates.
6. Sketch the families of level curves of the component functions u and v when

$$
f(z)=\frac{z-1}{z+1}
$$

and note how the result in Exercise 2 is illustrated here.

28. UNIQUELY DETERMINED ANALYTIC FUNCTIONS

We conclude this chapter with two sections dealing with how the values of an analytic function in a domain D are affected by its values in a subdomain of D or on a line segment lying in D. While these sections are of considerable theoretical interest, they are not central to our development of analytic functions in later chapters. The reader may pass directly to Chap. 3 at this time and refer back when necessary.

Lemma. Suppose that
(a) a function f is analytic throughout a domain D;
(b) $f(z)=0$ at each point z of a domain or line segment contained in D.

Then $f(z) \equiv 0$ in D; that is, $f(z)$ is identically equal to zero throughout D.
To prove this lemma, we let f be as stated in its hypothesis and let z_{0} be any point of the subdomain or line segment where $f(z)=0$. Since D is a connected open set (Sec. 12), there is a polygonal line L, consisting of a finite number of line segments joined end to end and lying entirely in D, that extends frite number of line segments D. We let d be the shortest distance fro, that extends from z_{0} to apy other point p in is the entire plane. in th..

Some properties of e^{z} are, on the other hand, not expected. For example, since

$$
e^{z+2 \pi i}=e^{z} e^{2 \pi i} \quad \text { and } \quad e^{2 \pi i}=1
$$

we find that e^{z} is periodic, with a pure imaginary period of $2 \pi i$:

$$
\begin{equation*}
e^{z+2 \pi i}=e^{z} \tag{8}
\end{equation*}
$$

For another property of e^{z} that e^{x} does not have, we note that while e^{x} is always positive, e^{z} can be negative. We recall (Sec. 6), for instance, that $e^{i \pi}=-1$. In fact,

$$
e^{i(2 n+1) \pi}=e^{i 2 n \pi+i \pi}=e^{i 2 n \pi} e^{i \pi}=(1)(-1)=-1 \quad(n=0, \pm 1, \pm 2, \ldots)
$$

There are, moreover, values of z such that e^{z} is any given nonzero complex number. This is shown in the next section, where the logarithmic function is developed, and is illustrated in the following example.

EXAMPLE. In order to find numbers $z=x+i y$ such that

$$
\begin{equation*}
e^{z}=1+\sqrt{3} i \tag{9}
\end{equation*}
$$

we write equation (9) as

$$
e^{x} e^{i y}=2 e^{i \pi / 3}
$$

Then, in view of the statement in italics at the beginning of Sec. 10, regarding the equality of two nonzero complex numbers in exponential form,

$$
e^{x}=2 \quad \text { and } \quad y=\frac{\pi}{3}+2 n \pi \quad(n=0, \pm 1, \pm 2, \ldots)
$$

Because $\ln \left(e^{x}\right)=x$, it follows that

$$
x=\ln 2 \quad \text { and } \quad y=\frac{\pi}{3}+2 n \pi \quad(n=0, \pm 1, \pm 2, \ldots)
$$

and so

$$
\begin{equation*}
z=\ln 2+\left(2 n+\frac{1}{3}\right) \pi i \quad(n=0, \pm 1, \pm 2, \ldots) \tag{10}
\end{equation*}
$$

EXERCISES

1. Show that
(a) $\exp (2 \pm 3 \pi i)=-e^{2}$;
(b) $\exp \left(\frac{2+\pi i}{4}\right)=\sqrt{\frac{e}{2}}(1+i)$;
(c) $\exp (z+\pi i)=-\exp z$.
2. State why the function $f(z)=2 z^{2}-3-z e^{z}+e^{-z}$ is entire.
3. Use the Cauchy-Riemann equations and the theorem in Sec. 21 to show that the function $f(z)=\exp \bar{z}$ is not analytic anywhere.
4. Show in two ways that the function $f(z)=\exp \left(z^{2}\right)$ is entire. What is its derivative?

Ans. $f^{\prime}(z)=2 z \exp \left(z^{2}\right)$.
5. Write $|\exp (2 z+i)|$ and $\left|\exp \left(i z^{2}\right)\right|$ in terms of x and y. Then show that

$$
\left|\exp (2 z+i)+\exp \left(i z^{2}\right)\right| \leq e^{2 x}+e^{-2 x y}
$$

6. Show that $\left|\exp \left(z^{2}\right)\right| \leq \exp \left(|z|^{2}\right)$.
7. Prove that $|\exp (-2 z)|<1$ if and only if $\operatorname{Re} z>0$.
8. Find all values of z such that
(a) $e^{z}=-2$:
(b) $e^{z}=1+i$;
(c) $\exp (2 z-1)=1$.
Ans. (a) $z=\ln 2+(2 n+1) \pi i(n=0, \pm 1, \pm 2, \ldots)$;

$$
\begin{aligned}
& \text { (b) } z=\frac{1}{2} \ln 2+\left(2 n+\frac{1}{4}\right) \pi i(n=0, \pm 1, \pm 2, \ldots) \\
& \text { (c) } z=\frac{1}{2}+n \pi i(n=0, \pm 1, \pm 2, \ldots)
\end{aligned}
$$

9. Show that $\exp (i z)=\exp (i \bar{z})$ if and only if $z=n \pi(n=0, \pm 1, \pm 2, \ldots)$. (Compare with Exercise 4, Sec. 29.)
10. (a) Show that if e^{i} is real, then $\operatorname{Im} z=n \pi(n=0, \pm 1, \pm 2, \ldots)$.
(b) If e^{z} is pure imaginary, what restriction is placed on z ?
11. Describe the behavior of $e^{z}=e^{x} e^{i y}$ as (a) x tends to $-\infty$; (b) y tends to ∞.
12. Write $\operatorname{Re}\left(e^{1 / 2}\right)$ in terms of x and y. Why is this function harmonic in every domain that does not contain the origin?
13. Let the function $f(z)=u(x, y)+i v(x, y)$ be analytic in some domain D. State why the functions

$$
U(x, y)=e^{u(x, y)} \cos v(x, y), \quad V(x, y)=e^{u(x, y)} \sin v(x, y)
$$

are harmonic in D.
14. Establish the identity

$$
\left(e^{i}\right)^{n}=e^{n z} \quad(n=0, \pm 1, \pm 2, \ldots)
$$

in the following way.
(a) Use mathematical induction to show that it is valid when $n=0,1,2 \ldots$.
(b) Verify it for negative integers n by first recalling from Sec. 8 that

$$
z^{n}=\left(z^{-1}\right)^{m} \quad(m=-n=1,2, \ldots)
$$

when $z \neq 0$ and writing $\left(e^{i}\right)^{n}=\left(1 / e^{i}\right)^{m}$. Then use the result in part (a), together with the property $1 / e^{z}=e^{-z}(\mathrm{Sec} .30)$ of the exponential function.

31. THE LOGARITHMIC FUNCTION

Our motivation for the definition of the logarithmic function is based on solving the equation

$$
\begin{equation*}
e^{w}=z \tag{1}
\end{equation*}
$$

Homework 6: Part 2

1: Determine and sketch the images of the following regions under the map $w=e^{z}$.
(a)

$$
\operatorname{Re}(z) \geq 1
$$

(b)

$$
\operatorname{Re}(z)<0
$$

(c)

$$
0<\operatorname{Im}(z)<\pi
$$

(d)

$$
0 \leq \operatorname{Im}(z)<2 \pi
$$

P79.1. $f=u+i v$ analyser in D
$\Rightarrow C R$ equations are satifitied $\left\{\begin{array}{l}r u_{r}=v_{\theta} \\ u_{0}=-r V_{r}\end{array}(1)\right.$

$$
\begin{aligned}
\text { (1) } \Rightarrow & \left(r u_{r}\right)_{r}=v_{\theta r} \\
& u_{r}+r u_{r r} \\
\text { (2) } \Rightarrow & u_{\theta \theta}=-r v_{r \theta}
\end{aligned} \Rightarrow r^{2} u_{r r}+r u_{r}=r \cdot v_{\theta r}=r v_{r \theta}=-u_{\theta \theta}
$$

$$
\text { so } \quad r^{2} u_{r r}+r u_{r}+u_{\theta \theta}=0 \text {. }
$$

For v: \quad (1) $\Rightarrow r u_{r \theta}=v_{\theta \theta}$

$$
\begin{gathered}
\text { (2) } \Rightarrow u_{\theta r}=-\left(r v_{r}\right)_{r}=-v_{r}-r v_{r r} \\
\Rightarrow v_{\theta \theta}
\end{gathered}=r u_{r \theta}=r u_{\theta r}=r \cdot\left(-v_{r}-r v_{r}\right) \Rightarrow r^{2} v_{r r}+r v_{r}+v_{\theta \theta}=0 .
$$

2. A normal vector to the level curve $u(x, y)=C_{1}$ is given by the gradient vector. $\nabla u=\left\langle u_{0}, u_{y}\right\rangle$, under the assumption that. $\nabla u \neq 0$. Similarly, of $\nabla \cup \neq 0$, then ∇_{11} gives a normal vector to the level curve $v(x, y)=c_{2}$. $\left\langle v_{0}, v_{y}\right\rangle$. f avalyget \& $f^{\prime}\left(z_{0}\right) \neq 0 \Rightarrow\left\{\begin{array}{l}u_{x}=v_{y} \\ u_{y}=-v_{x}\end{array} \text { and } f^{\prime}\left(z_{0}\right)=u_{0}+i v_{x}\right]_{z=z_{0}} \neq 0$.

$$
\begin{aligned}
& \Rightarrow \nabla u\left(z_{0}\right) \cdot \nabla v\left(z_{0}\right) \\
&=\left\langle u_{0}, u_{y}\right\rangle \cdot\left\langle v_{x}, v_{y}\right\rangle=u_{x} \cdot v_{x}+u_{y} \cdot v_{y} \\
&=u_{x} \cdot\left(-u_{y}\right)+u_{y} \cdot u_{0}=0 . \\
& \nabla u\left(z_{0}\right) \neq 0 \quad \nabla v\left(z_{0}\right) \neq 0 \Rightarrow\left\{u=C_{1}\right\} \perp\left\{v=C_{2}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } f(x)=z^{2}=\left(x^{2}-y^{2}\right)+i 2 x y \quad \\
& \Rightarrow\left\{\begin{array}{ll}
\nabla u=\langle(2 x,-2 y\rangle)=x^{2}-y^{2} \\
& v(x, y)=2 x y . \\
\nabla v=\langle 2 y, 2 x\rangle
\end{array} \quad \Rightarrow \quad \nabla u \cdot \nabla v=(2 x)(2 y)+(-2 y)(2 x)=0 .\right.
\end{aligned}
$$

cot the origin $\nabla u(0)=\nabla v(0)=0$. So Exercise 2 does ut
$\Rightarrow\left\{U=C_{1}\right\} \perp\left\{v=C_{2}\right\}$ away from the origin. apply.

Ps. 4. $f(z)=e^{z^{2}}$

- composition of analytic functions is andyete $\Rightarrow \quad z \mapsto z^{2} \mapsto e^{z^{2}} \quad$ is analytic

$$
\begin{aligned}
& \cdot f(z)=e^{x^{2}-y^{2}+2 i x y}=\frac{e^{x^{2}-y^{2}} \cdot(\cos (2 x y)+i \sin (2 x y))}{11} \\
& \Rightarrow \quad u+i v \\
& \Rightarrow \quad u_{x}=2 x \cdot e^{x^{2}-y^{2}} \cos (2 x y), v(x, y)=e^{x^{2}-y^{2}} \cos (2 x y)-e^{x^{2}-y^{2}} \sin (2 x y) \\
& u_{x}-y^{2} \sin (2 x y) \cdot 2 y \\
& u_{y}=-2 y \cdot e^{x^{2}-y^{2}} \cos (2 x y)-e^{x^{2}-y^{2}} \sin (2 x y) \cdot 2 x . \\
& v_{x}=2 x \cdot e^{x^{2}-y^{2} \cdot \sin (2 x y)+e^{x^{2}-y^{2}} \cdot \cos (2 x y) \cdot 2 y} \begin{aligned}
& v_{y}=-2 y \cdot e^{x^{2}-y^{2}} \sin (2 x y)+e^{x^{2}-y^{2}} \cos (2 x y) \cdot 2 x . \\
& \Rightarrow\left\{\begin{array}{l}
u_{x}
\end{array}=v_{y}=e^{x^{2}-y^{2}} \cdot(2 x \cdot \cos (2 x y)-2 y \cdot \sin (2 x y)) .\right. \\
& u_{y}=-v_{x}=e^{x^{2}-y^{2}} \cdot(-2 y \cdot \cos (x y)-2 x \cdot \sin (2 x y)
\end{aligned}
\end{aligned}
$$

$$
\Rightarrow f->\text { cunaligtic. }
$$

8. (b)

$$
\begin{aligned}
& \text { 8. (b) } e^{z}=1+i=\sqrt{2} \cdot e^{\frac{\pi i}{4}} \\
& e^{x} \cdot e^{i y} \\
& \Leftrightarrow\left\{\begin{array} { l }
{ e ^ { x } = \sqrt { 2 } } \\
{ y = \frac { z } { 4 } + 2 n \pi . }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x=\ln (\sqrt{2})=\frac{1}{2} \ln 2 \\
y=\frac{2}{4}+2 n \pi, n=0, \pm 1, \pm 2,
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } e^{2 z-1}=1=1 e^{i \cdot 0} \\
& e^{2 x+2 i y-1}=e^{2 x-1} \cdot e^{i \cdot 2 y}
\end{aligned} \Leftrightarrow\left\{\begin{array}{l}
e^{2 x-1}=1 \\
2 y=0+n \cdot 2 \pi, n=0, \pm 1, \pm 2 \cdots
\end{array}\right] \begin{aligned}
& 2 x-1=\ln 1=0 \\
& y=n \cdot \pi
\end{aligned} \Leftrightarrow\left\{\begin{array}{l}
x=\frac{1}{2} \\
y=n \pi, n=0, \pm 1, \pm 2, \ldots
\end{array} .\right.
$$

Or: $\quad 2 z-1=\log 1=0+i(n 2 \pi)$

$$
\Rightarrow z=\frac{1}{2}+i \cdot n \pi, \quad n=0, \pm 1, \pm 2, .
$$

10 (a). e^{z} is real $\Rightarrow e^{z}=r>0$
or $e^{z}=-r<0$

$$
\begin{aligned}
& \Rightarrow \quad z=\ln r+i \cdot n \cdot 2 \pi \text { or } \quad z=\ln r+i \cdot(\pi+2 n \pi) \\
& \Rightarrow \quad \operatorname{Im}(z)=2 n \cdot \pi \text { or }(2 n+1) \pi . \quad n=0, \pm 1, \pm 2, \ldots \\
& \Rightarrow \operatorname{Im}(z)=n \pi \cdot \quad(n=0, \pm 1, \pm 2, \ldots) .
\end{aligned}
$$

$P q_{0}$
10 (b) e^{z} is pimely imaginary

$$
\begin{aligned}
& \Rightarrow e^{z}=i \cdot r=r \cdot e^{\frac{\pi}{2} i} \text { or } e^{z}=-r \cdot i=r \cdot e^{-\frac{\pi}{2} i} \\
& \left.\Rightarrow z=\ln r+i \cdot\left(\frac{\pi}{2}+n \cdot 2 \pi\right) \text { or } z=\ln r+i \cdot\left(-\frac{\pi}{2}+n \cdot 2 \pi\right)\right) \\
& \Rightarrow \operatorname{Im}(z)=\frac{\pi}{2}+2 n \cdot \pi \quad \text { or }-\frac{\pi}{2}+2 n \cdot \pi=\frac{\pi}{2}+ \\
& \Rightarrow \operatorname{Im}(z)=\frac{\pi}{2}+k \cdot \pi, \quad k=0, \pm 1, \pm 2, \ldots
\end{aligned} \quad n=0, \pm 1, \pm 2, \ldots .
$$

OR: e^{z} is purely inaginary $\Rightarrow i \cdot e^{z}$ is real

By (a)

$$
e^{\frac{\pi}{2} r^{\prime \prime}} \cdot e^{z}=e^{\frac{\pi}{2} i+z}
$$

$$
\begin{array}{ll}
\operatorname{Im}\left(\frac{\pi}{2} i+z\right)=n \pi & \Rightarrow \operatorname{Im}(z)=-\frac{\pi}{2}+n \pi(n=0, \pm 1, \pm 2, \cdots) \\
\frac{\pi}{2}+I_{m}(z) & \Leftrightarrow \operatorname{Im}(z)=\frac{2}{2}+m \pi(m=0, \pm 1, \pm 2, \cdots) .
\end{array}
$$

11. (a) $x \rightarrow-\infty \Rightarrow\left|e^{z}\right|=e^{x} \rightarrow 0$. so $\lim _{x \rightarrow-\infty} e^{z}=0$.
(b) For fired x, as y chenges, e^{z} rotates araund the cticle $|v o|=e^{x}$ peritad of 2π for Yvaish
12.

$$
\begin{aligned}
e^{\frac{1}{z}} & =e^{\frac{1}{x+y^{2}}}=e^{\frac{x-y}{x^{2}+y^{2}}}=e^{\frac{x}{x^{2}+y^{2}}} \cdot e^{i-\frac{y}{x^{2}+y^{2}}} \\
& =e^{\frac{x}{x^{2}+y^{2}}}\left(\cos \left(\frac{y}{x^{2}+y^{2}}\right)+i \cdot \sin \left(\frac{y}{x^{2}+y^{2}}\right)\right)
\end{aligned}
$$

So $\operatorname{Re}\left(e^{\frac{1}{z}}\right)=e^{\frac{x}{x^{2}+y^{2}}} \cos \left(\frac{y}{x^{2}+y^{2}}\right)$.
$e^{\frac{1}{z}}$ is cualytir when $z \neq 0 \Rightarrow \operatorname{Re}\left(e^{\frac{1}{z}}\right)$ is harmanic in aery downen that does not contem the orign.

Pant 2

1. (a)

(b)

(c).
I-KAKLLLET

(d)

A-4. $1 / 5$

NAME :

Practice MIDTERM I

THERE ARE FIVE (5) PROBLEMS. THEY HAVE THE INDICATED VALUE. SHOW YOUR WORK DO NOT TEAR-OFF ANY PAGE NO CALCULATORS NO CELLS ETC. ON YOUR DESK: ONLY test, pen, pencil, eraser.

1		50 pts
2		50 pts
3		50 pts
4		50 pts
5		50 pts
Total		250 pts

!!! WRITE YOUR NAME, STUDENT ID AND LECTURE N. BELOW !!!

NAME : ID :

LECTURE N.

1. (50pts) Let $z_{1}=1-i, z_{2}=3-i$.
(a): Calculate $\bar{z}_{1} \cdot z_{2}$ and z_{1} / z_{2}.
(b): Calculate $z_{1}^{1 / 3}$ and sketch the roots on a regular polygon.
2. (50pts) Calculate the limit if it exists:
(a)

$$
\lim _{z \rightarrow i} \frac{z-i}{z\left(z^{2}+1\right)}
$$

(b)

$$
\lim _{z \rightarrow 0} \frac{\bar{z}^{4}}{z^{3}} .
$$

3. (50pts)
(1) Sketch the region given by:

$$
0 \leq \operatorname{Arg} z<\frac{3 \pi}{4}, \quad 1<|z| \leq 2
$$

(2) Find the image of the above region under the mapping $w=z^{2}$.
4. (50pts)
(a) Explain why the following function is analytic in its domain and calculate $f^{\prime}(z)$:

$$
f(z)=\frac{(i z-1)^{4}}{(i z+1)^{4}}
$$

(b) If $g(z)$ is an analytic function and $f(z)=g(z)+g(z)$ is also an analytic function, what can you say about $g(z)$? Explain your reason.

5. $(50 \mathrm{pts})$

Find the points where the function is differentiable and then calculate the first order derivative of the function at those points. Is the function analytic at those points?
(a)

$$
f(z)=\left(x^{2}+(y+i)^{2}\right)+2 i x(y+i)
$$

(b)

$$
f\left(r e^{i \theta}\right)=(\log r)^{2}-\theta^{2}+2 i \theta \log r, \quad r>0,0<\theta<2 \pi .
$$

LECTURE N.

1. (50pts) Let $z_{1}=1-i, z_{2}=3-i$.
(a): Calculate $\bar{z}_{1} \cdot z_{2}$ and z_{1} / z_{2}.

$$
\begin{aligned}
& \bar{z}_{1} \cdot z_{2}=(1+i)(3-i)=3+i \cdot(-i)+3 i-i=4+2 i \\
& \frac{z_{1}}{z_{2}}=\frac{1-i}{3-i}=\frac{(1-i) \cdot(3+i)}{(3-i) \cdot(3+i)}=\frac{4-2 i}{10}
\end{aligned}
$$

(b): Calculate $z_{1}^{1 / 3}$ and sketch the roots on a regular polygon.

$$
\begin{aligned}
& z_{1}=1-i=\sqrt{2} \cdot e^{-\frac{i \pi}{4}} . \quad z_{1}^{\frac{1}{3}}=(\sqrt{2})^{\frac{1}{3}} e^{i\left(-\frac{\pi}{12}+\frac{2 k \pi}{3}\right)} \quad k=0,1,2 . \\
& c_{1}=2^{\frac{1}{6}} e^{-\frac{i \pi}{12}}, \quad c_{2}=2^{\frac{1}{6}} \cdot e^{-\frac{i \pi}{12}} \cdot e^{i \frac{2 \pi}{3}}=2^{\frac{1}{6}} e^{\frac{7 i \pi}{12}} \\
& c_{3}=c_{2} \cdot e^{i \frac{\pi \pi}{3}}=2^{\frac{1}{6}} e^{\left.i \frac{i \pi}{12}+\frac{2 \pi}{3}\right)}=2^{\frac{1}{6}} e^{i \frac{18 \pi}{12}}=2^{\frac{1}{6}} e^{\frac{5 i \pi}{4}} \\
& =2^{\frac{1}{6}} \cdot\left(-\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)=-2^{\frac{1}{6}-\frac{1}{2}}(1+i)=-2^{-\frac{1}{3}}(1+i) \text {. } \\
& \Rightarrow c_{2}=c_{3} \cdot e^{-i \frac{2 \pi}{3}}=-2^{-\frac{1}{3}}(1+i) \cdot\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right) \\
& =2^{-\frac{4}{3}}(1-\sqrt{3}+(1+\sqrt{3}) i) \\
& c_{1}=C_{3} \cdot e^{-i \frac{4 \pi}{3}}=-2^{-\frac{1}{3}}(1+i) \cdot\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
& =2^{-\frac{4}{3}}((1+\sqrt{3})+(1-\sqrt{3}) i) \text {. }
\end{aligned}
$$

Generated by CamScanner
2. (50pts) Calculate the limit if it exists:
(a)

$$
\lim _{z \rightarrow i} \frac{z-i}{z\left(z^{2}+1\right)}
$$

(b)

$$
\lim _{z \rightarrow 0} \frac{\bar{z}^{4}}{z^{3}}
$$

(a)

$$
\begin{aligned}
\lim _{z \rightarrow i} \frac{z-i}{z\left(z^{2}+1\right)} & =\lim _{z \rightarrow i} \frac{z-i}{z(z+i)(z-i)} \\
& =\lim _{z \rightarrow i} \frac{1}{z(z+i)}=\frac{1}{i \cdot(i+i)} \\
& =-\frac{1}{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \left|\frac{\bar{z}^{4}}{z^{3}}\right|=\frac{|\bar{z}|^{4}}{|z|^{3}}=|z| . \\
& \lim _{z \rightarrow 0}\left|\frac{\bar{z}^{4}}{z^{3}}\right|=\lim _{z \rightarrow 0}|z|=0 \\
& \lim _{z \rightarrow 0} \frac{\bar{z}^{4}}{z^{3}}=0 .
\end{aligned}
$$

or $\quad \lim _{z \rightarrow 0} \frac{\bar{z}^{4}}{z^{3}}=\lim _{r \rightarrow 0} \frac{r^{4} e^{-4 i \theta}}{r^{3} e^{i \theta}}=\lim _{f \rightarrow 0}\left(r \cdot e^{-7 i \theta}\right)=0$
3. $(50 \mathrm{pts})$
(1) Sketch the region given by:

$$
0 \leq \operatorname{Arg} z<\frac{3 \pi}{4}, \quad 1<|z| \leq 2
$$

(2) Find the image of the above region under the mapping $w=z^{2}$.
(1)

$$
\downarrow^{z^{2}}
$$

(2)

$$
\begin{gathered}
0 \leq \operatorname{lng} w<\frac{3 \pi}{2} \\
\quad|<|\omega| \leq 4 .
\end{gathered}
$$

4. (50 pts)
(a) Explain why the following function is analytic in its domain and calculate $f^{\prime}(z)$:

$$
f(z)=\frac{(i z-1)^{4}}{(i z+1)^{4}}
$$

Domain of $f=\{z \in \mathbb{C} ; z \neq i\}$

$$
f^{\prime}(z)=\frac{4(i z-1)^{3} \cdot i \cdot(i z+1)^{4}-(i z-1)^{4} \cdot 4 \cdot(i z+1)^{3} \cdot i}{(i z+1)^{8}}=\frac{4 i(i z-1)^{3}}{(i z+1)^{3}} \cdot(i z+1-(i z-1)) .
$$

(b) If $g(z)$ is an analytic function and $f(z)=g(z)+\overline{g(z)}$ is also an analytic
function, what can you say about $g(z)$? Explain your reason. function, what can you say about $g(z)$? Explain your reason.

$$
\frac{8 i \cdot(i z+1)^{3}}{(i z+1)^{5}}
$$

$$
f(z)=g(z)+\overline{g(z)}=2 \operatorname{Re}(g(z))
$$

is analytic and real valued $\Rightarrow f(z) \equiv$ with berg

Let $g(z)=u(z)+i v(z)$. then $u(z)=\frac{f(z)}{2} \equiv \frac{C_{1}}{2}$.

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
u_{x}=v_{y}=0 \\
u_{y}=-v_{x}=0
\end{array} \Rightarrow v_{x}=v_{y}=0 \Rightarrow v \equiv c_{2}\right. \text { is a consent } \\
& \Rightarrow g(z) \equiv \frac{c_{1}}{2}+i C_{2} \text { is a constant function. }
\end{aligned}
$$

Find the points where the function is differentiable and then calculate the first order derivative of the function at those points. Is the function analytic at those points?
(a)

$$
\begin{gathered}
f(z)=\left(x^{2}+(y+i)^{2}\right)+2 i x(y+i) \\
f\left(r e^{i \theta}\right)=(\log r)^{2}-\theta^{2}+2 i \theta \log r, \quad r>0,0<\theta<2 \pi
\end{gathered}
$$

(b)
(a) $\left.f(z)=\left(x^{2}+y+i\right)^{2}\right)+2 x(y+i)=\left(x^{2}+y^{2}+2 y i-1\right)+2 i 6 y-2 x$
$z=x+1 y$

$$
=\left(x^{2}+y^{2}-1-2 x\right)+2 i \cdot(y+x y)=u+i v
$$

see the next page for correction

(b) $U(r, \theta)=(\log r)^{2}-\theta^{2}, v=2 \theta \cdot \log r$

$$
\begin{aligned}
& u_{r}=2(\log r) \cdot \frac{1}{r}, u_{\theta}=-2 \theta \\
& v_{r}=\frac{2 \theta}{r}, \quad v_{\theta}=2 \cdot \log r
\end{aligned} \Rightarrow\left\{\begin{array}{l}
r \cdot u_{r}=v_{\theta}=2 \cdot \log r \text { i.e. (R eqs } \\
u_{\theta}=-r v_{r}=-2 \theta \text { are satisfied } \\
\text { (in polar coordunde) }
\end{array}\right.
$$

$\Longrightarrow f(z)$ is differentiable at any point in the domain $\{r>0,0<\theta<2 \lambda\}$ and $f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i v_{r}\right)=e^{-i \theta} \cdot\left(\frac{2 \log r}{r}+i \cdot \frac{2 \theta}{r}\right)=\frac{2(\log r+i \theta)}{r \cdot e^{i \theta}}$ f is cunalytic at any point in the domain $\{r>0,0<\theta<z \pi\}$. As we will see later, $f(z)=a$ branch of $(\log z)^{2}$

$$
\Rightarrow f^{\prime}(z)=a \text { brach of } \frac{2 \cdot \log z}{z} \text {. }
$$

Generated by CamScanner
5.
(a)

$$
\begin{aligned}
f(z) & =\left(x^{2}+(y+i)^{2}\right)+2 i x(y+i)=\left(x^{2}+y^{2}+2 y i-1\right)+2 i x y-2 x \\
& =\left(x^{2}+y^{2}-1-2 x\right)+i \cdot(2 y+2 x y)=u+i v .
\end{aligned}
$$

$$
\Rightarrow \begin{aligned}
& u_{x}=2 x-2, u_{y}=2 y \\
& v_{x}=2 y, v_{y}=2+2 x
\end{aligned} \quad \text { CR eqs. }\left\{\begin{array}{l}
2 x-2=2+2 x \\
2 y=-2 y
\end{array} \Rightarrow\right. \text { No solution. }
$$

$\Rightarrow f$ is not ditflerentable anywhere
not cralytic. at cony point.

We saw in Example 5, Sec. 32, that the set of values of $\log \left(i^{2}\right)$ is not the set of values of $2 \log i$. The following example does show, however, that equality can occur when a specific branch of the logarithm is used. In that case, of course, there is only one value of $\log \left(i^{2}\right)$ that is to be taken, and the same is true of $2 \log i$.

EXAMPLE. In order to show that

$$
\begin{equation*}
\log \left(i^{2}\right)=2 \log i \tag{7}
\end{equation*}
$$

when the branch

$$
\log z=\ln r+i \theta \quad\left(r>0, \frac{\pi}{4}<\theta<\frac{9 \pi}{4}\right)
$$

is used, write

$$
\log \left(i^{2}\right)=\log (-1)=\ln 1+i \pi=\pi i
$$

and then observe that

$$
2 \log i=2\left(\ln 1+i \frac{\pi}{2}\right)=\pi i
$$

It is interesting to contrast equality (7) with the result $\log \left(i^{2}\right) \neq 2 \log i$ in Exercise 4 , where a different branch of $\log z$ is used.

In Sec. 34, we shall consider other identities involving logarithms, sometimes with qualifications as to how they are to be interpreted. A reader who wishes to pass to Sec. 35 can simply refer to results in Sec. 34 when needed.

EXERCISES

1. Show that
(a) $\log (-e i)=1-\frac{\pi}{2} i$;
(b) $\log (1-i)=\frac{1}{2} \ln 2-\frac{\pi}{4} i$.
2. Show that
(a) $\log e=1+2 n \pi i \quad(n=0, \pm 1, \pm 2, \ldots)$;
(b) $\log i=\left(2 n+\frac{1}{2}\right) \pi i \quad(n=0, \pm 1, \pm 2, \ldots)$;
(c) $\log (-1+\sqrt{3} i)=\ln 2+2\left(n+\frac{1}{3}\right) \pi i \quad(n=0, \pm 1, \pm 2, \ldots)$.
3. Show that $\log \left(i^{3}\right) \neq 3 \log i$.
4. Show that $\log \left(i^{2}\right) \neq 2 \log i$ when the branch

$$
\log z=\ln r+i \theta \quad\left(r>0, \frac{3 \pi}{4}<\theta<\frac{11 \pi}{4}\right)
$$

is used. (Compare this with the example in Sec. 33.)
5. (a) Show that the two square roots of i are

$$
e^{i \pi / 4} \text { and } e^{i 5 \pi / 4}
$$

Then show that

$$
\log \left(e^{i \pi / 4}\right)=\left(2 n+\frac{1}{4}\right) \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

and

$$
\log \left(e^{i 5 \pi / 4}\right)=\left[(2 n+1)+\frac{1}{4}\right] \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

Conclude that

$$
\log \left(i^{1 / 2}\right)=\left(n+\frac{1}{4}\right) \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

(b) Show that

$$
\log \left(i^{1 / 2}\right)=\frac{1}{2} \log i
$$

as stated in Example 5, Sec. 32, by finding the values on the right-hand side of this equation and then comparing them with the final result in part (a).
6. Given that the branch $\log z=\ln r+i \theta(r>0, \alpha<\theta<\alpha+2 \pi)$ of the logarithmic function is analytic at each point z in the stated domain, obtain its derivative by differentiating each side of the identity (Sec. 31)

$$
e^{\log z}=z \quad(|z|>0, \alpha<\arg z<\alpha+2 \pi)
$$

and using the chain rule.
7. Show that a branch (Sec. 33)

$$
\log z=\ln r+i \theta \quad(r>0, \alpha<\theta<\alpha+2 \pi)
$$

of the logarithmic function can be written

$$
\log z=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)+i \tan ^{-1}\left(\frac{y}{x}\right)
$$

in rectangular coordinates. Then, using the theorem in Sec. 23 , show that the given branch is analytic in its domain of definition and that

$$
\frac{d}{d z} \log z=\frac{1}{z}
$$

there.
8. Find all roots of the equation $\log z=i \pi / 2$.

$$
\text { Ans. } z=i .
$$

9. Suppose that the point $z=x+i y$ lies in the horizontal strip $\alpha<y<\alpha+2 \pi$. Show that when the branch $\log z=\ln r+i \theta(r>0, \alpha<\theta<\alpha+2 \pi)$ of the logarithmic function is used, $\log \left(e^{z}\right)=z$. [Compare with equation (5), Sec. 31.]
10. Show that
(a) the function $f(z)=\log (z-i)$ is analytic everywhere except on the portion $x \leq 0$ of the line $y=1$;
(b) the function

$$
f(z)=\frac{\log (z+4)}{z^{2}+i}
$$

is analytic everywhere except at the points $\pm(1-i) / \sqrt{2}$ and on the portion $x \leq-4$ of the real axis.
11. Show in two ways that the function $\ln \left(x^{2}+y^{2}\right)$ is harmonic in every domain that does not contain the origin.
12. Show that

$$
\operatorname{Re}[\log (z-1)]=\frac{1}{2} \ln \left[(x-1)^{2}+y^{2}\right] \quad(z \neq 1)
$$

Why must this function satisfy Laplace's equation when $z \neq 1$?

34. SOME IDENTITIES INVOLVING LOGARITHMS

If z_{1} and z_{2} denote any two nonzero complex numbers, it is straightforward to show that

$$
\begin{equation*}
\log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2} \tag{1}
\end{equation*}
$$

This statement, involving a multiple-valued function, is to be interpreted in the same way that the statement

$$
\begin{equation*}
\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2} \tag{2}
\end{equation*}
$$

was in Sec. 9. That is, if values of two of the three logarithms are specified, then there is a value of the third such that equation (1) holds.

The verification of statement (1) can be based on statement (2) in the following way. Since $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$ and since these moduli are all positive real numbers, we know from experience with logarithms of such numbers in calculus that

$$
\ln \left|z_{1} z_{2}\right|=\ln \left|z_{1}\right|+\ln \left|z_{2}\right|
$$

So it follows from this and equation (2) that

$$
\begin{equation*}
\ln \left|z_{1} z_{2}\right|+i \arg \left(z_{1} z_{2}\right)=\left(\ln \left|z_{1}\right|+i \arg z_{1}\right)+\left(\ln \left|z_{2}\right|+i \arg z_{2}\right) \tag{3}
\end{equation*}
$$

Finally, because of the way in which equations (1) and (2) are to be interpreted, equation (3) is the same as equation (1).

EXAMPLE 1. To illustrate statement (1), write $z_{1}=z_{2}=-1$ and recall from Examples 2 and 3 in Sec. 32 that

$$
\log 1=2 n \pi i \quad \text { and } \quad \log (-1)=(2 n+1) \pi i
$$

for any value of $\log z$ that is taken. When $n=1$, this reduces, of course, to relation (3), Sec. 31. Equation (5) is readily verified by writing $z=r e^{i \theta}$ and noting that each side becomes $r^{n} e^{i n \theta}$.

It is also true that when $z \neq 0$,

$$
\begin{equation*}
z^{1 / n}=\exp \left(\frac{1}{n} \log z\right) \quad(n=1,2, \ldots) \tag{6}
\end{equation*}
$$

That is, the term on the right here has n distinct values, and those values are the nth roots of z. To prove this, we write $z=r \exp (i \Theta)$, where Θ is the principal value of $\arg z$. Then, in view of definition (2), Sec. 31, of $\log z$,

$$
\exp \left(\frac{1}{n} \log z\right)=\exp \left[\frac{1}{n} \ln r+\frac{i(\Theta+2 k \pi)}{n}\right]
$$

where $k=0, \pm 1, \pm 2, \ldots$ Thus

$$
\begin{equation*}
\exp \left(\frac{1}{n} \log z\right)=\sqrt[n]{r} \exp \left[i\left(\frac{\Theta}{n}+\frac{2 k \pi}{n}\right)\right] \quad(k=0, \pm 1, \pm 2, \ldots) \tag{7}
\end{equation*}
$$

Because $\exp (i 2 k \pi / n)$ has distinct values only when $k=0,1, \ldots, n-1$, the right-hand side of equation (7) has only n values. That right-hand side is, in fact, an expression for the nth roots of $z(\mathrm{Sec} .10)$, and so it can be written $z^{1 / n}$. This establishes property (6), which is actually valid when n is a negative integer too (see Exercise 4).

EXERCISES

1. Show that for any two nonzero complex numbers z_{1} and z_{2},

$$
\log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2}+2 N \pi i
$$

where N has one of the values $0, \pm 1$. (Compare with Example 2 in Sec. 34.)
2. Verify expression (4), Sec. 34, for $\log \left(z_{1} / z_{2}\right)$ by
(a) using the fact that $\arg \left(z_{1} / z_{2}\right)=\arg z_{1}-\arg z_{2}$ (Sec. 9);
(b) showing that $\log (1 / z)=-\log z(z \neq 0)$, in the sense that $\log (1 / z)$ and $-\log z$ have the same set of values, and then referring to expression (1), Sec. 34, for $\log \left(z_{1} z_{2}\right)$.
3. By choosing specific nonzero values of z_{1} and z_{2}, show that expression (4), Sec. 34 , for $\log \left(z_{1} / z_{2}\right)$ is not always valid when \log is replaced by \log.
4. Show that property (6), Sec. 34 , also holds when n is a negative integer. Do this by writing $z^{1 / n}=\left(z^{1 / m}\right)^{-1}(m=-n)$, where n has any one of the negative values $n=-1,-2, \ldots$ (see Exercise 9, Sec. 11), and using the fact that the property is already known to be valid for positive integers.
5. Let z denote any nonzero complex number, written $z=r e^{i \Theta}(-\pi<\Theta \leq \pi)$, and let n denote any fixed positive integer $(n=1,2, \ldots)$. Show that all of the values of $\log \left(z^{1 / n}\right)$ are given by the equation

$$
\log \left(z^{1 / n}\right)=\frac{1}{n} \ln r+i \frac{\Theta+2(p n+k) \pi}{n}
$$

Hence

$$
\left(z_{2} z_{3}\right)^{i}=\left[e^{\pi / 4} e^{i(\ln 2) / 2}\right]\left[e^{3 \pi / 4} e^{i(\ln 2) / 2}\right] e^{-2 \pi}
$$

or

$$
\begin{equation*}
\left(z_{2} z_{3}\right)^{i}=z_{2}^{i} z_{3}^{i} e^{-2 \pi} \tag{2}
\end{equation*}
$$

EXERCISES

1. Show that
(a) $(1+i)^{i}=\exp \left(-\frac{\pi}{4}+2 n \pi\right) \exp \left(i \frac{\ln 2}{2}\right) \quad(n=0, \pm 1, \pm 2, \ldots)$;
(b) $\frac{1}{i^{2 i}}=\exp [(4 n+1) \pi] \quad(n=0, \pm 1, \pm 2, \ldots)$.
2. Find the principal value of
(a) $(-i)^{i}$;
(b) $\left[\frac{e}{2}(-1-\sqrt{3} i)\right]^{3 \pi i}$;
(c) $(1-i)^{4 i}$.

Ans. (a) $\exp (\pi / 2) ; \quad(b)-\exp \left(2 \pi^{2}\right) ; \quad(c) e^{\pi}[\cos (2 \ln 2)+i \sin (2 \ln 2)]$.
3. Use definition (1), Sec. 35 , of z^{c} to show that $(-1+\sqrt{3} i)^{3 / 2}= \pm 2 \sqrt{2}$.
4. Show that the result in Exercise 3 could have been obtained by writing
(a) $(-1+\sqrt{3} i)^{3 / 2}=\left[(-1+\sqrt{3} i)^{1 / 2}\right]^{3}$ and first finding the square roots of $-1+\sqrt{3} i$;
(b) $(-1+\sqrt{3} i)^{3 / 2}=\left[(-1+\sqrt{3} i)^{3}\right]^{1 / 2}$ and first cubing $-1+\sqrt{3} i$.
5. Show that the principal nth root of a nonzero complex number z_{0} that was defined in Sec. 10 is the same as the principal value of $z_{0}^{1 / n}$ defined by equation (3), Sec. 35.
6. Show that if $z \neq 0$ and a is a real number, then $\left|z^{a}\right|=\exp (a \ln |z|)=|z|^{a}$, where the principal value of $|z|^{a}$ is to be taken.
7. Let $c=a+b i$ be a fixed complex number, where $c \neq 0, \pm 1, \pm 2, \ldots$, and note that i^{c} is multiple-valued. What additional restriction must be placed on the constant c so that the values of $\left|i^{c}\right|$ are all the same?

Ans. c is real.
8. Let c, c_{1}, c_{2}, and z denote complex numbers, where $z \neq 0$. Prove that if all of the powers involved are principal values, then
(a) $z^{c_{1}} z^{c_{2}}=z^{c_{1}+c_{2}}$;
(b) $\frac{z^{c_{1}}}{z^{c_{2}}}=z^{c_{1}-c_{2}}$;
(c) $\left(z^{c}\right)^{n}=z^{c n} \quad(n=1,2, \ldots)$.
9. Assuming that $f^{\prime}(z)$ exists, state the formula for the derivative of $c^{f(z)}$.

37. THE TRIGONOMETRIC FUNCTIONS $\sin z$ AND $\cos z$

Euler's formula (Sec. 7) tells us that

$$
e^{i x}=\cos x+i \sin x \quad \text { and } \quad e^{-i x}=\cos x-i \sin x
$$

Observe that the quotients $\tan z$ and $\sec z$ are analytic everywhere except at the singularities (Sec. 25)

$$
z=\frac{\pi}{2}+n \pi \quad(n=0, \pm 1, \pm 2, \ldots)
$$

which are the zeros of $\cos z$. Likewise, $\cot z$ and $\csc z$ have singularities at the zeros of $\sin z$, namely

$$
z=n \pi \quad(n=0, \pm 1, \pm 2, \ldots) .
$$

By differentiating the right-hand sides of equations (1) and (2), we obtain the anticipated differentiation formulas

$$
\begin{array}{ll}
\frac{d}{d z} \tan z=\sec ^{2} z, & \frac{d}{d z} \cot z=-\csc ^{2} z, \\
\frac{d}{d z} \sec z=\sec z \tan z, & \frac{d}{d z} \csc z=-\csc z \cot z . \tag{4}
\end{array}
$$

The periodicity of each of the trigonometric functions defined by equations (1) and (2) follows readily from equations (10) and (11) in Sec. 37. For example,

$$
\begin{equation*}
\tan (z+\pi)=\tan z \tag{5}
\end{equation*}
$$

Mapping properties of the transformation $w=\sin z$ are especially important in the applications later on. A reader who wishes at this time to learn some of those properties is sufficiently prepared to read Secs. 104 and 105 (Chap. 8), where they are discussed.

EXERCISES

1. Give details in the derivation of expressions (2), Sec. 37, for the derivatives of $\sin z$ and $\cos z$.
2. (a) With the aid of expression (4), Sec. 37, show that

$$
e^{i z_{1}} e^{i z_{2}}=\cos z_{1} \cos z_{2}-\sin z_{1} \sin z_{2}+i\left(\sin z_{1} \cos z_{2}+\cos z_{1} \sin z_{2}\right) .
$$

Then use relations (3), Sec. 37, to show how it follows that

$$
e^{-i z_{1}} e^{-i z_{2}}=\cos z_{1} \cos z_{2}-\sin z_{1} \sin z_{2}-i\left(\sin z_{1} \cos z_{2}+\cos z_{1} \sin z_{2}\right) .
$$

(b) Use the results in part (a) and the fact that

$$
\sin \left(z_{1}+z_{2}\right)=\frac{1}{2 i}\left[e^{i\left(z_{1}+z_{2}\right)}-e^{-i\left(z_{1}+z_{2}\right)}\right]=\frac{1}{2 i}\left(e^{i z_{1}} e^{i z_{2}}-e^{i-i z_{1}} e^{-i z_{2}}\right)
$$

to obtain the identity

$$
\sin \left(z_{1}+z_{2}\right)=\sin z_{1} \cos z_{2}+\cos z_{1} \sin z_{2}
$$

in Sec. 37.
3. According to the final result in Exercise 2(b),

$$
\sin \left(z+z_{2}\right)=\sin z \cos z_{2}+\cos z \sin z_{2}
$$

By differentiating each side here with respect to z and then setting $z=z_{1}$, derive the expression

$$
\cos \left(z_{1}+z_{2}\right)=\cos z_{1} \cos z_{2}-\sin z_{1} \sin z_{2}
$$

that was stated in Sec. 37.
4. Verify identity (9) in Sec. 37 using
(a) identity (6) and relations (3) in that section;
(b) the lemma in Sec. 28 and the fact that the entire function

$$
f(z)=\sin ^{2} z+\cos ^{2} z-1
$$

has zero values along the x axis.
5. Use identity (9) in Sec. 37 to show that
(a) $1+\tan ^{2} z=\sec ^{2} z$;
(b) $1+\cot ^{2} z=\csc ^{2} z$.
6. Establish differentiation formulas (3) and (4) in Sec. 38.
7. In Sec. 37, use expressions (13) and (14) to derive expressions (15) and (16) for $|\sin z|^{2}$ and $|\cos z|^{2}$.

Suggestion: Recall the identities $\sin ^{2} x+\cos ^{2} x=1$ and $\cosh ^{2} y-\sinh ^{2} y=1$.
8. Point out how it follows from expressions (15) and (16) in Sec. 37 for $|\sin z|^{2}$ and $|\cos z|^{2}$ that
(a) $|\sin z| \geq|\sin x|$;
(b) $|\cos z| \geq|\cos x|$.
9. With the aid of expressions (15) and (16) in Sec. 37 for $|\sin z|^{2}$ and $|\cos z|^{2}$, show that
(a) $|\sinh y| \leq|\sin z| \leq \cosh y$;
(b) $|\sinh y| \leq|\cos z| \leq \cosh y$.
10. (a) Use definitions (1), Sec. 37, of $\sin z$ and $\cos z$ to show that

$$
2 \sin \left(z_{1}+z_{2}\right) \sin \left(z_{1}-z_{2}\right)=\cos 2 z_{2}-\cos 2 z_{1}
$$

(b) With the aid of the identity obtained in part (a), show that if $\cos z_{1}=\cos z_{2}$, then at least one of the numbers $z_{1}+z_{2}$ and $z_{1}-z_{2}$ is an integral multiple of 2π.
11. Use the Cauchy-Riemann equations and the theorem in Sec. 21 to show that neither $\sin \bar{z}$ nor $\cos \bar{z}$ is an analytic function of z anywhere.
12. Use the reflection principle (Sec. 29) to show that for all z,
(a) $\overline{\sin z}=\sin \bar{z}$;
(b) $\overline{\cos z}=\cos \bar{z}$.
13. With the aid of expressions (13) and (14) in Sec. 37, give direct verifications of the relations obtained in Exercise 12.
14. Show that
(a) $\overline{\cos (i z)}=\cos (i \bar{z})$ for all z;
(b) $\overline{\sin (i z)}=\sin (i \bar{z}) \quad$ if and only if $\quad z=n \pi i(n=0, \pm 1, \pm 2, \ldots)$.
15. Find all roots of the equation $\sin z=\cosh 4$ by equating the real parts and then the imaginary parts of $\sin z$ and $\cosh 4$.

$$
\text { Ans. }\left(\frac{\pi}{2}+2 n \pi\right) \pm 4 i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

P95. 4. branch $\log z=\ln r+i \theta \quad\left(r>0, \frac{3 \pi}{4}<\theta<\frac{11 \pi}{4}\right)$

$$
\begin{aligned}
& \log \left(i^{2}\right)=\log (-1)=\ln 1+i \cdot \pi=i \pi \\
& \log i=\ln \left\lvert\, i+i \cdot \frac{5 \pi}{2}=i \cdot \frac{5 \pi}{2} .\right. \\
& 2 \log i=52 i \neq i \pi .
\end{aligned}
$$

5. (a) $i=e^{i \cdot \frac{\pi}{2}} \Rightarrow i^{\frac{1}{2}}=\left\{e^{i \frac{\pi}{4}}, e^{\left(\frac{2 \times 2}{4}+\frac{2 \pi}{2}\right)}=e^{i \frac{\pi_{4}}{4}}\right\}$

$$
\begin{aligned}
\log \left(e^{i \frac{\pi}{4}}\right) & =i \cdot\left(\frac{\pi}{4}+2 m \cdot \pi\right) \quad m=0, \pm 1, \pm 2, \cdots . \\
\log \left(e^{i \frac{\pi \pi}{4}}\right) & =i\left(\frac{5 \pi}{4}+2 m \pi\right) \quad m=0, \pm 1, \pm 2, \cdots \\
& =i \cdot\left(\frac{\pi}{4}+(2 m+1) \pi\right) \quad \quad \text { eren odd } \\
\Rightarrow \log \left(i^{\frac{1}{2}}\right) & =i \cdot\left(\frac{\pi}{4}+n \cdot \pi\right) \quad n=0, \pm 1, \pm 2, \cdots .
\end{aligned}
$$

(b)

$$
\begin{gathered}
\frac{1}{2} \log i=\frac{1}{2} \cdot\left(i\left(\frac{2}{2}+2 n \pi\right)\right)=i^{\prime}\left(\frac{\pi}{4}+n \pi\right) \quad n=0, \pm 1, \pm 2, \cdots \\
\\
\log \left(i^{\frac{1}{2}}\right)
\end{gathered}
$$

P97. 10. (a) $\log (z-i) \xlongequal{w=z i^{i}}=\log (w)$.
 $f(w)=\log (w)$ is analytir evergatere exapt on the portion

$$
\operatorname{Re}(w) \leq 0 \cdot \& \operatorname{Im}(w)=0
$$

$\stackrel{w=z-i}{\Longrightarrow} \log (z-i)$ is conalyoic everguhere except on the pootion

$$
\begin{aligned}
& \operatorname{Re}(w)=\operatorname{Re}(z) \\
& \operatorname{Im}(w)=\operatorname{In}(w)-1
\end{aligned} \quad \operatorname{Re}(z) \leqslant 0 \& \operatorname{Im}(w)=1
$$

(b) $f(z)=\frac{\log (z+4)}{z^{2}+i^{2}}$
$f(z)$ is conalyre every-uhere except at the points where

$$
\begin{aligned}
& z^{2}+i=0 \text { or }\left\{\begin{array}{c}
\operatorname{Re}(z+4) \leq 0 \& \operatorname{Im}(z+4)=0\} \\
\left.z=(-i)^{\frac{1}{2}}=\left(e^{i \cdot\left(-\frac{\pi}{2}\right)}\right)\right)^{\frac{1}{2}} \\
=e^{-i \cdot \frac{\pi}{4}} \text { and } e_{\|}^{i \cdot\left(-\frac{\pi}{4}+\frac{\pi}{2}\right)} \\
\frac{\operatorname{Re}(z) \leqslant-4 \&}{\sqrt{2}} \cdot(1-i) \quad I_{m}(z)=0 .
\end{array} \quad e^{i \frac{3 \pi}{4}=\frac{1}{\sqrt{2}}(-1+i)}\right.
\end{aligned}
$$

$\Rightarrow f(z)$ is cunalyin everyminere except at the points $\pm \frac{1}{\sqrt{2}} \cdot(1-i)$ and on the portion $\operatorname{Re}(z) \leq 4$ of the real axrr3.

P97.11. $\quad u(x, y)=\ln \left(x^{2}+y^{2}\right) \Rightarrow U_{x}=\frac{2 x}{x^{2}+y^{2}}, U_{y}=\frac{2 y}{x^{2}+y^{2}}$

$$
\begin{aligned}
& u_{x x}=\frac{2}{x^{2}+y^{2}}-\frac{2 x \cdot 2 x}{\left(x^{2}+y^{2}\right)^{2}}, \quad u_{y y}=\frac{2}{x^{2}+y^{2}}-2 y \cdot \frac{2 y}{\left(x^{2}+y^{2}\right)^{2}} \\
\Rightarrow & u_{x x}+u_{y y}=\frac{4}{x^{2}+y^{2}}-\frac{4\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}=0
\end{aligned}
$$

Ene qrethod: Consider $f(z)=\log z=\ln r+i(\operatorname{Arg} z+n \cdot 2 z)$.

For cony point z,

$$
\begin{aligned}
f(z) & =\log z=\ln r+i(\operatorname{Arg} z+n \cdot z z) . \\
& =\ln \left(\sqrt{x^{2}+y^{2}}\right)+i \cdot(\operatorname{Arg} z+2 n z) \\
& =\frac{1}{2} \ln \left(x^{2}+y^{2}\right)+i(\operatorname{Arg} z+2 n z) .
\end{aligned}
$$

$f(z)=\log z$ is conalygic around point z by can appropirate
Chore of branch (i.e. Z does not lie on the branch lows) $\Rightarrow 2 \cdot \operatorname{Re}(f(z))=\ln \left(x^{2}+y^{2}\right)$ is harmonic.
p991. $\log \left(z_{1} z_{2}\right)=\ln \left|z_{1} z_{2}\right|+i\left(\operatorname{Agg}\left(z_{2} z_{2}\right)\right)=\ln \left(\left|z_{1}\right|\left|z_{2}\right|\right)+i \operatorname{Arg}\left(z_{1} z_{2}\right)$ $\log z_{1}+\log z_{2}=\left(\ln \left|z_{1}\right|+i \operatorname{Agg} z_{1}\right)+\left(\ln \left|z_{2}\right|+i \operatorname{Ag} z_{2}\right)=\ln \left(\mid\left(|\lambda| 1 \mid z_{2}\right)+i\left(\operatorname{Ag} z_{1}+A \lg z_{2}\right)\right.$

$$
\Rightarrow \quad \log \left(z_{1} z_{2}\right)-\left(\log z_{1}+\log z_{2}\right)=i\left(\operatorname{Ag}\left(z_{1} z_{2}\right)-\left(\operatorname{Ag} z_{1}+\operatorname{Ag} z_{2}\right)\right)
$$

If we take exponential on beth sides, we get:

$$
e^{\log \left(z_{2} z_{2}\right)-\left(\log z_{1}+\log z_{2}\right)}=e^{i\left(\log \left(z_{1} z_{2}\right)-\left(\log z_{1}+\operatorname{Ag} z_{2}\right)\right)}
$$

$$
e^{\log \left(z_{1} z_{2}\right)} \cdot\left(e ^ { 1 / } \left(e^{\left.\log z_{1}\right)^{-1}} \cdot\left(e^{\log z_{2}-1}\right)^{-1}\right.\right.
$$

So $\operatorname{Arg}\left(z_{2} z_{2}\right)-\left(\operatorname{tg} z_{1}+\operatorname{Arg} z_{2}\right)=N 2 \pi$. N is an in eger

$$
z_{1}^{\prime \prime} z_{2} \cdot z_{1}^{-1} \cdot z_{2}^{-1}=1
$$

$$
2 N \cdot \pi
$$

Now - - < A gr g $\left(z_{2} z_{2}\right) \leqslant \pi$

$$
\Rightarrow-3 \pi<\operatorname{Arg}\left(z_{1} z_{2}\right)-\left(\operatorname{Agg} z_{1}+\operatorname{Ag} z_{2}\right)<3 \pi
$$

$-2 \pi<\operatorname{Arg}\left(\pi_{1}\right)+\operatorname{Ag}\left(E_{2}\right) \leqslant 2 \pi$

リ

$$
-3<2 N<3
$$

$\Downarrow N$ is an integer $N=-1,0,1$

Case 1: $-2 \pi<\operatorname{Ag}\left(z_{1}\right)+\operatorname{Ag} z_{2} \leqslant-\pi \Rightarrow N=1$
Case 2: - $\quad \operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right) \leqslant \pi \Rightarrow N=0^{\circ}$
case 3: $\pi<\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right) \leqslant 2 \pi \Rightarrow N=-1$.

Plo3.

$$
\text { 1.(a) } \begin{aligned}
(1+i)^{\prime} & =e^{(\log (1+i)) i}=e^{\left(\ln \sqrt{2}+i\left(\frac{\pi}{4}+n \cdot 2 \pi\right) \cdot i\right.}=e^{-\left(\frac{2}{4}+2 n \pi\right)+i \ln \sqrt{2}} \\
& =e^{-\frac{\pi}{4}-2 n \pi} \cdot e^{i \cdot \frac{\ln 2}{2}} \quad n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

(b).

$$
\begin{aligned}
\frac{1}{i^{2 i}} & =i^{-2 i}=e^{-2 i \cdot(\log i)}=e^{\left.-2 i \cdot\left(\ln 1+i \frac{2}{2}+2 n r\right)\right)} \\
& =e^{2 \pi+4 n \pi}=e^{(4 n+1) z} \quad n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

3.

$$
\begin{aligned}
(-1+\sqrt{3} i)^{\frac{3}{2}} & =e^{\frac{3}{2} \cdot \log (-1+\sqrt{3} i)}=e^{\frac{3}{2}\left(\ln 2+i \cdot\left(\frac{2 \pi}{3}+2 n r\right)\right)} \\
& =\left(e^{\ln 2)^{\frac{3}{2}}} \cdot e^{i \cdot(\pi+3 n \pi)} \quad n=0, \pm 1, \pm 2, \cdots\right. \\
& =\left(2^{3}\right)^{\frac{1}{2}} \cdot(\pm 1)= \pm 2 \sqrt{2}
\end{aligned}
$$

9

$$
\begin{aligned}
\frac{d}{d z}\left(c^{f(z)}\right) & =\frac{d}{d z}\left(e^{(\log c) \cdot f(z))}=e^{(\log c) \cdot f(z)} \cdot f^{\prime}(z)\right. \\
& =c^{f(z)} \cdot f^{\prime}(z)
\end{aligned}
$$

p107. 2. (a)

$$
\begin{aligned}
& \text { 7. 2. (a). } \begin{aligned}
& e^{i z_{1}} \cdot e^{i z_{2}}=\left(\cos z_{1}+i \sin z_{1}\right)\left(\cos z_{2}+i \sin z_{2}\right) \\
= & \left(\cos \left(z_{1}\right) \cos \left(z_{2}\right)-\sin \left(z_{1}\right) \sin \left(z_{2}\right)\right)+i \cdot\left(\sin z_{1} \cos z_{2}+\cos z_{1} \cdot \sin z_{2}\right) \\
e^{-i z_{1}} \cdot e^{-i z_{2}} & =\left(\cos z_{1}-i \sin z_{1}\right)\left(\cos z_{2}-i \sin z_{2}\right) \\
& =\left(\cos z_{1} \cos z_{2}-\sin z_{1} \cdot \sin z_{2}\right)-i \cdot\left(\sin z_{1} \cdot \cos z_{2}+\cos z_{1} \cdot \sin z_{2}\right) .
\end{aligned}
\end{aligned}
$$

(3).

$$
\begin{aligned}
\sin \left(z_{1}+z_{2}\right) & =\frac{1}{2 i} \cdot\left[e^{\left.i k_{1}+z_{2}\right)}-e^{-i\left(z_{1}+z_{2}\right)}\right]=\frac{1}{2 i} \cdot\left[e^{i z_{1}} \cdot e^{i z_{2}}-e^{-i z_{1}} \cdot e^{-i z_{2}}\right] \\
& =\frac{i i}{2 i}\left(\sin \left(z_{1}\right) \cos z_{2}+\cos z_{1} \cdot \sin z_{2}\right)=\sin z_{1} \cdot \cos z_{2}+\cos z_{1} \cdot \sin z_{2}
\end{aligned}
$$

8. $\quad \sin z=\sin x \cdot \cosh y+i \cos x \sinh y$

$$
\begin{aligned}
& \Rightarrow|\sin z|^{2}=\sin ^{2} x \cosh ^{2} y+\cos ^{2} x \sinh ^{2} y=\sin ^{2} x\left(\cosh ^{2} y-\sinh ^{2} y\right) \\
& \quad=\sin ^{2} x+\sinh ^{2} x \sinh ^{2} y+\cos ^{2} x \cdot \sinh ^{2} y \\
& \Rightarrow|\sin z| \geqslant|\sin x| .
\end{aligned}
$$

$\cos z=\cos x \cdot \cosh y-i \cdot \sin x \cdot \sinh y$

$$
\begin{gathered}
\Rightarrow|\cos z|^{2}=\cos ^{2} x \cosh ^{2} y+\sin ^{2} x \cdot \sinh y=\cos ^{2} x\left(\cosh ^{2} y-\sinh ^{2} y\right)+\cos ^{2} x \sin ^{2} y+\sin ^{2} x \cdot \sinh ^{2} y \\
=\cos ^{2} x+\sinh ^{2} y \geqslant \cos ^{2} x \\
\Rightarrow|\cos z| \geqslant|\cos x| \\
\sin z=\frac{e^{i z}-e^{-i z}}{2 i^{2}}=\frac{1}{2 i}\left(e^{-i(x+y)}-e^{-i(x+y y)}\right)=\frac{1}{2 i}\left(e^{-y+i x}-e^{y} \cdot e^{-i x}\right)=\frac{1}{2 i^{2}}\left(e^{-y}(\cos x+i \sin x)-e^{y}(\cos x-i \sin x)\right) \\
=\frac{1}{2 i}\left((\cos x) \cdot\left(e^{-y}-e^{y}\right)+i \sin x \cdot\left(e^{-y}+e^{y}\right)\right)=\sin x \cdot \frac{e^{y}+e^{-y}}{2}+i \cdot \cos x \cdot \frac{\left(y-e^{-y}\right.}{2} \\
=\sin x \cdot \cosh y+i \cos x \sinh y .
\end{gathered}
$$

we write $a=0, b=2 \pi$ and use the same function $w(t)=e^{i t}(0 \leq t \leq 2 \pi)$ as in Example 3, Sec. 41. It is easy to see that

$$
\left.\int_{a}^{b} w(t) d t=\int_{0}^{2 \pi} e^{i t} d t=\frac{e^{i t}}{i}\right]_{0}^{2 \pi}=0
$$

But, for any number c such that $0<c<2 \pi$,

$$
|w(c)(b-a)|=\left|e^{i c}\right| 2 \pi=2 \pi ;
$$

and we find that the left-hand side of equation (5) is zero but that the right-hand side is not.

EXERCISES

1. Use rules in calculus to establish the following rules when

$$
w(t)=u(t)+i v(t)
$$

is a complex-valued function of a real variable t and $w^{\prime}(t)$ exists:
(a) $\frac{d}{d t}\left[z_{0} w(t)\right]=z_{0} w^{\prime}(t)$, where $z_{0}=x_{0}+i y_{0}$ is a complex constant;
(b) $\frac{d}{d t} w(-t)=-w^{\prime}(-t)$ where $w^{\prime}(-t)$ denotes the derivative of $w(t)$ with respect to t, evaluated at $-t$;
Suggestion: In part (a). show that each side of the identity to be verified can be written

$$
\left(x_{0} u^{\prime}-y_{0} v^{\prime}\right)+i\left(y_{0} u^{\prime}+x_{0} v^{\prime}\right) .
$$

2. Evaluate the following integrals:
(a) $\int_{0}^{1}(1+i t)^{2} d t$;
(b) $\int_{1}^{2}\left(\frac{1}{t}-i\right)^{2} d t$;
(c) $\int_{0}^{\pi / 6} e^{i 2 t} d t$;
(d) $\int_{0}^{\infty} e^{-z t} d t \quad(\operatorname{Re} z>0)$.

Ans.
(a) $\frac{2}{3}+i$;
(b) $-\frac{1}{2}-i \ln 4$;
(c) $\frac{\sqrt{3}}{4}+\frac{i}{4}$;
(d) $\frac{1}{z}$.
3. Show that if m and n are integers,

$$
\int_{0}^{2 \pi} e^{i m \theta} e^{-i n \theta} d \theta= \begin{cases}0 & \text { when } m \neq n \\ 2 \pi & \text { when } m=n\end{cases}
$$

4. According to definition (2), Sec. 42, of definite integrals of complex-valued functions of a real variable,

$$
\int_{0}^{\pi} e^{(1+i) x} d x=\int_{0}^{\pi} e^{x} \cos x d x+i \int_{0}^{\pi} e^{x} \sin x d x
$$

Evaluate the two integrals on the right here by evaluating the single integral on the left and then using the real and imaginary parts of the value found.

$$
\text { Ans. }-\left(1+e^{\pi}\right) / 2, \quad\left(1+e^{\pi}\right) / 2 .
$$

5. Let $w(t)=u(t)+i v(t)$ denote a continuous complex-valued function defined on an interval $-a \leq t \leq a$.
(a) Suppose that $w(t)$ is even; that is, $w(-t)=w(t)$ for each point t in the given interval. Show that

$$
\int_{-a}^{a} w(t) d t=2 \int_{0}^{a} w(t) d t
$$

(b) Show that if $w(t)$ is an odd function, one where $w(-t)=-w(t)$ for each point t in the given interval, then

$$
\int_{-a}^{a} w(t) d t=0
$$

Suggestion: In each part of this exercise, use the corresponding property of integrals of real-valued functions of t, which is graphically evident.

43. CONTOURS

Integrals of complex-valued functions of a complex variable are defined on curves in the complex plane, rather than on just intervals of the real line. Classes of curves that are adequate for the study of such integrals are introduced in this section.

A set of points $z=(x, y)$ in the complex plane is said to be an arc if

$$
\begin{equation*}
x=x(t), \quad y=y(t) \quad(a \leq t \leq b) \tag{1}
\end{equation*}
$$

where $x(t)$ and $y(t)$ are continuous functions of the real parameter t. This definition establishes a continuous mapping of the interval $a \leq t \leq b$ into the $x y$, or z, plane; and the image points are ordered according to increasing values of t. It is convenient to describe the points of C by means of the equation

$$
\begin{equation*}
z=z(t) \quad(a \leq t \leq b) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
z(t)=x(t)+i y(t) \tag{3}
\end{equation*}
$$

The arc C is a simple arc, or a Jordan arc,* if it does not cross itself; that is, C is simple if $z\left(t_{1}\right) \neq z\left(t_{2}\right)$ when $t_{1} \neq t_{2}$. When the arc C is simple except for the fact that $z(b)=z(a)$, we say that C is a simple closed curve, or a Jordan curve. Such a curve is positively oriented when it is in the counterclockwise direction.

The geometric nature of a particular arc often suggests different notation for the parameter t in equation (2). This is, in fact, the case in the following examples.

[^1]enables us to write expression (13) as
$$
L=\int_{\alpha}^{\beta}\left|Z^{\prime}(\tau)\right| d \tau .
$$

Thus the same length of C would be obtained if representation (10) were to be used.
If equation (2) represents a differentiable arc and if $z^{\prime}(t) \neq 0$ anywhere in the interval $a<t<b$, then the unit tangent vector

$$
\mathbf{T}=\frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}
$$

is well defined for all t in that open interval, with angle of inclination $\arg z^{\prime}(t)$. Also, when \mathbf{T} turns, it does so continuously as the parameter t varies over the entire interval $a<t<b$. This expression for \mathbf{T} is the one learned in calculus when $z(t)$ is interpreted as a radius vector. Such an arc is said to be smooth. In referring to a smooth $\operatorname{arc} z=z(t)(a \leq t \leq b)$, then, we agree that the derivative $z^{\prime}(t)$ is continuous on the closed interval $a \leq t \leq b$ and nonzero throughout the open interval $a<t<b$.

A contour, or piecewise smooth arc, is an arc consisting of a finite number of smooth arcs joined end to end. Hence if equation (2) represents a contour, $z(t)$ is continuous, whereas its derivative $z^{\prime}(t)$ is piecewise continuous. The polygonal line (4) is, for example, a contour. When only the initial and final values of $z(t)$ are the same, a contour C is called a simple closed contour. Examples are the circles (5) and (6), as well as the boundary of a triangle or a rectangle taken in a specific direction. The length of a contour or a simple closed contour is the sum of the lengths of the smooth arcs that make up the contour.

The points on any simple closed curve or simple closed contour C are boundary points of two distinct domains, one of which is the interior of C and is bounded. The other, which is the exterior of C, is unbounded. It will be convenient to accept this statement, known as the Jordan curve theorem, as geometrically evident; the proof is not easy.*

EXERCISES

1. Show that if $w(t)=u(t)+i v(t)$ is continuous on an interval $a \leq t \leq b$, then
(a)
$\int_{-b}^{-a} w(-t) d t=\int_{a}^{b} w(\tau) d \tau$
(b) $\int_{a}^{b} w(t) d t=\int_{\alpha}^{\beta} w[\phi(\tau)] \phi^{\prime}(\tau) d \tau$, where $\phi(\tau)$ is the function in equation (9),

Sec. 43.
Suggestion: These identities can be obtained by noting that they are valid for realvalued functions of t.

[^2]2. Let C denote the right-hand half of the circle $|z|=2$, in the counterclockwise direction, and note that two parametric representations for C are
$$
z=z(\theta)=2 e^{i \theta} \quad\left(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right)
$$
and
$$
z=Z(y)=\sqrt{4-y^{2}}+i y \quad(-2 \leq y \leq 2)
$$

Verify that $Z(y)=z[\phi(y)]$. where

$$
\begin{aligned}
& y)=z[\phi(y)] . \text { where } \\
& \phi(y)=\arctan \frac{y}{\sqrt{4-y^{2}}} \quad\left(-\frac{\pi}{2}<\arctan t<\frac{\pi}{2}\right) .
\end{aligned}
$$

Also, show that this function ϕ has a positive derivative, as required in the conditions following equation (9), Sec. 43.
3. Derive the equation of the line through the points (α, a) and (β, b) in the τt plane that are shown in Fig. 37. Then use it to find the linear function $\phi(\tau)$ which can be used in equation (9), Sec. 43, to transform representation (2) in that section into representation (10) there.

$$
\text { Ans. } \phi(\tau)=\frac{b-a}{\beta-\alpha} \tau+\frac{a \beta-b \alpha}{\beta-\alpha}
$$

4. Verify expression (14), Sec. 43, for the derivative of $Z(\tau)=z[\phi(\tau)]$.

Suggestion: Write $Z(\tau)=x[\phi(\tau)]+i y[\phi(\tau)]$ and apply the chain rule for realvalued functions of a real variable.
5. Suppose that a function $f(z)$ is analytic at a point $z_{0}=z\left(t_{0}\right)$ lying on a smooth arc $z=z(t)(a \leq t \leq b)$. Show that if $w(t)=f[z(t)]$, then

$$
w^{\prime}(t)=f^{\prime}[z(t)] z^{\prime}(t)
$$

when $t=t_{0}$.
Suggestion: Write $f(z)=u(x, y)+i v(x, y)$ and $z(t)=x(t)+i y(t)$, so that

$$
w(t)=u[x(t), y(t)]+i v[x(t), y(t)]
$$

Then apply the chain rule in calculus for functions of two real variables to write

$$
w^{\prime}=\left(u_{x} x^{\prime}+u_{y} y^{\prime}\right)+i\left(v_{x} x^{\prime}+v_{y} y^{\prime}\right)
$$

and use the Cauchy-Riemann equations.
6. Let $y(x)$ be a real-valued function defined on the interval $0 \leq x \leq 1$ by means of the equations

$$
y(x)= \begin{cases}x^{3} \sin (\pi / x) & \text { when } 0<x \leq 1 \\ 0 & \text { when } x=0\end{cases}
$$

(a) Show that the equation

$$
z=x+i y(x) \quad(0 \leq x \leq 1)
$$

represents an arc C that intersects the real axis at the points $z=1 / n(n=1,2, \ldots)$ and $z=0$, as shown in Fig. 38.

FIGURE 38

(b) Verify that the arc C in part (a) is, in fact, a smooth arc.

Suggestion: To establish the continuity of $y(x)$ at $x=0$, observe that

$$
0 \leq\left|x^{3} \sin \left(\frac{\pi}{x}\right)\right| \leq x^{3}
$$

when $x>0$. A similar remark applies in finding $y^{\prime}(0)$ and showing that $y^{\prime}(x)$ is continuous at $x=0$.

44. CONTOUR INTEGRALS

We turn now to integrals of complex-valued functions f of the complex variable z. Such an integral is defined in terms of the values $f(z)$ along a given contour C, extending from a point $z=z_{1}$ to a point $z=z_{2}$ in the complex plane. It is, therefore, a line integral; and its value depends, in general, on the contour C as well as on the function f. It is written

$$
\int_{C} f(z) d z \quad \text { or } \quad \int_{z_{1}}^{z_{2}} f(z) d z
$$

the latter notation often being used when the value of the integral is independent of the choice of the contour taken between two fixed end points. While the integral can be defined directly as the limit of a sum,* we choose to define it in terms of a definite integral of the type introduced in Sec. 42.

Definite integrals in calculus can be interpreted as areas, and they have other interpretations as well. Except in special cases, no corresponding helpful interpretation, geometric or physical, is available for integrals in the complex plane.

Suppose that the equation

$$
\begin{equation*}
z=z(t) \quad(a \leq t \leq b) \tag{1}
\end{equation*}
$$

represents a contour C, extending from a point $z_{1}=z(a)$ to a point $z_{2}=z(b)$. We assume that $f[z(t)]$ is piecewise continuous (Sec. 42) on the interval $a \leq t \leq b$ and
*See, for instance, pp. 245ff in Vol. I of the book by Markushevich that is listed in Appendix 1.

EXAMPLE 2. Using the principal branch

$$
f(z)=z^{-1+i}=\exp ((-1+i) \log z] \quad(|z|>0,-\pi<\operatorname{Arg} z<\pi)
$$

of the power function z^{-1+1}. let us evaluate the integral

$$
\begin{equation*}
I=\int_{C} z^{-1+i} d z \tag{3}
\end{equation*}
$$

where C is the positively oriented unit circle (Fig. 45)

$$
z=e^{i \theta} \quad(-\pi \leq \theta \leq \pi)
$$

about the origin.

FIGLRE 45
When $z(\theta)=e^{i \theta}$, it is easy to see that

$$
\begin{equation*}
f[z(\theta)] z^{\prime}(\theta)=e^{(-1+i)(\ln 1+i \theta)} i e^{i \theta}=i e^{-\theta} \tag{4}
\end{equation*}
$$

Inasmuch as the function (4) is piecewise continuous on $-\pi<\theta<\pi$, integral (3) exists. In fact,

$$
I=i \int_{-\pi}^{\pi} e^{-\theta} d \theta=i\left[-e^{-\theta}\right]_{-\pi}^{\pi}=i\left(-e^{-\pi}+e^{\pi}\right)
$$

or

$$
I=i 2 \frac{e^{\pi}-e^{-\pi}}{2}=i 2 \sinh \pi
$$

EXERCISES

For the functions f and contours C in Exercises 1 through 8, use parametric representations for C, or legs of C, to evaluate

$$
\int_{C} f(z) d z
$$

1. $f(z)=(z+2) / z$ and C is
(a) the semicircle $z=2 e^{i \theta}(0 \leq \theta \leq \pi)$;
(b) the semicircle $z=2 e^{i \theta}(\pi \leq \theta \leq 2 \pi)$;
(c) the circle $z=2 e^{i \theta}(0 \leq \theta \leq 2 \pi)$.
Ans.
(a) $-4+2 \pi i$;
(b) $4+2 \pi i$;
(c) $4 \pi i$.
2. $f(z)=z-1$ and C is the arc from $z=0$ to $z=2$ consisting of
(a) the semicircle $z=1+e^{i \theta}(\pi \leq \theta \leq 2 \pi)$;
(b) the segment $z=x(0 \leq x \leq 2)$ of the real axis.

Ans. (a) 0 ; (b) 0 .
3. $f(z)=\pi \exp (\pi \bar{z})$ and C is the boundary of the square with vertices at the points 0,1 . $1+i$. and i, the orientation of C being in the counterclockwise direction.

Ans. $4\left(e^{\pi}-1\right)$.
4. $f(z)$ is defined by means of the equations

$$
f(z)= \begin{cases}1 & \text { when } y<0 \\ 4 y & \text { when } y>0\end{cases}
$$

and C is the arc from $z=-1-i$ to $z=1+i$ along the curve $y=x^{3}$.
Ans. $2+3 i$.
5. $f(z)=1$ and C is an arbitrary contour from any fixed point z_{1} to any fixed point z_{2} in the z plane.

Ans. $z_{2}-z_{1}$.
6. $f(z)$ is the principal branch

$$
z^{i}=\exp (i \log z) \quad(|z|>0,-\pi<\operatorname{Arg} z<\pi)
$$

of the power function z^{i}, and C is the semicircle $z=e^{i \theta}(0 \leq \theta \leq \pi)$.

$$
\text { Ans. }-\frac{1+e^{-\pi}}{2}(1-i)
$$

7. $f(z)$ is the principal branch

$$
z^{-1-2 i}=\exp [(-1-2 i) \log z] \quad(|z|>0,-\pi<\operatorname{Arg} z<\pi)
$$

of the indicated power function, and C is the contour

$$
z=e^{i \theta} \quad\left(0 \leq \theta \leq \frac{\pi}{2}\right) .
$$

Ans. $i \frac{e^{\pi}-1}{2}$.
8. $f(z)$ is the principal branch

$$
z^{a-1}=\exp [(a-1) \log z] \quad(|z|>0,-\pi<\operatorname{Arg} z<\pi)
$$

of the power function z^{a-1}, where a is a nonzero real number, and C is the positively oriented circle of radius R about the origin.

Ans. $i \frac{2 R^{a}}{a} \sin a \pi$, where the positive value of R^{a} is to be taken.
9. Let C denote the positively oriented unit circle $|z|=1$ about the origin.
(a) Show that if $f(z)$ is the principal branch

$$
z^{-3 / 4}=\exp \left[-\frac{3}{4} \log z\right] \quad(|z|>0,-\pi<\operatorname{Arg} z<\pi)
$$

of z^{-34}, then

$$
\int_{C} f(z) d z=4 \sqrt{2} i
$$

(b) Show that if $g(z)$ is the branch

$$
z^{-3 / 4}=\exp \left[-\frac{3}{4} \log z\right] \quad(|z|>0,0<\arg z<2 \pi)
$$

of the same power function as in part (a), then

$$
\int_{C} g(z) d z=-4+4 i
$$

This exercise demonstrates how the value of an integral of a power function depends in general on the branch that is used.
10. With the aid of the result in Exercise 3, Sec. 42, evaluate the integral

$$
\int_{C} z^{m} \bar{z}^{n} d z
$$

where m and n are integers and C is the unit circle $|z|=1$, taken counterclockwise.
11. Let C denote the semicircular path shown in Fig. 46. Evaluate the integral of the function $f(z)=\bar{z}$ along C using the parametric representation (see Exercise 2, Sec. 43)
(a) $z=2 e^{i \theta}\left(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right)$;
(b) $z=\sqrt{4-y^{2}}+i y \quad(-2 \leq y \leq 2)$.

Ans. $4 \pi i$.

FIGURE 46

12. (a) Suppose that a function $f(z)$ is continuous on a smooth arc C, which has a parametric representation $z=z(t)(a \leq t \leq b)$; that is, $f[z(t)]$ is continuous on the interval $a \leq t \leq b$. Show that if $\phi(\tau)(\alpha \leq \tau \leq \beta)$ is the function described in Sec. 43, then

$$
\int_{a}^{b} f[z(t)] z^{\prime}(t) d t=\int_{\alpha}^{\beta} f[Z(\tau)] Z^{\prime}(\tau) d \tau
$$

where $Z(\tau)=z[\phi(\tau)]$.
(b) Point out how it follows that the identity obtained in part (a) remains valid when C is any contour, not necessarily a smooth one, and $f(z)$ is piecewise continuous on C. Thus show that the value of the integral of $f(z)$ along C is the same when the representation $z=Z(\tau)(\alpha \leq \tau \leq \beta)$ is used, instead of the original one.
Suggestion: In part (a), use the result in Exercise $1(b)$, Sec. 43 , and then refer to
expression (14) in that section.
13. Tet C_{0} denote the circle centered at z_{0} with radius R, and use the parametrization

$$
z=z_{0}+R e^{i \theta} \quad(-\pi \leq \theta \leq \pi)
$$

to show that

$$
\int_{C_{0}}\left(z-z_{0}\right)^{n-1} d z= \begin{cases}0 & \text { when } n= \pm 1, \pm 2, \ldots \\ 2 \pi i & \text { when } n=0\end{cases}
$$

(Put $z_{0}=0$ and then compare the result with the one in Exercise 8 when the constant a there is a nonzero integer.)

47. UPPER BOUNDS FOR MODULI OF CONTOUR INTEGRALS

We turn now to an inequality involving contour integrals that is extremely important in various applications. We present the result as a theorem but preface it with a needed lemma involving functions $w(t)$ of the type encountered in Secs. 41 and 42.

Lemma. If $w(t)$ is a piecewise continuous complex-valued function defined on an interval $a \leq t \leq b$, then

$$
\begin{equation*}
\left|\int_{a}^{b} w(t) d t\right| \leq \int_{a}^{b}|w(t)| d t \tag{1}
\end{equation*}
$$

This inequality clearly holds when the value of the integral on the left is zero. Thus, in the verification, we may assume that its value is a nonzero complex number and write

$$
\begin{equation*}
\int_{a}^{b} w(t) d t=r_{0} e^{i \theta_{0}} \tag{2}
\end{equation*}
$$

Solving for r_{0}, we have

$$
\begin{equation*}
r_{0}=\int_{a}^{b} e^{-i \theta_{0}} w(t) d t \tag{3}
\end{equation*}
$$

Now the left-hand side of this equation is a real number, and so the right-hand side is too. Thus, using the fact that the real part of a real number is the number itself, we find that

$$
r_{0}=\operatorname{Re} \int_{a}^{b} e^{-i \theta_{0}} w(t) d t
$$

Hence, in view of the first of properties (3) in Sec. 42,

$$
\begin{equation*}
r_{0}=\int_{a}^{b} \operatorname{Re}\left[e^{-i \theta_{0}} w(t)\right] d t \tag{4}
\end{equation*}
$$

But

$$
\operatorname{Re}\left[e^{-i \theta_{0}} w(t)\right] \leq \mid e^{-i \theta_{0}} w(t) \text { Geperated, bywGamScanner }
$$

But f is continuous at the point z. Hence, for each positive number ε, a positive number δ exists such that

$$
|f(s)-f(z)|<\varepsilon \quad \text { whenever } \quad|s-z|<\delta
$$

Consequently, if the point $z+\Delta z$ is close enough to z so that $|\Delta z|<\delta$, then

$$
\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right|<\frac{1}{|\Delta z|} \varepsilon|\Delta z|=\varepsilon
$$

that is,

$$
\lim _{\Delta z \rightarrow 0} \frac{F(z+\Delta z)-F(z)}{\Delta z}=f(z)
$$

or $F^{\prime}(z)=f(z)$.

EXERCISES

1. Use an antiderivative to show that for every contour C extending from a point z_{1} to a point z_{2},

$$
\int_{C} z^{n} d z=\frac{1}{n+1}\left(z_{2}^{n+1}-z_{1}^{n+1}\right) \quad(n=0,1,2, \ldots)
$$

2. By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the indicated limits of integration:
(a) $\int_{0}^{1+i} z^{2} d z$;
(b) $\int_{0}^{\pi+2 i} \cos \left(\frac{z}{2}\right) d z$;
(c) $\int_{1}^{3}(z-2)^{3} d z$.
Ans.
(a) $\frac{2}{3}(-1+i)$;
(b) $e+\frac{1}{e}$;
(c) 0 .
3. Use the theorem in Sec. 48 to show that

$$
\int_{C_{0}}\left(z-z_{0}\right)^{n-1} d z=0 \quad(n= \pm 1, \pm 2, \ldots)
$$

when C_{0} is any closed contour which does not pass through the point z_{0}. (Compare with Exercise 13, Sec. 46.)
4. Find an antiderivative $F_{2}(z)$ of the branch $f_{2}(z)$ of $z^{1 / 2}$ in Example 4, Sec. 48 , to show that integral (3) there has value $2 \sqrt{3}(-1+i)$. Note that the value of the integral of the function (2) around the closed contour $C_{2}-C_{1}$ in that example is, therefore, $-4 \sqrt{3}$.
5. Show that

$$
\int_{-1}^{1} z^{i} d z=\frac{1+e^{-\pi}}{2}(1-i)
$$

where the integrand denotes the principal branch

$$
z^{i}=\exp (i \log z) \quad(|z|>0,-\pi<\operatorname{Arg} z<\pi)
$$

of z^{i} and where the path of integration is any contour from $z=-1$ to $z=1$ that, except for its end points, lies above the real axis. (Compare with Exercise 6, Sec. 46.)

Suggestion: Use an antiderivative of the branch

$$
z^{i}=\exp (i \log z) \quad\left(|z|>0,-\frac{\pi}{2}<\arg z<\frac{3 \pi}{2}\right)
$$

of the same power function.

Homework 8: Part 2

1: Let $f(z)$ be a complex valued function, not necessarily analytic. Let $z=z(t)$ be a smooth arc. Denote $w(t)=f(z(t))$.
(a) Prove the following chain rule:

$$
\begin{equation*}
w^{\prime}(t)=\frac{\partial f}{\partial z} z^{\prime}(t)+\frac{\partial f}{\partial \bar{z}} \overline{z^{\prime}(t)} \tag{1}
\end{equation*}
$$

Note that in the above formula, we have used the following notation (compare Exercise 8 on Page 71)

$$
\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) f, \quad \frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) f
$$

(b) If $f(z)$ is analytic, then by (Homework Exercise 8 on Page 71) we have $\frac{\partial f}{\partial z}=0$. Show that in this case, equation (1) is reduced to the following formula (compare Exercise 5 on Page 124):

$$
w^{\prime}(t)=\frac{\partial f}{\partial z} z^{\prime}(t)=f^{\prime}(z(t)) z^{\prime}(t)
$$

$\mathbf{2}^{*}$: Show that $w=\sin (z)$ maps the vertical strip $\left\{z \in \mathbb{C} ;-\frac{\pi}{2}<\operatorname{Re}(z)<\frac{\pi}{2}\right\}$ to the region $\mathbb{C} \backslash((-\infty,-1] \cup[1,+\infty))$ by showing the following steps.
(a) Show that

$$
\sin (z)=\sin x \cosh y+i \cos x \sinh y
$$

(b) Use the identity $\cosh ^{2} y-\sinh ^{2} y=1$ to show that $w=\sin (z)$ maps the vertical line $L_{c}=\{\operatorname{Re}(z)=c\}$ to one branch of the following hyperbola:

$$
\frac{x^{2}}{\sin ^{2}(c)}-\frac{y^{2}}{\cos ^{2}(c)}=1
$$

If $c<$ (resp. $>$) 0 , then L_{c} is mapped to the left (resp. right) branch. If $c=0$, then L_{0} is the y-axis, which is mapped to the v-axis in the w-plane $(w=u+i v)$.

(c) As c increases from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$, visualize how the corresponding hyperbola moves continuously from the left to the right, and how the opening changes as follows:
ray $(-\infty,-1] \rightarrow$ small toward to the left \rightarrow large toward to the left \rightarrow vertical flat \rightarrow large toward the right \rightarrow small toward the right \rightarrow ray $[1,+\infty)$.

P119. 2. (b)

$$
\begin{aligned}
& \text { (b). } \int_{1}^{2}\left(\frac{1}{t}-i\right)^{2} d t=\int_{1}^{2}\left(\frac{1}{t^{2}}-\frac{2 i}{t}-1\right) d t=\left[-\frac{1}{t}-2 i \ln t-t\right]_{1}^{2} \\
& = \\
& =\left(-\frac{1}{2}-2 i \ln 2-2\right)-(-1-2 i \ln 1-1) \\
& =-\frac{1}{2}-i \ln 4
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-z t} d t \quad(\operatorname{Re} z>0) \\
= & \left.\int_{0}^{\infty} e^{-z t} \frac{d(z t)}{z}=-\frac{1}{z} e^{-z t}\right]_{0}^{\infty}=-\frac{1}{z} \cdot\left[\left(\lim _{t \rightarrow \infty} e^{-z t}\right)-1\right] \\
= & \frac{1}{z} \quad \text { because } \quad \lim _{t \rightarrow \infty}\left|e^{-z t}\right|=\lim _{t \rightarrow+\infty} e^{-t \cdot \operatorname{Rez}}=0 \quad(\operatorname{Re} z>0)
\end{aligned}
$$

Pl24. 2. $\quad z=z(\theta)=2 \cdot e^{i \theta}$

$$
\begin{array}{rl}
z & z=z(\theta)=2 \cdot e^{i \theta} \\
& =z(y)=\sqrt{4-y^{2}}+i y \\
\theta & =\phi(y)
\end{array}=\arctan \frac{y}{\sqrt{4-y^{2}}} \Rightarrow \tan \theta=\frac{y}{\sqrt{4-y^{2}}} \Rightarrow \cos \theta=\frac{\sqrt{4-y^{2}}}{2}, \sin \theta=\frac{y}{2} . ~ . ~\left(\sqrt{4-y^{2}}, y\right) . ~=\frac{y}{2} .
$$

as y increases, θ also increases $\Rightarrow \phi^{\prime}(y)>0$

$$
\begin{gathered}
\frac{1}{1+\frac{y^{2}}{4-y^{2}}}\left(+\frac{1}{\sqrt{4-y^{2}}}-\frac{1}{2} \cdot y \cdot\left(4-y^{2}\right)^{-\frac{3}{2}}(-2 y)\right) \\
\frac{4-y^{2}}{4} \cdot\left(4-y^{2}\right)^{-\frac{3}{2}}\left(+\left(4-y^{2}\right)+y^{2}\right) \\
11 \\
\left(4-y^{2}\right)^{-\frac{1}{2}}>0 .
\end{gathered}
$$

$P \mid 24.6$ (a) $z=x++y(x)$. represents the graph $y=y(0) \quad 0<x \leq 1$.
Ciliescects potiots ulere $y(x)=0 \Leftrightarrow x=0$ or $\Leftrightarrow x=0$ or

$$
x^{3} \cdot \sin \left(\frac{\pi}{x}\right) \quad \frac{\pi}{x}=n \pi . \quad x=\frac{1}{n}, n=1,23 ; \cdots
$$

(b). $y(x)=x^{3} \sin \left(\frac{x}{x}\right)$ is simeoth when $x \neq 0$.

$$
y^{\prime}(x)=3 x^{2} \sin \left(\frac{\pi}{x}\right)+x^{3} \cos \left(\frac{\pi}{x}\right) \cdot\left(-\frac{\pi}{x}\right)=3 x^{2} \sin \left(\frac{\pi}{x}\right)-\pi x \cos \left(\frac{\pi}{x}\right) . \quad x \neq 0 .
$$

at $x=0 . \quad y(x)$ is contimuens at 0 :

$$
\begin{aligned}
& 0 \leq\left|x^{3} \sin \left(\frac{x}{x}\right)\right| \leq x^{3} \stackrel{\text { squeeze }}{\Longrightarrow} \quad \lim _{x \rightarrow 0} x^{3} \sin \left(\frac{x}{x}\right)=0 . \\
& y^{\prime}(0)=\lim _{x \rightarrow 0} \frac{y(x)-y(x)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{3} \sin \left(\frac{x}{x}\right)}{x}=\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{x}{x}\right) \stackrel{\text { squeexe }}{=} 0
\end{aligned}
$$

$y^{\prime}(x)$ is also continucus at 0 beccuse:

$$
\lim _{x \rightarrow 0} y^{\prime}(x)=\lim _{x \rightarrow 0 .}\left(3 x^{2} \sin \left(\frac{x}{x}\right)-x \cdot x \cos \left(\frac{x}{x}\right)\right)=0=y^{\prime}(0)
$$

Pl32.

$$
\begin{aligned}
& \text { 2.1. } f(z)=\frac{z+2}{z} \quad(b)^{(:} z=2 \cdot e^{i \theta} \quad(\pi \leq \theta \leq 2 \pi) . \\
& \begin{aligned}
z^{\prime}(\theta) & =2 \cdot i \cdot e^{i \theta} \\
\int_{C} f(z) d z & =\int_{\pi}^{2 \pi} \cdot\left(1+\frac{2}{2-e^{i \theta}}\right) \cdot 2 i \cdot e^{i \theta} d \theta=2 i \int_{\pi}^{2 \pi}\left(e^{i \theta}+1\right) d \theta \\
& =2 i \cdot\left[\frac{1}{i} e^{i \theta}+\theta\right]_{\pi}^{2 \pi}=2 i\left[\left(\frac{1}{i} \cdot e^{2 \pi i}+2 \pi\right)-\left(\frac{1}{i} e^{i \pi}+\pi\right)\right] \\
& =2 i\left[\frac{1}{i}+\frac{1}{i}+\pi\right]=4+2 \pi i
\end{aligned}
\end{aligned}
$$

2. $f(z)=z-1 . \quad C$: ane foom $z=0$ to $z=2$
(a) $z=1+e^{10}(x \leqslant \theta \leqslant 2 \pi)$.

$$
\left.\Rightarrow \int_{C} f^{\prime}(z) d z=\int_{\pi}^{2 \pi}\left(1+e^{i \theta}-1\right) \cdot i \cdot e^{i \theta} d \theta=i \int_{\pi}^{2 \pi} \cdot e^{2 i \theta} d \theta=\frac{z^{\prime}(\theta)=i \cdot e^{t \theta}}{2}\right]_{\pi}^{2 \pi}=\frac{1}{2}[(1-1]=0 .
$$

Actually $f(z)=z-1=\left(\frac{1}{2} z^{2}-z\right)^{\prime}$ so $f(z)$ has an ansidenemetre:

$$
\left.F(z)=\frac{1}{2} z^{2}-z \text {. so. } \int_{C} f(z) d z=\int_{C} F^{\prime}(z) d z=F(z)\right]_{0}^{2}
$$ for cory curre fuom 0te $2=\left(\frac{1}{2} \times 2^{2}-2\right)-0=0$

P133. $f(z)=\pi \cdot e^{\pi \bar{z}}$

$$
\begin{aligned}
& C_{1}: z(t)=t . \quad 0 \leq t \leq 1 . \quad z^{\prime}(t)=1 . \\
&\left.\left.\begin{array}{c}
\int_{c_{1}} f(z) d z
\end{array}\right)=\int_{0}^{1} \pi \cdot e^{\pi t} \mid \cdot d t=e^{x t}\right]_{0}^{1}=e^{\pi}-1 . \\
& C_{2}: z(t)=1+t i, 0 \leq t \leq 1, z^{\prime}(t)=i . \\
& \int_{C_{2}} f(z) d z\left.=\int_{0}^{1} \pi \cdot e^{\pi(1-t i)}\right) i d t=\pi \cdot e^{\pi} \cdot \int_{0}^{1} e^{-\pi t i} \frac{d(t z \pi)}{\pi} \\
&=e^{\pi} \cdot\left(-e^{\pi x i}\right]_{0}^{1}=e^{\pi} \cdot\left(-e^{\pi i}+1\right)=2 \cdot e^{\pi}
\end{aligned}
$$

$$
C_{3}: z(t)=(1-t)+i \cdot \infty \varepsilon t \varepsilon 1 . \quad z^{\prime}(t)=-1 .
$$

$$
\int_{c_{3}} f(t) d z=\int_{0}^{1} \pi \cdot e^{\pi \cdot(1-t)-t)} \cdot(-1) d t=-\pi \cdot e^{\pi(t-\lambda)} \cdot \int_{0}^{1} \cdot e^{-\lambda t} d t
$$

$$
\left.\pi e^{\pi \bar{z}}=e^{x(1-i)} \cdot e^{-x t}\right]_{0}^{1}=\frac{\left(e^{x(1-i)}\right)\left[e^{-z}-1\right]=-1+e^{\pi}}{-e^{\pi}}
$$

$C_{4}: z(t)=(-t) i, 0 \leq t \leq 1, \quad z^{\prime}(t)=-t$.

$$
\begin{aligned}
\int_{C_{4}} \pi e^{\pi \bar{z}} d z & =\int_{0}^{1} \pi e^{x \overline{(1-t) i}} \frac{t(l)}{l-1)} d t=-i \pi \cdot \int_{0}^{1} e^{-x(1-t) i} d t \\
& \left.=-i \pi \cdot e_{-1}^{-\pi i} \cdot \int_{0}^{1} e^{\pi t i} d t=\int_{0}^{1} e^{\pi t i} d(\pi i t)=e^{2 \pi t}\right]_{0}^{1}=-2
\end{aligned}
$$

so. $\int_{C^{2}} \pi \cdot e^{\bar{z} \bar{z}} d z=\int_{c_{1}}^{-1}+\int_{c_{2}}+\int_{c_{3}}+\int_{c_{4}}$

$$
=\left(e^{x}-1\right)+\left(2 e^{x}\right)+\left(e^{x}-1\right)+(-2)=4 e^{x}-4 .
$$

Generated by CamScanner
4.
$f(z)=\left\{\begin{array}{cc}1 & \text { when } y<0 \\ 4 y & \text { when } y>0 .\end{array}\right.$

$$
\begin{aligned}
C: z(x) & =x+x^{3} i .-1 \leq x \leq 1 \\
z^{\prime}(x) & =1+3 x^{2} i \\
\int_{C} f(z) d z & =\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z \quad 4 \cdot x^{3}+12 x^{5} i \\
& =\int_{-1}^{0} 1 \cdot\left(1+3 x^{2} i\right) d x+\int_{0}^{1} 4 \cdot x^{3} \cdot\left(1+3 x^{2} i\right) d x \\
& =\left.\left[x+x^{3} i\right]\right|_{-1} ^{0}+\left[x^{4}+2 x^{6} i\right]_{0}^{1} \\
& =[0-(-1-i)]+[1+2 i-0]=2+3 i
\end{aligned}
$$

5.

$$
\begin{aligned}
& \left.\int_{z_{1}}^{z_{2}} \mid d z=z\right]_{z_{1}}^{z_{2}}=z_{2}-z_{1} \\
& \quad 11 \\
& \int_{z_{1}}^{z_{2}} d x+i d y=[x+r y]_{z_{1}}^{z_{2}}
\end{aligned}
$$

P133.6. $f(z)=z^{\prime}=e^{i \log z} \quad|z|>0 \quad-x<\operatorname{Arg} z<\pi$.

$$
\begin{aligned}
& C: z=e^{i \theta}, 0 \leq \theta \leq \pi, z^{\prime}(\theta)=i \cdot e^{i \theta} \quad \log \left(e^{i \theta}\right)=\ln 1+i \theta \\
&=i \theta \\
& f\left(e^{i \theta}\right)=e^{i \log (i \theta)}=e^{i(i \theta)}=e^{-\theta} \\
& \int_{c} f(z) d z=\int_{0}^{\pi} e^{-\theta} i \cdot e^{i \theta} d \theta=i \int_{0}^{\pi} \cdot e^{(-1+i) \theta} d \theta \\
&\left.=\frac{i}{-1+i} \cdot e^{(-1+i) t}\right]_{0}^{\pi}=\frac{i \cdot(-1-i)}{2} \cdot\left[e^{(-1+i) \pi}-1\right] \\
&=\frac{1-i}{2} \cdot\left[-e^{-z}-1\right]=-\frac{1+e^{-i}}{2} \cdot(1-i) .
\end{aligned}
$$

10
$C:|z|=1$ Counterclocturise $\leadsto z=e^{2 \theta}, \quad \leq \theta<2 \pi \quad z^{\prime}(\theta)=i e^{2 \theta}$.

$$
\begin{aligned}
\int_{|z| 1 \mid} z^{m} z^{n} d z & =\int_{0}^{2 \pi} \cdot\left(e^{i \theta}\right)^{m} \cdot\left(e^{i \theta}\right)^{n} \cdot i \cdot e^{i \theta} d \theta \\
& =i \int_{0}^{2 \pi} \cdot e^{i(m-n+1) \theta} d \theta \\
& = \begin{cases}\left.\frac{1}{m-n+1} \cdot e^{i(m-n+1) \theta}\right]_{0}^{2 \pi}=0 & \text { if } m-n+1 \neq 0 . \\
i \cdot \int_{0}^{2 \pi} \cdot e^{i \theta} d \theta=2 \pi i \quad \text { if } m-n+1=0 .\end{cases}
\end{aligned}
$$

P147.

$$
\text { 2. (a) } \begin{aligned}
& \left.\int_{0}^{1+i} z^{2} d z=\int_{0}^{1+i}\left(\frac{1}{3} z^{3}\right)^{\prime} d z=\frac{1}{3} z^{3}\right]_{0}^{1+i} \\
= & \frac{1}{3} \cdot\left[(1+i)^{3}-0\right]=\frac{1}{3} \cdot[1+3 i-3-i]=\frac{1}{3} \cdot(-2+2 i) .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \left.1 \cdot \int_{0}^{\pi+2 i} \cos \left(\frac{z}{2}\right) d z=2 \cdot \sin \left(\frac{z}{2}\right)\right]_{0}^{\pi+2 i}=2 \cdot\left[\sin \left(\frac{\pi+2 i}{2}\right)-\sin (0)\right] \\
& =2 \cdot \sin \left(\frac{\pi}{2}+i\right)=+2 \cdot \cos (i)=+2 \cdot \frac{e^{i-i}+e^{-i \cdot i}}{2}=e+\frac{1}{e} .
\end{aligned}
$$

(c) $\left.\int_{1}^{3}(z-2)^{3} d z=\frac{1}{4} \cdot(z-2)^{4}\right]_{1}^{3}=\frac{1}{4} \cdot\left[1^{4}-(-1)^{4}\right]=0$.

Part 2. First note that the following relations hold:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ z = x + i y } \\
{ \overline { z } = x - i y }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=\frac{1}{2}(z+\bar{z}) \\
y=\frac{1}{2 i}(z-\bar{z})
\end{array} \quad\right.\right. \text { so (formally) by chan rule. } \\
& \left\{\begin{array}{l}
\frac{\partial}{\partial x}=\frac{\partial z}{\partial x} \frac{\partial}{\partial z}+\frac{\partial \bar{z}}{\partial x} \frac{\partial}{\partial \bar{z}}=1 \cdot \frac{\partial}{\partial z}+1 \cdot \frac{\partial}{\partial z}=\frac{\partial}{\partial z}+\frac{\partial}{\partial \bar{z}} \\
\frac{\partial}{\partial y}=\frac{\partial z}{\partial y} \frac{\partial}{\partial z}+\frac{\partial \bar{z}}{\partial y} \frac{\partial}{\partial z}=i \frac{\partial}{\partial z}-i \frac{\partial}{\partial z}=i\left(\frac{\partial}{\partial z}-\frac{\partial}{\partial \bar{z}}\right) .
\end{array} \quad\right. \text { reversely, welax }
\end{aligned}\left\{\begin{array}{l}
\frac{\partial}{\partial z}=\frac{\partial x}{\partial z} \frac{\partial}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial}{\partial y}=\frac{1}{2} \frac{\partial}{\partial x}+\frac{1}{2 i} \frac{\partial}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) \\
\frac{\partial}{\partial z}=\frac{\partial x}{\partial \bar{z}} \frac{\partial}{\partial x}+\frac{\partial y}{\partial \bar{z}} \frac{\partial}{\partial y}=\frac{1}{2} \frac{\partial}{\partial x}-\frac{1}{2 i} \frac{\partial}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) .
\end{array}\right.
$$

Now Let ${ }^{(a)} w(t)=f(z(t))=u(z(t))+\operatorname{iv}(z(t))=u(b(t), y(t))+i v(x(t), y(t))$
Then

$$
\begin{aligned}
& w^{\prime}(t)=\left(u_{x} x^{\prime}+u_{y} y^{\prime}\right)+i\left(v_{x} x^{\prime}+v_{y} y^{\prime}\right)=\left(u_{x}+i v_{x}\right) x^{\prime}+\left(u_{y}+i v_{y}\right) y^{\prime} \\
& =\left(\frac{\partial}{\partial x} f\right) \cdot x^{\prime}+\left(\frac{\partial}{\partial y} f\right) \cdot y^{\prime} \\
& =\left(\left(\frac{\partial}{\partial z}+\frac{\partial}{\partial \bar{z}}\right) f\right) \cdot \frac{d}{d t}\left(\frac{z(t)+\overline{z(t)})}{2}+\left(i \frac{\partial}{\partial z}-\frac{\partial}{\partial \bar{z}}\right) f\right) \frac{d}{d t}\left(\frac{z(t)-\overline{z(t)}}{2 i}\right) \\
& =\left(\frac{\partial f}{\partial z}+\frac{\partial f}{\partial \bar{z}}\right) \cdot \frac{1}{2}(z \xi+\bar{z}(t))+\left(\frac{\partial f}{\partial z}-\frac{\partial d}{\partial \bar{z}}\right) \cdot \frac{1}{2}\left(z^{\prime}(t)-\overline{z(t)}\right) \\
& =\frac{1}{2}\left(\frac{\partial f}{\partial z^{\prime}} \cdot z^{\prime}+\frac{\partial t}{\partial z}\left(z^{\prime}+\frac{\partial f}{\partial z^{\prime}} z^{\prime}+\frac{\partial f}{\partial z} \overline{z^{\prime}}\right)+\frac{1}{z}\left(\frac{\partial f}{\partial z^{\prime}} z^{\prime}-\frac{\partial f}{\partial z} \overline{z^{\prime}} \frac{\partial f}{\partial z} z^{\prime}+\frac{\partial f}{\partial z} \overline{z^{\prime}}\right)\right. \\
& =\frac{\partial f}{\partial z} z^{\prime}+\frac{\partial f}{\partial \bar{z}} \bar{z}^{\prime} . \sqrt{\text { a general complex valued tet }}
\end{aligned}
$$

Actually, $f(z)$ should be thought of a fat. depereling on z and \bar{z}, that is $f=f(z, \bar{z})$. So if $w(t)=f(z(t), \overline{z(t)})$. then by chain rule, it's imechate that $W^{\prime}=\frac{\partial f}{\partial z} z^{\prime}+\frac{\partial t}{\partial z} z^{\prime}$.
(b). As has been done in previous homenork, we have

$$
\frac{\partial f}{\partial \vec{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) \cdot(u+i v)=\frac{1}{2} \cdot\left(\left(u_{x}-v_{y}\right)+i\left(u_{y}+v_{x}\right)\right) .
$$

So f is curalytic $\Leftrightarrow \frac{\partial f}{\partial \bar{z}}=0 \Leftrightarrow\left\{\begin{array}{l}u_{x}=v_{y} \\ u_{y}=-v_{x}\end{array}\right.$ (CR eqs.).
In the case f is analyite, we have furthermore,

$$
\begin{aligned}
\frac{\partial f}{\partial z}=\frac{1}{2} \cdot\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)(u+i v) & =\frac{1}{2} \cdot\left(\left(u_{x}+v_{y}\right)+i \cdot\left(v_{x}-u_{y}\right.\right. \\
& =\frac{1}{2} \cdot\left(\left(u_{x}+u_{x}\right)+i \cdot\left(v_{x}+v_{x}\right)\right)(b y \text { (Reqs). } \\
& =u_{x}+i v_{x}=f^{\prime}(z) .
\end{aligned}
$$

So. if $w(t)=f(z(t))$, then

$$
w^{\prime}(t)=\frac{\partial f}{\partial z} z^{\prime}(t)+\frac{\partial f}{\partial \bar{z}} \overline{z^{\prime}(t)}=f^{\prime}(z) \cdot z^{\prime}(t)+0=f^{\prime}(z) \cdot z^{\prime}(t) .
$$

2^{*} (a)

$$
\begin{aligned}
& \sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}=\frac{e^{i(x+i y)}-e^{-i(x+i y)}}{2 i} \\
& \quad=\frac{e^{-y} \cdot e^{i x}-e^{y} \cdot e^{-i x}}{2 i}=\frac{e^{-y}(\cos x+i \sin x)-e^{y}(\cos x-i \sin x)}{2 i^{i}} \\
& =\frac{(\cos x) \cdot\left(e^{-y}-e^{y}\right)+i \cdot \sin x \cdot\left(e^{-y}+e^{y}\right)}{2 i} \\
& =\sin x \cdot \frac{1}{2}\left(e^{y}+e^{-y}\right)+i \cdot \cos x \cdot \frac{1}{2}\left(e^{y}-e^{-y}\right) \\
& =\sin x \cdot \cosh y+i \cos x \cdot \sinh y .
\end{aligned}
$$

(b). $\operatorname{Re}(z)=C \xrightarrow{w=z^{2}}(\sin (\cdot \cosh y, \cos C \cdot \sinh y)=(u, v)$.
so $\frac{u^{2}}{\sin ^{2} c}-\frac{v^{2}}{\cos ^{2} c}=\cosh ^{2} y-\sin ^{2} y=1$.

Example: $\quad \int_{C} \cos (\bar{z}) d z$

$$
\int_{C} \cos (\bar{z}) d z=\int_{C_{1}} \cos (\bar{z}) d z+\int_{C_{2}} \cos (\bar{z}) d z+\int_{C_{3}} \cos (\bar{z}) d z
$$

C_{1} : parametization $z(t)=t+0 i \Rightarrow z^{\prime}(t)=1 . \quad \overline{z(t)}=t$.

$$
\left.\int_{C_{1}} \cos (\hat{z}) d z=\int_{0}^{0 \leqslant t \leqslant \pi} \cos (t) \cdot 1 \cdot d t=\sin t\right]_{0}^{\pi}=0-0=0
$$

$$
\begin{aligned}
& C_{2}: \text { paremelrization } \quad z(t)=(\pi-t)+t i \quad 0 \leqslant t \leqslant \pi \Rightarrow z^{\prime}(t)=-1+i . \\
& \begin{aligned}
\int_{C_{2}} \cos (\bar{z}) d z & =\int_{0}^{\pi} \cos ((\pi-t)-t i) \cdot(-1+i) d t \quad\binom{\cos ((2+z)=-\cos (z)}{\cos (-z)=\cos (z)} \quad \overline{z(t)}=(\pi-t)-t i \\
& \left.=(1-i) \cdot \int_{0}^{\pi} \cos ((1+i) t) d t=\frac{1-i}{1+i} \sin ((1+i) t)\right]_{0}^{\pi}=(-i)[\sin (2+\pi i)-\sin (0)] \\
& =i^{i} \cdot \sin (\pi i)=i^{i} \cdot \frac{i \pi i-e^{-i(t i)}}{2 i^{i}}=\frac{e^{-\pi}-e^{\pi}}{2}=-\sinh (\pi) .
\end{aligned}
\end{aligned}
$$

C_{3} : parametization: $z(t)=t i \cdot t: \pi \rightarrow 0 . \overline{z(t)}=-t i, z^{\prime}(t)=i$.

$$
\begin{aligned}
\int_{C_{3}} \cos (\bar{z}) d z & \left.=\int_{\pi}^{0} \cos (-t i) \cdot i d t=-\int_{0}^{\pi} \cos (i t) d(i t)=-\sin (i t)\right]_{0}^{\pi} \\
& =-(\sin (i \pi)-\sin (0))=-\sin (i \pi)=-\frac{e^{2 i \pi}-e^{-i \cdot i \pi}}{2 r}=i \frac{e^{-\pi}-e^{\pi}}{2} \\
& =-i \sinh (\pi) .
\end{aligned}
$$

So. $\int_{C} \cos (\bar{z}) d z=\int_{c_{1}}+\int_{c_{2}}+\int_{c_{3}}=0-\sinh (z)-i \sinh (z)$

$$
=-\left(1+i^{i}\right) \sin (x)
$$

EXAMPLE 1. Let C be the arc of the circle $|z|=2$ from $z=2$ to $z=2 i$ that lies in the first quadrant (Fig. 47). Inequality (6) can be used to show that

$$
\begin{equation*}
\left|\int_{C} \frac{z-2}{z^{4}+1} d z\right| \leq \frac{4 \pi}{15} \tag{7}
\end{equation*}
$$

This is done by noting first that if z is a point on C, then
and

$$
|z-2|=|z+(-2)| \leq|z|+|-2|=2+2=4
$$

$$
\left|z^{4}+1\right| \geq\left||z|^{4}-1\right|=15
$$

Thus, when z lies on C,

$$
\left|\frac{z-2}{z^{4}+1}\right|=\frac{|z-2|}{\left|z^{4}+1\right|} \leq \frac{4}{15}
$$

By writing $M=4 / 15$ and observing that $L=\pi$ is the length of C, we may now use inequality (6) to obtain inequality (7).

FIGURE 47

EXAMPLE 2. Let C_{R} denote the semicircle

$$
z=\operatorname{Re}^{i \theta} \quad(0 \leq \theta \leq \pi)
$$

from $z=R$ to $z=-R$, where $R>3$ (Fig. 48). It is easy to show that

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{(z+1) d z}{\left(z^{2}+4\right)\left(z^{2}+9\right)}=0 \tag{8}
\end{equation*}
$$

without actually evaluating the integral. To do this, we observe that if z is a point on C_{R},

$$
\begin{gathered}
|z+1| \leq|z|+1=R+1 \\
\left|z^{2}+4\right| \geq\left||z|^{2}-4\right|=R^{2}-4
\end{gathered}
$$

and

$$
\left|z^{2}+9\right| \geq\left||z|^{2}-9\right|=R^{2}-9 .
$$

This means that if z is on C_{R} and $f(z)$ is the integrand in integral (8), then

$$
\begin{aligned}
& \text { his means that if } z \text { is on } C_{R} \text { and } f(z) \text { is the integrana } \\
& |f(z)|=\left|\frac{z+1}{\left(z^{2}+4\right)\left(z^{2}+9\right)}\right|=\frac{|z+1|}{\left|z^{2}+4\right|\left|z^{2}+9\right|} \leq \frac{R+1}{\left(R^{2}-4\right)\left(R^{2}-9\right)}=M_{R} \text {, }
\end{aligned}
$$

where M_{R} serves as an upper bound for $|f(z)|$ on C_{R}. Since the length of the semicircle is πR, we may refer to the theorem in this section, using

$$
M_{R}=\frac{R+1}{\left(R^{2}-4\right)\left(R^{2}-9\right)} \text { and } L=\pi R
$$

to write

$$
\begin{equation*}
\left|\int_{C_{R}} \frac{(z+1) d z}{\left(z^{2}+4\right)\left(z^{2}+9\right)}\right| \leq M_{R} L \tag{9}
\end{equation*}
$$

where

$$
M_{R} L=\frac{\pi\left(R^{2}+R\right)}{\left(R^{2}-4\right)\left(R^{2}-9\right)} \cdot \frac{\frac{1}{R^{4}}}{\frac{1}{R^{4}}}=\frac{\pi\left(\frac{1}{R^{2}}+\frac{1}{R^{3}}\right)}{\left(1-\frac{4}{R^{2}}\right)\left(1-\frac{9}{R^{2}}\right)} .
$$

This shows that $M_{R} L \rightarrow 0$ as $R \rightarrow \infty$, and limit (8) follows from inequality (9).

EXERCISES

1. Without evaluating the integral, show that
(a) $\left|\int_{C} \frac{z+4}{z^{3}-1} d z\right| \leq \frac{6 \pi}{7} ;$
(b) $\left|\int_{C} \frac{d z}{z^{2}-1}\right| \leq \frac{\pi}{3}$
when C is the arc that was used in Example 1, Sec. 47.
2. Let C denote the line segment from $z=i$ to $z=1$ (Fig. 49), and show that

$$
\left|\int_{C} \frac{d z}{z^{4}}\right| \leq 4 \sqrt{2}
$$

without evaluating the integral.
Suggestion: Observe that of all the points on the line segment, the midpoint is closest to the origin, that distance being $d=\sqrt{2} / 2$.

3. Show that if C is the boundary of the triangle with vertices at the points $0,3 i$, and -4 , oriented in the counterclockwise direction (see Fig. 50), then

$$
\left|\int_{C}\left(e^{z}-\bar{z}\right) d z\right| \leq 60
$$

Suggestion: Note that $\left|e^{z}-\bar{z}\right| \leq e^{x}+\sqrt{x^{2}+y^{2}}$ when $z=x+i y$.

FIGURE 50

4. Let C_{R} denote the upper half of the circle $|z|=R(R>2)$, taken in the counterclockwise direction. Show that

$$
\left|\int_{C_{R}} \frac{2 z^{2}-1}{z^{4}+5 z^{2}+4} d z\right| \leq \frac{\pi R\left(2 R^{2}+1\right)}{\left(R^{2}-1\right)\left(R^{2}-4\right)}
$$

Then, by dividing the numerator and denominator on the right here by R^{4}, show that the value of the integral tends to zero as R tends to infinity. (Compare with Example 2 in Sec. 47.)
5. Let C_{R} be the circle $|z|=R(R>1)$, described in the counterclockwise direction. Show that

$$
\left|\int_{C_{R}} \frac{\log z}{z^{2}} d z\right|<2 \pi\left(\frac{\pi+\ln R}{R}\right)
$$

and then use l'Hospital's rule to show that the value of this integral tends to zero as R tends to infinity.
6. Let C_{ρ} denote a circle $|z|=\rho(0<\rho<1)$, oriented in the counterclockwise direction, and suppose that $f(z)$ is analytic in the disk $|z| \leq 1$. Show that if $z^{-1 / 2}$ represents any particular branch of that power of z, then there is a nonnegative constant M, independent of ρ, such that

$$
\left|\int_{C_{\rho}} z^{-1 / 2} f(z) d z\right| \leq 2 \pi M \sqrt{\rho}
$$

Thus show that the value of the integral here approaches 0 as ρ tends to 0 .
Suggestion: Note that since $f(z)$ is analytic, and therefore continuous, throughout the disk $|z| \leq 1$, it is bounded there (Sec. 18).

But f is continuous at the point z. Hence, for each positive number ε, a positive number δ exists such that

$$
|f(s)-f(z)|<\varepsilon \quad \text { whenever } \quad|s-z|<\delta
$$

Consequently, if the point $z+\Delta z$ is close enough to z so that $|\Delta z|<\delta$, then

$$
\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right|<\frac{1}{|\Delta z|} \varepsilon|\Delta z|=\varepsilon ;
$$

that is,

$$
\lim _{\Delta z \rightarrow 0} \frac{F(z+\Delta z)-F(z)}{\Delta z}=f(z)
$$

or $F^{\prime}(z)=f(z)$.

EXERCISES

1. Use an antiderivative to show that for every contour C extending from a point z_{1} to a point z_{2},

$$
\int_{C} z^{n} d z=\frac{1}{n+1}\left(z_{2}^{n+1}-z_{1}^{n+1}\right) \quad(n=0,1,2, \ldots) .
$$

2. By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the indicated limits of integration:
(a) $\int_{0}^{1+i} z^{2} d z$;
(b) $\int_{0}^{\pi+2 i} \cos \left(\frac{z}{2}\right) d z$;
(c) $\int_{1}^{3}(z-2)^{3} d z$.
Ans.
(a) $\frac{2}{3}(-1+i)$;
(b) $e+\frac{1}{e}$;
(c) 0.
3. Use the theorem in Sec. 48 to show that

$$
\int_{C_{0}}\left(z-z_{0}\right)^{n-1} d z=0 \quad(n= \pm 1, \pm 2, \ldots)
$$

when C_{0} is any closed contour which does not pass through the point z_{0}. (Compare with Exercise 13, Sec. 46.)
4. Find an antiderivative $F_{2}(z)$ of the branch $f_{2}(z)$ of $z^{1 / 2}$ in Example 4, Sec. 48, to show that integral (3) there has value $2 \sqrt{3}(-1+i)$. Note that the value of the integral of the function (2) around the closed contour $C_{2}-C_{1}$ in that example is, therefore, $-4 \sqrt{3}$.
5. Show that

$$
\int_{-1}^{1} z^{i} d z=\frac{1+e^{-\pi}}{2}(1-i),
$$

where the integrand denotes the principal branch

$$
z^{i}=\exp (i \log z) \quad(|z|>0,-\pi<\operatorname{Arg} z<\pi)
$$

of z^{i} and where the path of integration is any contour from $z=-1$ to $z=1$ that, except for its end points, lies above the real axis. (Compare with Exercise 6, Sec. 46.)

Suggestion: Use an antiderivative of the branch

$$
z^{i}=\exp (i \log z) \quad\left(|z|>0,-\frac{\pi}{2}<\arg z<\frac{3 \pi}{2}\right)
$$

of the same power function.

EXERCISES

1. Apply the Cauchy-Goursat theorem to show that

$$
\int_{C} f(z) d z=0
$$

when the contour C is the unit circle $|z|=1$, in either direction, and when
(a) $f(z)=\frac{z^{2}}{z+3}$;
(b) $f(z)=z e^{-z}$;
(c) $f(z)=\frac{1}{z^{2}+2 z+2}$;
(d) $f(z)=\operatorname{sech} z$;
(e) $f(z)=\tan z$;
(f) $f(z)=\log (z+2)$.
2. Let C_{1} denote the positively oriented boundary of the square whose sides lie along the lines $x= \pm 1, y= \pm 1$ and let C_{2} be the positively oriented circle $|z|=4$ (Fig. 65). With the aid of the corollary in Sec. 53 , point out why

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

when
(a) $f(z)=\frac{1}{3 z^{2}+1}$;
(b) $f(z)=\frac{z+2}{\sin (z / 2)}$;
(c) $f(z)=\frac{z}{1-e^{z}}$.

FIGURE 65

3. If C_{0} denotes a positively oriented circle $\left|z-z_{0}\right|=R$, then

$$
\int_{C_{0}}\left(z-z_{0}\right)^{n-1} d z= \begin{cases}0 & \text { when } n= \pm 1, \pm 2, \ldots \\ 2 \pi i & \text { when } n=0\end{cases}
$$

according to Exercise 13, Sec. 46 . Use that result and the corollary in Sec. 53 to show that if C is the boundary of the rectangle $0 \leq x \leq 3,0 \leq y \leq 2$, described in the positive sense, then

$$
\int_{C}(z-2-i)^{n-1} d z= \begin{cases}0 & \text { when } n= \pm 1, \pm 2, \ldots \\ 2 \pi i & \text { when } n=0\end{cases}
$$

4. Use the following method to derive the integration formula

$$
\int_{0}^{\infty} e^{-x^{2}} \cos 2 b x d x=\frac{\sqrt{\pi}}{2} e^{-b^{2}} \quad(b>0)
$$ of the rectangular path in Fig. 66 can be written

$$
2 \int_{0}^{a} e^{-x^{2}} d x-2 e^{b^{2}} \int_{0}^{a} e^{-x^{2}} \cos 2 b x d x
$$

and that the sum of the integrals along the vertical legs on the right and left can be written

$$
i e^{-a^{2}} \int_{0}^{b} e^{y^{2}} e^{-i 2 a y} d y-i e^{-a^{2}} \int_{0}^{b} e^{y^{2}} e^{i 2 a y} d y
$$

Thus, with the aid of the Cauchy-Goursat theorem, show that

$$
\begin{aligned}
& \text { with the aid of the Cauchy } \\
& \int_{0}^{a} e^{-x^{2}} \cos 2 b x d x=e^{-b^{2}} \int_{0}^{a} e^{-x^{2}} d x+e^{-\left(a^{2}+b^{2}\right)} \int_{0}^{b} e^{y^{2}} \sin 2 a y d y
\end{aligned}
$$

FIGURE 66
(b) By accepting the fact that*

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}
$$

and observing that

$$
\left|\int_{0}^{b} e^{y^{2}} \sin 2 a y d y\right| \leq \int_{0}^{b} e^{y^{2}} d y
$$

obtain the desired integration formula by letting a tend to infinity in the equation at the end of part (a).
5. According to Exercise 6, Sec. 43 , the path C_{1} from the origin to the point $z=1$ along the graph of the function defined by means of the equations

$$
y(x)= \begin{cases}x^{3} \sin (\pi / x) & \text { when } 0<x \leq 1 \\ 0 & \text { when } x=0\end{cases}
$$

is a smooth arc that intersects the real axis an infinite number of times. Let C_{2} denote the line segment along the real axis from $z=1$ back to the origin, and let C_{3} denote any smooth arc from the origin to $z=1$ that does not intersect itself and has only its end points in common with the arcs C_{1} and C_{2} (Fig. 67). Apply the C̀auchy-Goursat

[^3]and then evaluating this iterated integral by changing to polar coordinates. Details are given in, for example, A. E. Taylor and W. R. Mann, "Advanced Calculus," 3d ed., pp. 680-681, 1983.

FIGURE 67

theorem to show that if a function f is entire, then

$$
\int_{C_{1}} f(z) d z=\int_{C_{3}} f(z) d z \quad \text { and } \quad \int_{C_{2}} f(z) d z=-\int_{C_{3}} f(z) d z
$$

Conclude that even though the closed contour $C=C_{1}+C_{2}$ intersects itself an infinite number of times,

$$
\int_{C} f(z) d z=0
$$

6. Let C denote the positively oriented boundary of the half disk $0 \leq r \leq 1,0 \leq \theta \leq \pi$, and let $f(z)$ be a continuous function defined on that half disk by writing $f(0)=0$ and using the branch

$$
f(z)=\sqrt{r} e^{i \theta / 2} \quad\left(r>0,-\frac{\pi}{2}<\theta<\frac{3 \pi}{2}\right)
$$

of the multiple-valued function $z^{1 / 2}$. Show that

$$
\int_{C} f(z) d z=0
$$

by evaluating separately the integrals of $f(z)$ over the semicircle and the two radii which make up C. Why does the Cauchy-Goursat theorem not apply here?
7. Show that if C is a positively oriented simple closed contour, then the area of the region enclosed by C can be written

$$
\frac{1}{2 i} \int_{C} \bar{z} d z
$$

Suggestion: Note that expression (4), Sec. 50, can be used here even though the function $f(z)=\bar{z}$ is not analytic anywhere [see Example 2, Sec. 19].
8. Nested Intervals. An infinite sequence of closed intervals $a_{n} \leq x \leq b_{n}(n=0,1,2, \ldots)$ is formed in the following way. The interval $a_{1} \leq x \leq b_{1}$ is either the left-hand or right-hand half of the first interval $a_{0} \leq x \leq b_{0}$, and the interval $a_{2} \leq x \leq b_{2}$ is then one of the two halves of $a_{1} \leq x \leq b_{1}$, etc. Prove that there is a point x_{0} which belongs to every one of the closed intervals $a_{n} \leq x \leq b_{n}$.

Suggestion: Note that the left-hand end points a_{n} represent a bounded nondecreasing sequence of numbers, since $a_{0} \leq a_{n} \leq a_{n+1}<b_{0}$; hence they have a limit A as n tends to infinity. Show that the end points b_{n} also have a limit B. Then show that $A=B$, and write $x_{0}=A=B$.
maximum value of $|f(z)|$ on C_{R}, then

$$
\begin{equation*}
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M_{R}}{R^{n}} \quad(n=1,2, \ldots) \tag{2}
\end{equation*}
$$

Inequality (2) is called Cauchy's inequality and is an immediate consequence of the expression

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C_{R}} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}} \quad(n=1,2, \ldots)
$$

in the theorem in Sec. 55 when n is a positive integer. We need only apply the theorem in Sec. 47, which gives upper bounds for the moduli of the values of contour integrals, to see that

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!}{2 \pi} \cdot \frac{M_{R}}{R^{n+1}} 2 \pi R \quad(n=1,2, \ldots)
$$

where M_{R} is as in the statement of Theorem 3 . This inequality is, of course, the same as inequality (2).

EXERCISES

1. Let C denote the positively oriented boundary of the square whose sides lie along the lines $x= \pm 2$ and $y= \pm 2$. Evaluate each of these integrals:
(a) $\int_{C} \frac{e^{-z} d z}{z-(\pi i / 2)}$;
(b) $\int_{C} \frac{\cos z}{z\left(z^{2}+8\right)} d z$;
(c) $\int_{C} \frac{z d z}{2 z+1}$;
(d) $\int_{C} \frac{\cosh z}{z^{4}} d z$;
(e) $\int_{C} \frac{\tan (z / 2)}{\left(z-x_{0}\right)^{2}} d z \quad\left(-2<x_{0}<2\right)$.
Ans. (a) 2π;
(b) $\pi i / 4$;
(c) $-\pi i / 2$;
(d) 0 ;
(e) $i \pi \sec ^{2}\left(x_{0} / 2\right)$.
2. Find the value of the integral of $g(z)$ around the circle $|z-i|=2$ in the positive sense when
(a) $g(z)=\frac{1}{z^{2}+4}$;
(b) $g(z)=\frac{1}{\left(z^{2}+4\right)^{2}}$.

Ans. (a) $\pi / 2$; (b) $\pi / 16$.
3. Let C be the circle $|z|=3$, described in the positive sense. Show that if

$$
g(z)=\int_{C} \frac{2 s^{2}-s-2}{s-z} d s \quad(|z| \neq 3)
$$

then $g(2)=8 \pi i$. What is the value of $g(z)$ when $|z|>3$?
4. Let C be any simple closed contour, described in the positive sense in the z plane, and
writ write

Show that $g(z)=6 \pi i z$ when z is inside C and that $g(z)=0$ when z is outside.

$$
g(z)=\int_{C} \frac{s^{3}+2 s}{(s-z)^{3}} d s
$$

5. Show that if f is analytic within and on a simple closed contour C and z_{0} is not on C, then

$$
\int_{C} \frac{f^{\prime}(z) d z}{z-z_{0}}=\int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{2}}
$$

6. Let f denote a function that is continuous on a simple closed contour C. Following the procedure used in Sec. 56, prove that the function

$$
g(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s) d s}{s-z}
$$

is analytic at each point z interior to C and that

$$
g^{\prime}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s) d s}{(s-z)^{2}}
$$

at such a point.
7. Let C be the unit circle $z=e^{i \theta}(-\pi \leq \theta \leq \pi)$. First show that for any real constant a,

$$
\int_{C} \frac{e^{a z}}{z} d z=2 \pi i
$$

Then write this integral in terms of θ to derive the integration formula

$$
\int_{0}^{\pi} e^{a \cos \theta} \cos (a \sin \theta) d \theta=\pi
$$

8. Show that $P_{n}(-1)=(-1)^{n}(n=0,1,2, \ldots)$, where $P_{n}(z)$ are the Legendre polynomials in Example 3, Sec. 55.

Suggestion: Note that

$$
\frac{\left(s^{2}-1\right)^{n}}{(s+1)^{n+1}}=\frac{(s-1)^{n}}{s+1}
$$

9. Follow the steps below to verify the expression

$$
f^{\prime \prime}(z)=\frac{1}{\pi i} \int_{C} \frac{f(s) d s}{(s-z)^{3}}
$$

in Sec. 56.
(a) Use expression (2) in Sec. 56 for $f^{\prime}(z)$ to show that

$$
\frac{f^{\prime}(z+\Delta z)-f^{\prime}(z)}{\Delta z}-\frac{1}{\pi i} \int_{C} \frac{f(s) d s}{(s-z)^{3}}=\frac{1}{2 \pi i} \int_{C} \frac{3(s-z) \Delta z-2(\Delta z)^{2}}{(s-z-\Delta z)^{2}(s-z)^{3}} f(s) d s
$$

(b) Let D and d denote the largest and smallest distances, respectively, from z to points on C. Also, let M be the maximum value of $|f(s)|$ on C and L the length of C. With the aid of the triangle inequality and by referring to the derivation of expression (2) in Sec. 56 for $f^{\prime}(z)$, show that when $0<|\Delta z|<d$, the value of the integral on the right-hand side in part (a) is bounded from above by

$$
\frac{\left(3 D|\Delta z|+2|\Delta z|^{2}\right) M}{(d-|\Delta z|)^{2} d^{3}} L
$$

(c) Use the results in parts (a) and (b) to obtain the desired expression for $f^{\prime \prime}(z)$.

Homework 9: Part 2

1: Calculate the following integrals $\left(\left\{\left|z-z_{0}\right|=R\right\}\right.$ denotes the circle with the anti-clockwise orientation)
(a)

$$
\int_{|z|=\frac{1}{2}} \frac{z-3}{z^{2}-1} d z
$$

(b)

$$
\int_{|z-1|=1} \frac{z-3}{z^{2}-1} d z
$$

(c)

$$
\int_{|z|=2} \frac{(z-3) d z}{(z-1)^{2}}
$$

(d)

$$
\int_{|z|=2} \frac{d z}{(z-1)^{2}(z-3)}
$$

$\mathbf{2}^{*}: C$ is a simple closed curve and D is the interior region of $C . f$ is a complex valued function defined on D. Assume that the real part and imaginary part of f have continuous partial derivatives. Show that the calculation of Section 50 (using Green's formula) is equivalent to the following Stokes' theorem,

$$
\int_{C} f(z) d z=\int_{D} \frac{\partial f}{\partial \bar{z}} d \bar{z} \wedge d z
$$

Note that, by definition,

$$
d(f(z) d z)=d f \wedge d z=\left(\frac{\partial f}{\partial z} d z+\frac{\partial f}{\partial \bar{z}} d \bar{z}\right) \wedge d z=\frac{\partial f}{\partial \bar{z}} d \bar{z} \wedge d z
$$

In particular, if furthermore f is analytic, then $\frac{\partial f}{\partial z}=0$ and we have the CauchyGoursat Theorem.
$P 147$ 5. $\quad z^{i}=e^{i \cdot \log z}$

The branch z^{i} has an axtidenvative:

$$
\frac{1}{i+1} z^{(i+1)}=\frac{1}{i+1} e^{(i+1) \log z}
$$

because:

$$
\begin{aligned}
\frac{d}{d z}\left(\frac{1}{i+1} e^{(i+1) \log z}\right) & =\frac{1}{i+1} \cdot e^{(i+1) \log z} \cdot(i+1) \frac{d}{d z} \log z=e^{i \cdot \log z} e^{\log z} \frac{1}{z} \\
& =z^{\prime}
\end{aligned}
$$

$$
\text { So } \begin{aligned}
\int_{C} z^{\prime} d z & \left.\left.=\int_{C} \cdot\left(\frac{1}{i+1} z^{(i+1)} \cdot\right)^{\prime} d z=\frac{1}{i+1} z^{i+1}\right]_{-1}^{1}=\frac{1}{i+1} e^{(i+1) \log z}\right]_{-1}^{1} \\
& =\frac{1}{i+1} \cdot\left(e^{(i+1) \log 1}-e^{(i+1) \log (-1)}\right)=\frac{1-i}{2}\left(e^{(i+1) 0}-e^{(i+1) \cdot(0+\pi i))}\right. \\
& =\frac{1-i}{2}\left(1-e^{-\pi} \cdot e^{\pi i}\right)=\frac{1-i}{2}\left(1+e^{-\pi}\right) .
\end{aligned}
$$

p159.1. $\int_{|z|=1} f(z)=0$ if f is analytic inside $|z|=1\binom{$ no sigilaing }{ ins de $|z|=1}$
2. $\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z$ if $f i s$ condyte between C_{1} and C_{2}. that is, there are no singularities between C_{1} and C_{2}. In other words, C_{1} can be deformed to C_{2} without touching singularities of f (deformation priheipal).

P160. 5.
, f entire $\Rightarrow \int_{C_{1}} f(z) d z=\int_{C_{3}} f(z) d z$.

So
$6.1 \log$
6. $C_{1}: z=e^{i \theta}, 0 \leqslant \theta \leqslant z \quad z^{\prime}(\theta)=i \cdot e^{i \theta} . f\left(e^{i \theta}\right)=e^{\frac{i \theta}{2}}$

$$
\underbrace{\rightarrow}_{C_{2}}
$$

So $\left.\int_{c_{1}} f(z) d z=\int_{0}^{\pi} \cdot e^{\frac{i \theta}{2}} \cdot i e^{i \theta} d \theta=i \cdot \int_{0}^{\pi} e^{\frac{3 i \theta}{2}} d \theta=\frac{2}{3} e^{\frac{3 i \theta}{2}}\right]_{0}^{z}$

$$
=\frac{2}{3}\left(e^{\frac{3 \pi i}{2}}-e^{0}\right)=\frac{2}{3} \cdot(-i-1)
$$

$A \operatorname{long} C_{\varepsilon}: \quad z=x,-1 \leq x \leq 0 \Rightarrow z_{\substack{1 \\ d_{2}}}^{\prime}=1 . \quad f(x)=f\left((-x) \cdot e^{i \pi}\right)=(-x)^{\frac{1}{2}} e^{\frac{7 \pi}{2}}$ so $\left.\int_{C_{2}} f(z) d z=\int_{-1}^{0}(-x)^{\frac{1}{2}} \cdot e^{\frac{i \pi}{2}} \cdot\right) \cdot d x=i \cdot\left[-\frac{2}{3}(-x)^{\frac{3}{2}}\right]_{-1}^{0}=i \cdot \frac{2}{3} \cdot 1^{\frac{3}{2}}=\frac{2}{3}$

Along $C_{3}: \quad z=x, 0 \leq x \leq 1 \Rightarrow z^{\prime}=1 . f(x)=f\left(x \cdot e^{i 0}\right)=x^{\frac{1}{2}}$ so $\int_{C_{3}} f(z) d z=\int_{0}^{1} x^{\frac{1}{2}} d x=\frac{2}{3} x x^{\frac{3}{2}} \int_{0}^{1}=\frac{2}{3}$.
So $\int_{C} f(z) d z=\int_{C_{1}}+\int_{C_{2}}+\int_{C_{3}}=\frac{2}{3}(-i-1)+\frac{2}{3} i+\frac{2}{3}=0$.
The Caucly-Goursat theorem does not apply because $f(z)=\sqrt{r} \cdot e^{\frac{i \theta}{2}}$ is not analyse cot the origin 0 which is on the boundary C.

Generated by CamScanner

P161. 7. By stoke's farmad:

$$
\begin{aligned}
\frac{1}{2 i} \int_{C} \bar{z} d z & =\frac{1}{2 i} \iint_{D} d(\bar{z} d z)=\frac{1}{2 i} \iint_{D} d \bar{z} \wedge d z \\
& \left.=\frac{1}{2 i} \cdot \iint_{D}(d x-i d y) N d x+i d y\right)=\frac{1}{2 i} \iint_{D} 2 i d x n d y \\
& =\iint_{D} d x a d y=\iint_{D} d A=\text { Area }(D) .
\end{aligned}
$$

Or write it out:

$$
\begin{aligned}
& \text { Or urite it out: } \\
& \left.\frac{1}{2 i} \int_{C} \bar{z} d z=\frac{1}{2 i} \int_{C}(x-i y)(d x+i d y)=\frac{1}{2 i} \int_{C}(x-i y) d x+i / x-i y\right) d y
\end{aligned}
$$

Civen's
toroens

$$
\begin{aligned}
& =\frac{1}{2 i} \iint_{D}\left(\frac{\partial}{\partial x}(i(x-i y))-\frac{\partial}{\partial y}(x-i y)\right) d x a d y \\
& =\frac{1}{2 i} \iint_{D} \cdot(i-(-i)) d x a d y=\iint_{D} d x n d y=\iint_{D} d A=\text { Area(D). }
\end{aligned}
$$

P170 2. (a)

$$
\begin{aligned}
& \text { (a) } \int_{|z-i|=2} \frac{1}{z^{2}+4} d z=\int_{\mid(z-i \mid=2} \frac{d z}{(z+2 i)(z-2 i)} \\
& =\left.2 \pi i \cdot \frac{1}{z+2 i}\right|_{z=2 i}=2 \pi i \cdot \frac{1}{4 i}=\frac{\pi}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \quad=\left.2 \pi i \cdot \frac{1}{z+2 i}\right|_{z=2 i}=2 \pi i \cdot \frac{1}{4 i}=\frac{\pi}{2} \\
& \left.(b) \cdot \int_{|z-i|=2} \frac{d z}{\left(z^{2}+4\right)^{2}}=\int_{|z-i|=2} \frac{d z}{(z+2 i)^{2}(z-2 i)^{2}}=\frac{2 \pi i}{1!} \frac{d}{d z}(z+2 i)^{-2}\right]_{z=2 i} \\
& =\left.2 \pi i \cdot(-2) \cdot(z+2 i)^{-3}\right|_{z=2 i}=-\frac{4 \pi)^{i}}{(4 i)^{3}}=-\frac{\pi i}{-16 i}=\frac{\pi}{16}
\end{aligned}
$$

$$
\text { P170.3. } \int_{|z|=3} \frac{2 s^{2}-s-2}{s-2} d s=\left.2 \pi i\left(2 s^{2}-s-2\right)\right|_{s=2}=2 \pi i(8-2-2)=8 \pi i
$$

$$
\int_{|z|=3} \frac{2 s^{2}-s-2}{s-z} d s=0 \quad \text { when }|z|>3 \text { because } \frac{2 s^{2}-s-2}{s-z} \text { is aralyitz }
$$ reside $|s| \leq 3$.

4. When z is inside C, then

$$
g(z)=\int_{C} \frac{s^{3}+2 s}{(s-z)^{3}} d s=\left.\frac{2 \pi i}{2!} \cdot \frac{d^{2}}{d s^{2}}\left(s^{3}+2 s\right)\right|_{s=z}=\left.\pi i \cdot 6 s\right|_{s=z}=6 \pi i z
$$

when z is outside C, then $\frac{s^{3}+2 s}{(s-z)^{3}}$ is cunalyoie on the region bounded by C.
so. $g(z)=0$ by Gauchy-Gtursot theorem.

$$
\begin{aligned}
& \text { 7. } \int_{|z|=1} \frac{e^{a z}}{z} d z=\left.2 \pi i \cdot e^{a z}\right|_{z=0}=2 \pi i \cdot 1=2 \pi i \text {. } \\
& |z|=1 \Leftrightarrow z=e^{i \theta},-z \leqslant \theta \leqslant \pi \text {. } z^{\prime}(\theta)=i \cdot e^{r \theta} \text {. So } e^{a \cos \theta} e^{i \cdot a \sin \theta} \\
& 2 \pi i=\int_{|z|=1} \frac{e^{a z}}{z} d z=\int_{\pi \pi}^{\pi 0} \frac{e^{a e^{i \theta}}}{e^{i t}} \cdot i e^{i \theta} d \theta=i \cdot \int_{-\pi}^{\pi} \cdot e^{a(\cos \theta+\sin \theta)^{\prime \prime}} d \theta \\
& =i \cdot \int_{-\pi}^{\pi} \cdot e^{a \cos \theta} \cdot(\cos (a \sin \theta)+i \sin (a \sin \theta)) d \theta \\
& \Rightarrow 2 \pi=\int_{-\pi}^{\pi} e^{a \cos \theta} \cos (a \sin \theta) d \theta=2 \cdot \int_{0}^{\pi} e^{a \cos \theta} \cos (a \sin t) d \theta \\
& \text { even funstorn } \\
& \Rightarrow \int_{0}^{2} e^{\cos \theta} \cos (a \sin \theta) d \theta=\pi . \quad\left(\int_{-2}^{2} e^{c \cos \theta} \cdot \sin (a \sin \theta) d \theta=0 \text { becausefodd } f d t\right) .
\end{aligned}
$$

Pant2 (a) $\int_{|z|=\frac{1}{2}} \frac{z-3}{z^{2}-1} d z=0$ because $\frac{z-3}{z^{2}-1}$ is anelyio for $|z| \leq \frac{1}{2}$
(b)

$$
\int_{|z-1|=1} \frac{z-3}{z^{2}-1} d z=\int_{|z-1|=1} \frac{z-3}{(z+1)(z-1)} d z=\left.2 \pi i \cdot \frac{z-3}{z+1}\right|_{z=1}=2 \pi i \cdot \frac{-2}{2}=-2 \pi i
$$

(c)

$$
\int_{|z|=2} \frac{(z-3)}{(z-1)^{2}} d z=\left.\frac{2 \pi i}{1!} \frac{d}{d z}(z-3)\right|_{z=1}=2 \pi i \cdot 1=2 \pi i
$$

(d)

$$
\begin{aligned}
\int_{|z|=2} \frac{1}{(z-1)^{2}(z-3)} d z & =\left.\frac{2 \pi i}{1!} \frac{d}{d z}\left(\frac{1}{z-3}\right)\right|_{z=1}=\left.2 \pi i \cdot \frac{1}{(z-3)^{2}}\right|_{z=1} \\
& =2 \pi i \cdot \frac{1}{-4}=-\frac{\pi i}{2} .
\end{aligned}
$$

2*. $\int_{C} f(z) d z=\int_{C}(u+i v) \cdot(d x+i d y)=\int_{C} \cdot(u+i v) d x+i(u+i v) d y$
Green's Jomula $\iint_{D}\left(\frac{\partial}{\partial x}(i(u+i v))-\frac{\partial}{\partial y}(u+i v)\right) d x n d y$

$$
\begin{aligned}
& =\iint_{D}\left(\frac{\partial}{\partial x}(i(u+i v))-\frac{\partial}{\partial y}(u+i v)\right) d x n d y \\
& =\iint_{D}\left[\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(u+i v)\right] \cdot(2 i d x n d y) \\
& =\iint_{D}\left(\frac{\partial}{\partial z} f(z)\right)(2 \cdot d z \cdot(2 d z-i d y) N(d u+i d y)
\end{aligned}
$$

EXAMPLE 1. Let C be the arc of the circle $|z|=2$ from $z=2$ to $z=2 i$ that lies in the first quadrant (Fig. 47). Inequality (6) can be used to show that

$$
\begin{equation*}
\left|\int_{C} \frac{z-2}{z^{4}+1} d z\right| \leq \frac{4 \pi}{15} \tag{7}
\end{equation*}
$$

This is done by noting first that if z is a point on C, then

$$
|z-2|=|z+(-2)| \leq|z|+|-2|=2+2=4
$$

and

$$
\left|z^{4}+1\right| \geq\left||z|^{4}-1\right|=15
$$

Thus, when z lies on C,

$$
\left|\frac{z-2}{z^{4}+1}\right|=\frac{|z-2|}{\left|z^{4}+1\right|} \leq \frac{4}{15}
$$

By writing $M=4 / 15$ and observing that $L=\pi$ is the length of C, we may now use inequality (6) to obtain inequality (7).

FIGURE 47

EXAMPLE 2. Let C_{R} denote the semicircle

$$
z=R e^{i \theta} \quad(0 \leq \theta \leq \pi)
$$

from $z=R$ to $z=-R$, where $R>3$ (Fig. 48). It is easy to show that

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{(z+1) d z}{\left(z^{2}+4\right)\left(z^{2}+9\right)}=0 \tag{8}
\end{equation*}
$$

without actually evaluating the integral. To do this, we observe that if z is a point on C_{R},

$$
\begin{gathered}
|z+1| \leq|z|+1=R+1 \\
\left|z^{2}+4\right| \geq\left||z|^{2}-4\right|=R^{2}-4
\end{gathered}
$$

and

$$
\left|z^{2}+9\right| \geq\left||z|^{2}-9\right|=R^{2}-9 .
$$

This means that if z is on C_{R} and $f(z)$ is the integrand in integral (8), then

$$
|f(z)|=\left|\frac{z+1}{\left(z^{2}+4\right)\left(z^{2}+9\right)}\right|=\frac{|z+1|}{\left|z^{2}+4\right|\left|z^{2}+9\right|} \leq \frac{R+1}{\left(R^{2}-4\right)\left(R^{2}-9\right)}=M_{R}
$$

where M_{R} serves as an upper bound for $|f(z)|$ on C_{R}. Since the length of the semicircle is πR, we may refer to the theorem in this section, using

$$
M_{R}=\frac{R+1}{\left(R^{2}-4\right)\left(R^{2}-9\right)} \quad \text { and } \quad L=\pi R
$$

to write

$$
\begin{equation*}
\left|\int_{C_{R}} \frac{(z+1) d z}{\left(z^{2}+4\right)\left(z^{2}+9\right)}\right| \leq M_{R} L \tag{9}
\end{equation*}
$$

where

$$
M_{R} L=\frac{\pi\left(R^{2}+R\right)}{\left(R^{2}-4\right)\left(R^{2}-9\right)} \cdot \frac{\frac{1}{R^{4}}}{\frac{1}{R^{4}}}=\frac{\pi\left(\frac{1}{R^{2}}+\frac{1}{R^{3}}\right)}{\left(1-\frac{4}{R^{2}}\right)\left(1-\frac{9}{R^{2}}\right)}
$$

This shows that $M_{R} L \rightarrow 0$ as $R \rightarrow \infty$, and limit (8) follows from inequality (9).

EXERCISES

1. Without evaluating the integral, show that
(a) $\left|\int_{C} \frac{z+4}{z^{3}-1} d z\right| \leq \frac{6 \pi}{7}$;
(b) $\left|\int_{C} \frac{d z}{z^{2}-1}\right| \leq \frac{\pi}{3}$
when C is the arc that was used in Example 1, Sec. 47.
2. Let C denote the line segment from $z=i$ to $z=1$ (Fig. 49), and show that

$$
\left|\int_{C} \frac{d z}{z^{4}}\right| \leq 4 \sqrt{2}
$$

without evaluating the integral.
Suggestion: Observe that of all the points on the line segment, the midpoint is closest to the origin, that distance being $d=\sqrt{2} / 2$.

3. Show that if C is the boundary of the triangle with vertices at the points $0,3 i$, and -4 , oriented in the counterclockwise direction (see Fig. 50), then

$$
\left|\int_{C}\left(e^{z}-\bar{z}\right) d z\right| \leq 60 .
$$

Suggestion: Note that $\left|e^{z}-\bar{z}\right| \leq e^{x}+\sqrt{x^{2}+y^{2}}$ when $z=x+i y$.

FIGURE 50
4. Let C_{R} denote the upper half of the circle $|z|=R(R>2)$, taken in the counterclockwise direction. Show that

$$
\left|\int_{C_{R}} \frac{2 z^{2}-1}{z^{4}+5 z^{2}+4} d z\right| \leq \frac{\pi R\left(2 R^{2}+1\right)}{\left(R^{2}-1\right)\left(R^{2}-4\right)}
$$

Then, by dividing the numerator and denominator on the right here by R^{4}, show that the value of the integral tends to zero as R tends to infinity. (Compare with Example 2 in Sec. 47.)
5. Let C_{R} be the circle $|z|=R(R>1)$, described in the counterclockwise direction. Show that

$$
\left|\int_{C_{R}} \frac{\log z}{z^{2}} d z\right|<2 \pi\left(\frac{\pi+\ln R}{R}\right)
$$

and then use l'Hospital's rule to show that the value of this integral tends to zero as R tends to infinity.
6. Let C_{ρ} denote a circle $|z|=\rho(0<\rho<1)$, oriented in the counterclockwise direction, and suppose that $f(z)$ is analytic in the disk $|z| \leq 1$. Show that if $z^{-1 / 2}$ represents any particular branch of that power of z, then there is a nonnegative constant M, independent of ρ, such that

$$
\left|\int_{C_{\rho}} z^{-1 / 2} f(z) d z\right| \leq 2 \pi M \sqrt{\rho}
$$

Thus show that the value of the integral here approaches 0 as ρ tends to 0 .
Suggestion: Note that since $f(z)$ is analytic, and therefore continuous, throughout the disk $|z| \leq 1$, it is bounded there (Sec. 18).
maximum value of $|f(z)|$ on C_{R}, then

$$
\begin{equation*}
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M_{R}}{R^{n}} \quad(n=1,2, \ldots) \tag{2}
\end{equation*}
$$

Inequality (2) is called Cauchy's inequality and is an immediate consequence of the expression

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C_{R}} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}} \quad(n=1,2, \ldots),
$$

in the theorem in Sec. 55 when n is a positive integer. We need only apply the theorem in Sec. 47, which gives upper bounds for the moduli of the values of contour integrals, to see that

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!}{2 \pi} \cdot \frac{M_{R}}{R^{n+1}} 2 \pi R \quad(n=1,2, \ldots)
$$

where M_{R} is as in the statement of Theorem 3. This inequality is, of course, the same as inequality (2).

EXERCISES

1. Let C denote the positively oriented boundary of the square whose sides lie along the lines $x= \pm 2$ and $y= \pm 2$. Evaluate each of these integrals:
(a) $\int_{C} \frac{e^{-z} d z}{z-(\pi i / 2)}$;
(b) $\int_{C} \frac{\cos z}{z\left(z^{2}+8\right)} d z$;
(c) $\int_{C} \frac{z d z}{2 z+1}$;
(d) $\int_{C} \frac{\cosh z}{z^{4}} d z$;
(e) $\int_{C} \frac{\tan (z / 2)}{\left(z-x_{0}\right)^{2}} d z \quad\left(-2<x_{0}<2\right)$.
Ans. (a) 2π;
(b) $\pi i / 4$;
(c) $-\pi i / 2$;
(d) 0 ;
(e) $i \pi \sec ^{2}\left(x_{0} / 2\right)$.
2. Find the value of the integral of $g(z)$ around the circle $|z-i|=2$ in the positive sense when
(a) $g(z)=\frac{1}{z^{2}+4}$;
(b) $g(z)=\frac{1}{\left(z^{2}+4\right)^{2}}$.

$$
\text { Ans. (a) } \pi / 2 ; \quad \text { (b) } \pi / 16 \text {. }
$$

3. Let C be the circle $|z|=3$, described in the positive sense. Show that if

$$
g(z)=\int_{C} \frac{2 s^{2}-s-2}{s-z} d s \quad(|z| \neq 3)
$$

then $g(2)=8 \pi i$. What is the value of $g(z)$ when $|z|>3$?
4. Let C be any simple closed contour, described in the positive sense in the z plane, and write

$$
g(z)=\int_{C} \frac{s^{3}+2 s}{(s-z)^{3}} d s
$$

Show that $g(z)=6 \pi i z$ when z is inside C and that $g(z)=0$ when z is outside.
5. Show that if f is analytic within and on a simple closed contour C and z_{0} is not on C, then

$$
\int_{C} \frac{f^{\prime}(z) d z}{z-z_{0}}=\int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{2}}
$$

6. Let f denote a function that is continuous on a simple closed contour C. Following the procedure used in Sec. 56, prove that the function

$$
g(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s) d s}{s-z}
$$

is analytic at each point z interior to C and that

$$
g^{\prime}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s) d s}{(s-z)^{2}}
$$

at such a point.
7. Let C be the unit circle $z=e^{i \theta}(-\pi \leq \theta \leq \pi)$. First show that for any real constant a,

$$
\int_{C} \frac{e^{a z}}{z} d z=2 \pi i .
$$

Then write this integral in terms of θ to derive the integration formula

$$
\int_{0}^{\pi} e^{a \cos \theta} \cos (a \sin \theta) d \theta=\pi
$$

8. Show that $P_{n}(-1)=(-1)^{n}(n=0,1,2, \ldots)$, where $P_{n}(z)$ are the Legendre polynomials in Example 3, Sec. 55.

Suggestion: Note that

$$
\frac{\left(s^{2}-1\right)^{n}}{(s+1)^{n+1}}=\frac{(s-1)^{n}}{s+1}
$$

9. Follow the steps below to verify the expression

$$
f^{\prime \prime}(z)=\frac{1}{\pi i} \int_{C} \frac{f(s) d s}{(s-z)^{3}}
$$

in Sec. 56.
(a) Use expression (2) in Sec. 56 for $f^{\prime}(z)$ to show that

$$
\frac{f^{\prime}(z+\Delta z)-f^{\prime}(z)}{\Delta z}-\frac{1}{\pi i} \int_{C} \frac{f(s) d s}{(s-z)^{3}}=\frac{1}{2 \pi i} \int_{C} \frac{3(s-z) \Delta z-2(\Delta z)^{2}}{(s-z-\Delta z)^{2}(s-z)^{3}} f(s) d s
$$

(b) Let D and d denote the largest and smallest distances, respectively, from z to points on C. Also, let M be the maximum value of $|f(s)|$ on C and L the length of C. With the aid of the triangle inequality and by referring to the derivation of expression (2) in Sec. 56 for $f^{\prime}(z)$, show that when $0<|\Delta z|<d$, the value of the integral on the right-hand side in part (a) is bounded from above by

$$
\frac{\left(3 D|\Delta z|+2|\Delta z|^{2}\right) M}{(d-|\Delta z|)^{2} d^{3}} L
$$

(c) Use the results in parts (a) and (b) to obtain the desired expression for $f^{\prime \prime}(z)$.
10. Let f be an entire function such that $|f(z)| \leq A|z|$ for all z, where A is a fixed positive number. Show that $f(z)=a_{1} z$, where a_{1} is a complex constant.

Suggestion: Use Cauchy's inequality (Sec. 57) to show that the second derivative $f^{\prime \prime}(z)$ is zero everywhere in the plane. Note that the constant M_{R} in Cauchy's inequality is less than or equal to $A\left(\left|z_{0}\right|+R\right)$.
58. LIOUVILLE'S THEOREM AND THE FUNDAMENTAL THEOREM OF ALGEBRA
Cauchy's inequality in Theorem 3 of Sec. 57 can be used to show that no entire function except a constant is bounded in the complex plane. Our first theorem here, which is known as Liouville's theorem, states this result in a slightly different way.

Theorem 1. If a function f is entire and bounded in the complex plane, then $f(z)$ is constant throughout the plane.

To start the proof, we assume that f is as stated and note that since f is entire, Theorem 3 in Sec. 57 can be applied with any choice of z_{0} and R. In particular, Cauchy's inequality (2) in that theorem tells us that when $n=1$,

$$
\begin{equation*}
\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{M_{R}}{R} \tag{1}
\end{equation*}
$$

Moreover, the boundedness condition on f tells us that a nonnegative constant M exists such that $|f(z)| \leq M$ for all z; and, because the constant M_{R} in inequality (1) is always less than or equal to M, it follows that

$$
\begin{equation*}
\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{M}{R} \tag{2}
\end{equation*}
$$

where R can be arbitrarily large. Now the number M in inequality (2) is independent of the value of R that is taken. Hence that inequality holds for arbitrarily large values of R only if $f^{\prime}\left(z_{0}\right)=0$. Since the choice of z_{0} was arbitrary, this means that $f^{\prime}(z)=0$ everywhere in the complex plane. Consequently, f is a constant function, according to the theorem in Sec. 25.

The following theorem is called the fundamental theorem of algebra and follows readily from Liouville's theorem.

Theorem 2. Any polynomial

$$
P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n} \quad\left(a_{n} \neq 0\right)
$$

of degree $n(n \geq 1)$ has at least one zero. That is, there exists at least one point z_{0} such
that $P\left(z_{0}\right)=0$.

The proof here is by contradiction. Suppose that $P(z)$ is not zero for any value of z. Then the quotient $1 / P(z)$ is clearly entire. It is also bounded in the complex plane.

EXAMPLE. Consider the function $f(z)=(z+1)^{2}$ defined on the closed triangular region R with vertices at the points

$$
z=0, \quad z=2, \quad \text { and } \quad z=i .
$$

A simple geometric argument can be used to locate points in R at which the modulus $|f(z)|$ has its maximum and minimum values. The argument is based on the interpretation of $|f(z)|$ as the square of the distance d between -1 and any point z in R :

$$
d^{2}=|f(z)|=|z-(-1)|^{2} .
$$

As one can see in Fig. 74, the maximum and minimum values of d, and therefore $|f(z)|$, occur at boundary points, namely $z=2$ and $z=0$, respectively.

FIGURE 74

EXERCISES

1. Suppose that $f(z)$ is entire and that the harmonic function $u(x, y)=\operatorname{Re}[f(z)]$ has an upper bound u_{0}; that is, $u(x, y) \leq u_{0}$ for all points (x, y) in the $x y$ plane. Show that $u(x, y)$ must be constant throughout the plane.

Suggestion: Apply Liouville's theorem (Sec. 58) to the function $g(z)=\exp [f(z)]$.
2. Let a function f be continuous on a closed bounded region R, and let it be analytic and not constant throughout the interior of R. Assuming that $f(z) \neq 0$ anywhere in R, prove that $|f(z)|$ has a minimum value m in R which occurs on the boundary of R and never in the interior. Do this by applying the corresponding result for maximum values (Sec. 59) to the function $g(z)=1 / f(z)$.
3. Use the function $f(z)=z$ to show that in Exercise 2 the condition $f(z) \neq 0$ anywhere in R is necessary in order to obtain the result of that exercise. That is, show that $|f(z)|$ can reach its minimum value at an interior point when the minimum value is zero.
4. Let R region $0 \leq x \leq \pi, 0 \leq y \leq 1$ (Fig. 75). Show that the modulus of the entire function $f(z)=\sin z$ has a maximum value in R at the boundary point $z=(\pi / 2)+i$.

Suggestion: Write $|f(z)|^{2}=\sin ^{2} x+\sinh ^{2} y$ (see Sec. 37) and locate points in R at which $\sin ^{2} x$ and $\sinh ^{2} y$ are the largest.

FIGURE 75
5. Let $f(z)=u(x, y)+i v(x, y)$ be a function that is continuous on a closed bounded region R and analytic and not constant throughout the interior of R. Prove that the component function $u(x, y)$ has a minimum value in R which occurs on the boundary of R and never in the interior. (See Exercise 2.)
6. Let f be the function $f(z)=e^{z}$ and R the rectangular region $0 \leq x \leq 1,0 \leq y \leq \pi$. Illustrate results in Sec. 59 and Exercise 5 by finding points in R where the component function $u(x, y)=\operatorname{Re}[f(z)]$ reaches its maximum and minimum values.

$$
\text { Ans. } z=1, z=1+\pi i
$$

7. Let the function $f(z)=u(x, y)+i v(x, y)$ be continuous on a closed bounded region R, and suppose that it is analytic and not constant in the interior of R. Show that the component function $v(x, y)$ has maximum and minimum values in R which are reached on the boundary of R and never in the interior, where it is harmonic.

Suggestion: Apply results in Sec. 59 and Exercise 5 to the function $g(z)=-i f(z)$.
8. Let z_{0} be a zero of the polynomial

$$
P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n} \quad\left(a_{n} \neq 0\right)
$$

of degree $n(n \geq 1)$. Show in the following way that

$$
P(z)=\left(z-z_{0}\right) Q(z)
$$

where $Q(z)$ is a polynomial of degree $n-1$.
(a) Verify that

$$
z^{k}-z_{0}^{k}=\left(z-z_{0}\right)\left(z^{k-1}+z^{k-2} z_{0}+\cdots+z z_{0}^{k-2}+z_{0}^{k-1}\right) \quad(k=2,3, \ldots)
$$

(b) Use the factorization in part (a) to show that

$$
P(z)-P\left(z_{0}\right)=\left(z-z_{0}\right) Q(z)
$$

where $Q(z)$ is a polynomial of degree $n-1$, and deduce the desired result from this.
then,

$$
\rho_{N}(z)=S(z)-S_{N}(z)=\frac{z^{N}}{1-z} \quad(z \neq 1)
$$

Thus

$$
\left|\rho_{N}(z)\right|=\frac{|z|^{N}}{|1-z|}
$$

and it is clear from this that the remainders $\rho_{N}(z)$ tend to zero when $|z|<1$ but not when $|z| \geq 1$. Summation formula (10) is, therefore, established.

EXERCISES

1. Use definition (1), Sec. 60, of limits of sequences to show that

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n^{2}}+i\right)=i
$$

2. Let $\Theta_{n}(n=1,2, \ldots)$ denote the principal arguments of the numbers

$$
z_{n}=1+i \frac{(-1)^{n}}{n^{2}} \quad(n=1,2, \ldots)
$$

and point out why

$$
\lim _{n \rightarrow \infty} \Theta_{n}=0
$$

(Compare with Example 2, Sec. 60.)
3. Use the inequality (see Sec. 5) $\left|\left|z_{n}\right|-|z|\right| \leq\left|z_{n}-z\right|$ to show that

$$
\text { if } \lim _{n \rightarrow \infty} z_{n}=z, \text { then } \lim _{n \rightarrow \infty}\left|z_{n}\right|=|z|
$$

4. Write $z=r e^{i \theta}$, where $0<r<1$, in the summation formula (10), Sec. 61. Then, with the aid of the theorem in Sec. 61, show that

$$
\sum_{n=1}^{\infty} r^{n} \cos n \theta=\frac{r \cos \theta-r^{2}}{1-2 r \cos \theta+r^{2}} \quad \text { and } \quad \sum_{n=1}^{\infty} r^{n} \sin n \theta=\frac{r \sin \theta}{1-2 r \cos \theta+r^{2}}
$$

when $0<r<1$. (Note that these formulas are also valid when $r=0$.)
5. Show that a limit of a convergent sequence of complex numbers is unique by appealing to the corresponding result for a sequence of real numbers.
6. Show that

$$
\text { if } \quad \sum_{n=1}^{\infty} z_{n}=S, \quad \text { then } \quad \sum_{n=1}^{\infty} \overline{z_{n}}=\bar{S}
$$

7. Let c denote any complex number and show that

$$
\text { if } \quad \sum_{n=1}^{\infty} z_{n}=S, \quad \text { then } \quad \sum_{n=1}^{\infty} c z_{n}=c S
$$

Homework 10: Part 2

1. Let $w(t)$ be a complex valued function of a real variable t. Prove the following inequality using the definition of integrals via Riemann sums:

$$
\left|\int_{a}^{b} w(t) d t\right| \leq \int_{a}^{b}|w(t)| d t
$$

Note that a different proof using a rotation trick was given in Section 47 of the textbook.
2. Let $f(z)$ be a complex valued function of a complex variable z. Prove the following inequality by either using the definition of contour integrals via Riemann sum or use a parametrization to reduce to the above case:

$$
\left|\int_{C} f(z) d z\right| \leq \int_{C}|f(z)||d z| .
$$

Note that the right hand side is calculated by using a parametrization as:

$$
\int_{C}\left|f(z)\left\|d z\left|=\int_{a}^{b}\right| f(z(t))\right\| z^{\prime}(t)\right| d t
$$

with

$$
|d z|=\left|z^{\prime}(t)\right| d t=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t=d s
$$

being the arc-length differential element.

Pl38. 1.
(a).

$$
\begin{aligned}
& \left|\int_{C} \frac{z+4}{z^{3}-1}\right| \leqslant \int_{C}\left|\frac{z+4}{z^{3}-1}\right||d z| . \\
& \left(\operatorname{alorg} C:\left|\frac{z+4}{z^{3}-1}\right| \leqslant \frac{|z|+4}{|z|^{3}-1}=\frac{2+4}{z^{3}-1}=\frac{6}{7}\right) . \\
& \\
& \leqslant \int_{C} \frac{6}{7}|d z|=\frac{6}{7} \cdot \frac{2 \pi \cdot 2}{4}=\frac{6}{7} \pi .
\end{aligned}
$$

(b). $\operatorname{alog} C$: $\left|\frac{1}{z^{2}-1}\right| \leqslant \frac{1}{|z|^{2}-1}=\frac{1}{z^{2}-1}=\frac{1}{3}$

$$
\Rightarrow\left|\int_{C} \frac{d z}{z^{2}-1}\right| \leqslant \int_{C}\left|\frac{1}{z^{2}-1}\right||d z| \leqslant \frac{1}{3} \cdot \int_{C}|d z|=\frac{1}{3} \cdot \pi .
$$

2. $A \log g C$

length of $C=\sqrt{2}$

$$
\Rightarrow\left|\int_{C} \frac{d z}{z^{4}}\right| \leqslant \int_{C}\left|\frac{1}{z^{4}}\right||d z| \leqslant 4 \cdot \sqrt{2}
$$

P139. 5. Alorg C.

$$
\begin{aligned}
& \left|\frac{\log z}{z^{2}}\right|=\frac{|\log z|}{|z|^{2}}=\frac{|\ln R+i \operatorname{Ang}(z)|}{R^{2}} \\
& \leqslant \frac{\ln R+|\operatorname{Arg}(z)|}{R^{2}} \leqslant \frac{\ln R+\pi}{R^{2}} \\
& \Rightarrow\left|\int_{R} \frac{\log z}{R^{2}} d z\right| \leqslant 1
\end{aligned}
$$

P $171.5 \int_{C} \frac{f^{\prime}(z)}{z-z_{0}} d z=f^{\prime}(z) \cdot 2 \pi i=\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z$.
10. Canchy's formula for 2nd order derivative: $f^{\prime \prime}(z)=\frac{2!}{2 \pi i} \int_{\left|z-z_{0}\right|} \frac{f(z)}{} \frac{f\left(z-z_{0}\right)^{3}}{(z}$

$$
\begin{aligned}
\Rightarrow\left|f^{\prime \prime}\left(z_{0}\right)\right| & \leq\left|\frac{2}{2 \pi i^{i}}\right| \cdot \int_{\left|z-z_{0}\right| k R}\left|\frac{f(z)}{\left(z-z_{0} 3^{3}\right.}\right||d z| \leqslant \frac{1}{\pi} \int_{\left|z-z_{0}\right|=R} \frac{A|z|}{R^{3}}|d z| . \\
& \left.\leqslant \frac{A}{\pi R^{3}} \int\left|z-z_{0}\right|\left|z-z_{0}\right|+\left|z_{0}\right|\right) \cdot|d z|=\frac{A}{\pi R^{3}}\left(R+\left|z_{0}\right|\right) \cdot 2 \pi R . \\
& =\frac{2 A}{R^{2}}\left(R+\left|z_{0}\right|\right) \xrightarrow{R \rightarrow+\infty} 0 \text { for ary } z_{0} \in \mathbb{C} .
\end{aligned}
$$

$$
\Rightarrow f^{\prime \prime}(z) \equiv 0 \Rightarrow f^{\prime}(z)=a_{1} \text { constant. } \Rightarrow f(z)=a_{1} z+a_{0} .
$$

Now $f(0) \mid \leq A \cdot 0=0 \Rightarrow a_{0}=0$ so $f(z) \pm a_{1} z$.
a_{0}

PI77. 1.

$$
\begin{array}{ll}
\text { 7.1. } & u=\operatorname{Re}(f(z)) \leq u_{0} \\
\Rightarrow & \left|e^{f}\right|=\left|e^{u+i v}\right|=e^{u} \leq e^{u_{0}}
\end{array}
$$

Because e^{f} is entrie and bounded, by Lionille theorem

$$
\begin{aligned}
& e^{f}=\text { constant } \Rightarrow f=\text { constant } \Rightarrow u=\text { constant. } \\
&=C_{1} \\
& \log C_{1}
\end{aligned}
$$

2. $f(z) \neq 0$ in $R \Rightarrow \frac{1}{f(z)}$ is analytic in R. and continues in R
maximum
$\xrightarrow[\text { prole }]{\longrightarrow}\left|\frac{1}{f(z)}\right|$ has a maximum value M in R which f not constant $\mid f(z)$ occurs on the boundary of R and never in the interior.
$\Rightarrow|f(z)|$ hes a minimum value m in R which occurs on the boundary of R and never in the interior.
3. $f=u+i v$ contimerus, analyse, not constant
$\Rightarrow e^{-f}=e^{-(u+i v)}=e^{-u} \cdot e^{-i v}$ is contirumers, cnadyit, not constant maximum
principle
$\left|e^{-f}\right|=e^{-u}$ has a maximum in R witch occurs on the boundary of R and never in the noterior
$\Rightarrow u$ has a minimum in R which occurs on the boundary of R and never in the interior.

$$
\begin{aligned}
& \text { 6. } f(z)=e^{z}=e^{x+i y}=e^{x}(\cos y+i \sin y) \\
& u(x, y)=e^{x} \cos y . \quad\left\{\begin{array} { l }
{ u _ { x } = e ^ { x } \operatorname { c o s } y = 0 } \\
{ u _ { y } = - e ^ { x } \operatorname { s i n } y = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\cos y=0 \\
\sin y=0
\end{array}\right.\right. \text { No solution }
\end{aligned}
$$

\Rightarrow no critical points in the interior \Rightarrow max and min occur on the boundary.

P185. 2. $\quad z_{n}=1+i \frac{(-1)^{n}}{n!} \quad(n=1,2, \cdots)$.

$$
\lim _{n \rightarrow \infty} \operatorname{Arg}\left(Z_{n}\right)=\operatorname{Arg}(1)=0
$$

Pant 2: 1. $\left|\int_{a}^{b} w(t) d t\right|=\left|\lim _{N \rightarrow \infty} \sum_{i=1}^{N} w\left(t_{i}\right) \cdot \Delta t_{i}\right|=\lim _{N \rightarrow \infty}\left|\sum_{i=1}^{N} w\left(t_{i}\right) \Delta t_{i}\right|$

$$
\leqslant \lim _{N \rightarrow \infty} \sum_{i=1}^{N}|w(t, i)| \Delta t_{i}=\int_{a}^{b}|w(t)| d t
$$

2. $\left|\int C f(z) d z\right|=\left|\lim _{N \rightarrow \infty} \sum_{i=1}^{N} f\left(z_{i}\right) \Delta z_{i}\right|=\lim _{N \rightarrow \infty}\left|\sum_{i=1}^{N} f\left(z_{i}\right) \Delta z_{i}\right|$

$$
\Sigma \lim _{N \rightarrow \infty} \sum_{i=1}^{N}\left|f\left(z_{i}\right)\right| \cdot\left|\Delta z_{i}\right|=\int_{C}|f(z)| \cdot|d z|
$$

or

$$
\begin{aligned}
\left|\int_{C} f(z) d z\right| & =\left|\int_{C} f(z(t)) z(t) d t\right| \leqslant \int_{C}|f(z(t))||z(t)| d t \\
& =\int_{C}|f(z)| d z \mid
\end{aligned}
$$

2. Obtain the Taylor series

$$
e^{z}=e \sum_{n=0}^{\infty} \frac{(z-1)^{n}}{n!} \quad(|z-1|<\infty)
$$

for the function $f(z)=e^{2}$ by
(a) using $f^{(n)}(1)(n=0,1,2, \ldots)$;
(b) writing $e^{z}=e^{z-1} e$.
3. Find the Maclaurin series expansion of the function

$$
f(z)=\frac{z}{z^{4}+4}=\frac{z}{4} \cdot \frac{1}{1+\left(z^{4} / 4\right)} .
$$

$$
\text { Ans. } f(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{2 n+2}} z^{4 n+1} \quad(|z|<\sqrt{2}) .
$$

4. With the aid of the identity (see Sec. 37)

$$
\cos z=-\sin \left(z-\frac{\pi}{2}\right)
$$

expand $\cos z$ into a Taylor series about the point $z_{0}=\pi / 2$.
5. Use the identity $\sinh (z+\pi i)=-\sinh z$, verified in Exercise 7(a), Sec. 39, and the fact that $\sinh z$ is periodic with period $2 \pi i$ to find the Taylor series for $\sinh z$ about the point $z_{0}=\pi i$.

$$
\text { Ans. }-\sum_{n=0}^{\infty} \frac{(z-\pi i)^{2 n+1}}{(2 n+1)!} \quad(|z-\pi i|<\infty) .
$$

6. What is the largest circle within which the Maclaurin series for the function $\tanh z$ converges to tanh z ? Write the first two nonzero terms of that series.
7. Show that if $f(z)=\sin z$, then

$$
f^{(2 n)}(0)=0 \quad \text { and } \quad f^{(2 n+1)}(0)=(-1)^{n} \quad(n=0,1,2, \ldots) .
$$

Thus give an alternative derivation of the Maclaurin series (3) for $\sin z$ in Sec. 64 .
8. Rederive the Maclaurin series (4) in Sec. 64 for the function $f(z)=\cos z$ by (a) using the definition

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2}
$$

in Sec. 37 and appealing to the Maclaurin series (2) for e^{2} in Sec. 64 ;
(b) showing that

$$
f^{(2 n)}(0)=(-1)^{n} \quad \text { and } \quad f^{(2 n+1)}(0)=0 \quad(n=0,1,2, \ldots)
$$

9. Use representation (3), Sec. 64, for $\sin z$ to write the Maclaurin series for the function

$$
f(z)=\sin \left(z^{2}\right)
$$

and point out how it follows that

$$
f^{(4 n)}(0)=0 \quad \text { and } \quad f^{(2 n+1)}(0)=0 \quad(n=0,1,2, \ldots) .
$$

10. Derive the expansions
(a) $\frac{\sinh z}{z^{2}}=\frac{1}{z}+\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+3)!} \quad(0<|z|<\infty)$;
(b) $\frac{\sin \left(z^{2}\right)}{z^{4}}=\frac{1}{z^{2}}-\frac{z^{2}}{3!}+\frac{z^{6}}{5!}-\frac{z^{10}}{7!}+\cdots \quad(0<|z|<\infty)$.
11. Show that when $0<|z|<4$,

$$
\frac{1}{4 z-z^{2}}=\frac{1}{4 z}+\sum_{n=0}^{\infty} \frac{z^{n}}{4^{n+2}}
$$

66. LAURENT SERIES

We turn now to a statement of Laurent's theorem, which enables us to expand a function $f(z)$ into a series involving positive and negative powers of $\left(z-z_{0}\right)$ when the function fails to be analytic at z_{0}.

Theorem. Suppose that a function f is analytic throughout an annular domain $R_{1}<\left|z-z_{0}\right|<R_{2}$, centered at z_{0}, and let C denote any positively oriented simple closed contour around z_{0} and lying in that domain (Fig. 80). Then, at each point in the domain, $f(z)$ has the series representation

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}} \quad\left(R_{1}<\left|z-z_{0}\right|<R_{2}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}} \quad(n=0,1,2, \ldots) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{-n+1}} \quad(n=1,2, \ldots) \tag{3}
\end{equation*}
$$

where C is any positively oriented simple closed contour around the origin. Since $b_{1}=1$, then,

$$
\int_{C} e^{1 / z} d z=2 \pi i
$$

This method of evaluating certain integrals around simple closed contours will be developed in considerable detail in Chap. 6 and then used extensively in Chap. 7.

EXAMPLE 4. The function $f(z)=1 /(z-i)^{2}$ is already in the form of a Laurent series, where $z_{0}=i$. That is,

$$
\frac{1}{(z-i)^{2}}=\sum_{n=-\infty}^{\infty} c_{n}(z-i)^{n} \quad(0<|z-i|<\infty)
$$

where $c_{-2}=1$ and all of the other coefficients are zero. From expression (5), Sec. 66, for the coefficients in a Laurent series, we know that

$$
c_{n}=\frac{1}{2 \pi i} \int_{C} \frac{d z}{(z-i)^{n+3}} \quad(n=0, \pm 1, \pm 2, \ldots)
$$

where C is, for instance, any positively oriented circle $|z-i|=R$ about the point $z_{0}=i$. Thus [compare with Exercise 13, Sec. 46]

$$
\int_{C} \frac{d z}{(z-i)^{n+3}}= \begin{cases}0 & \text { when } n \neq-2 \\ 2 \pi i & \text { when } n=-2\end{cases}
$$

EXERCISES

1. Find the Laurent series that represents the function

$$
f(z)=z^{2} \sin \left(\frac{1}{z^{2}}\right)
$$

in the domain $0<|z|<\infty$.

$$
\text { Ans. } 1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \cdot \frac{1}{z^{4 n}} .
$$

2. Find a representation for the function

$$
f(z)=\frac{1}{1+z}=\frac{1}{z} \cdot \frac{1}{1+(1 / z)}
$$

in negative powers of z that is valid when $1<|z|<\infty$.
Ans. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{z^{n}}$.
3. Find the Laurent series that represents the function $f(z)$ in Example 1, Sec. 68, when $1<|z|<\infty$.

$$
\text { Ans. } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{z^{2 n+1}} \text {. }
$$

4. Give two Laurent series expansions in powers of z for the function

$$
f(z)=\frac{1}{z^{2}(1-z)},
$$

and specify the regions in which those expansions are valid.

$$
\begin{aligned}
& \text { specify the regions in which those expansions are valid. } \\
& \text { Ans. } \sum_{n=0}^{\infty} z^{n}+\frac{1}{z}+\frac{1}{z^{2}} \quad(0<|z|<1) ; \quad-\sum_{n=3}^{\infty} \frac{1}{z^{n}} \quad(1<|z|<\infty)
\end{aligned}
$$

5. The function

$$
f(z)=\frac{-1}{(z-1)(z-2)}=\frac{1}{z-1}-\frac{1}{z-2}
$$

which has the two singular points $z=1$ and $z=2$, is analytic in the domains (Fig. 84)

$$
D_{1}:|z|<1, \quad D_{2}: 1<|z|<2, \quad D_{3}: 2<|z|<\infty
$$

Find the series representation in powers of z for $f(z)$ in each of those domains.
Ans. $\sum_{n=0}^{\infty}\left(2^{-n-1}-1\right) z^{n}$ in $D_{1} ; \sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}+\sum_{n=1}^{\infty} \frac{1}{z^{n}}$ in $D_{2} ; \sum_{n=1}^{\infty} \frac{1-2^{n-1}}{z^{n}}$ in D_{3}.

FIGURE 84
6. Show that when $0<|z-1|<2$,

$$
\frac{z}{(z-1)(z-3)}=-3 \sum_{n=0}^{\infty} \frac{(z-1)^{n}}{2^{n+2}}-\frac{1}{2(z-1)}
$$

7. (a) Let a denote a real number, where $-1<a<1$, and derive the Laurent series

$$
\frac{a}{z-a}=\sum_{n=1}^{\infty} \frac{a^{n}}{z^{n}} \quad(|a|<|z|<\infty)
$$

(b) After writing $z=e^{i \theta}$ in the equation obtained in part (a), equate real parts and then imaginary parts on each side of the result to derive the summation formulas

$$
\sum_{n=1}^{\infty} a^{n} \cos n \theta=\frac{a \cos \theta-a^{2}}{1-2 a \cos \theta+a^{2}} \quad \text { and } \quad \sum_{n=1}^{\infty} a^{n} \sin n \theta=\frac{a \sin \theta}{1-2 a \cos \theta+a^{2}}
$$ where $-1<a<1$. (Compare with Exercise 4, Sec. 61.)

P196. 3

$$
\begin{aligned}
\frac{z}{z^{4}+4} & =\frac{z}{4} \cdot \frac{1}{1+\frac{z^{4}}{4}}=\frac{z}{4} \cdot \sum_{n=0}^{\infty}(-1)^{n} \cdot\left(\frac{z^{4}}{4}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{4 n+1}}{4 \cdot 4^{n}} \\
& \left.=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{z^{4 n+1}}{2^{2 n+z}} \quad\left|\frac{z^{4}}{4}\right|<|\Leftrightarrow| z \right\rvert\,<4^{\frac{1}{4}}=\sqrt{2}
\end{aligned}
$$

4. $\cos z=-\sin \left(z-\frac{\pi}{2}\right)=-\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(z-\frac{\pi}{+}\right)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty}(-1)^{n+1} \frac{\left(z-\frac{\pi}{2}\right)^{i+1}}{(2 n+1)!} \quad \forall z \in \mathbb{C}$.
5.

$\tanh z=\frac{\sinh z}{\cosh z} \quad \cosh z=\frac{e^{z}+e^{-z}}{2}$
$\cosh z=0 \Leftrightarrow \frac{e^{z}+e^{-z}}{2}=0 \Leftrightarrow e^{-z}\left(\left(e^{z}\right)^{2}+1\right)=0 \Leftrightarrow\left(e^{z}\right)^{2}=-1$

$$
\begin{aligned}
& \Leftrightarrow e^{z}= \pm i \Leftrightarrow z=\log (\pm i)=\ln 1+i \cdot \arg (\pm i) \\
& \Leftrightarrow z=i\left(\frac{4 n+1}{2} \pi\right) \operatorname{ori}(4 n-1) \cdot \frac{\pi}{2} \Leftrightarrow \begin{array}{l}
=i\left(\pm \frac{\pi}{2}+2 \pi \cdot n\right) \\
z=i(2 m+1) \cdot \frac{\pi}{2}=i\left(m \cdot \pi+\frac{\pi}{2}\right)
\end{array} .
\end{aligned}
$$

\Rightarrow Largest circle within which te Maclaunin series for $\tan H(z)$ converges to tank is $\left\{|z|=\frac{\pi}{2}\right\}$.
$\tanh z=C_{0}+c_{1} z+C_{2} z^{2}+\cdots \quad|z|<\frac{\pi}{2}$

$$
\begin{aligned}
& \left.C_{0}=\tanh (0)=0 . \quad C_{1}=(\tanh (z))(10)=\frac{1}{\cosh ^{2} z}\right]_{z=0}=1 . \\
& \left.\left.C_{z}=\frac{1}{2!} \frac{d^{2}}{d z^{2}} \tanh (z)\right]_{z=0}=\frac{1}{2} \cdot(-2)(\cosh z)^{-3} \cdot \sin ^{2} z\right]_{z=0}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d z} \tanh z=\frac{d}{d z}\left(\frac{\sinh z}{\cosh z}\right)=\frac{\cosh z \cosh z-\sin \cdot z \cdot \sin z}{\cosh ^{2} z}=\frac{1}{\cos ^{2} z} \\
& \frac{d^{2}}{d z^{2}} \tanh z=\frac{d}{d z}(\cosh z)^{-2}=-2(\cosh z)^{-3} \cdot \sin h z \\
& \frac{d^{3}}{d z^{3}} \tanh z=\frac{d}{d z}\left(-2 \cdot(\cosh z)^{-3} \cdot \sinh z\right)=6(\operatorname{con} z)^{-4} \cdot \sin h^{2} z-2(\cosh z)^{-3} \cosh z
\end{aligned}
$$

tank is odd for, so $C_{2 n}=0$.

$$
\left.C_{1}=f^{\prime}(0)=\frac{1}{\cosh ^{2} z}\right]_{z=0}=1 . C_{3}=\frac{1}{3!} f^{\prime \prime \prime}(0)=\frac{1}{6}(6 \cdot 0-2 \cdot 1)=-\frac{1}{3}
$$

So. tanh= $z-\frac{1}{3} z^{3}+\cdots \quad|z|<\frac{\pi}{2}$.
9.

$$
\begin{aligned}
f(z) & =\sin \left(z^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(z^{2}\right)^{2 n+1}}{\left(z^{n+1}\right)!}=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{z^{4 n+2}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n}
\end{aligned}
$$

$$
\Rightarrow \quad f^{(4 n)}(0)=0 \text {, and } f^{(x+1)}(0)=0
$$

because only terms int exporerits $4 n+2$ are presented.
11. $\frac{1}{4 z-z^{2}}=\frac{1}{z} \cdot \frac{1}{4-z}=\frac{1}{z} \cdot \frac{1}{4\left(1-\frac{z}{4}\right)}=\frac{1}{z} \cdot \frac{1}{4} \cdot \sum_{n=0}^{\infty}\left(\frac{z}{4}\right)^{n} \quad\left(\left|\frac{z}{4}\right|<1\right)$.

$$
\begin{aligned}
& \quad=\frac{1}{4 z}\left(1+\sum_{n=1}^{\infty} \frac{z^{n}}{4^{n}}\right)=\frac{1}{4 z}+\sum_{n=1}^{\infty} \frac{z^{n-1}}{4^{n+1}} \\
& =\frac{1}{m=1}=\frac{1}{4 z}+\sum_{m=0}^{\infty} \frac{z^{n}}{4^{n+2}}=\frac{1}{4 z}+\sum_{n=0}^{\infty} \frac{z^{n}}{4^{n+2}} \text { for } 0<|z|<4
\end{aligned}
$$

P205.

$$
\begin{aligned}
z^{2} \sin \left(\frac{1}{z^{2}}\right) & =z^{2} \cdot \sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{1}{(2 n+1)!}\left(\frac{1}{z^{2}}\right)^{2 n+1} \\
& =z^{2} \cdot\left(\frac{1}{z^{2}}+\sum_{n=1}^{\infty}\left(\frac{(-1)^{n}}{(2 n+1)!}-\frac{1}{z^{4 n+2}}\right)\right. \\
& =1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1!} \frac{1}{z^{4 n}} .
\end{aligned}
$$

4. $f(z)=\frac{1}{z^{2}(1-z)}$.

In the cunnulus $\circ|z|<1$.

$$
\begin{aligned}
f(z) & =\frac{1}{z^{2}} \frac{1}{1-z}=\frac{1}{z^{2}} \sum_{n=0}^{\infty} z^{n}=\frac{1}{z^{2}}\left(1+z+\sum_{n=2}^{\infty} z^{n}\right)=\frac{1}{z^{2}}+\frac{1}{z}+\sum_{n=2}^{\infty} z^{n-2} \\
& =\frac{1}{z^{2}}+\frac{1}{z}+\sum_{n=0}^{\infty} z^{n} \quad \quad 0<|z|<1
\end{aligned}
$$

In the cunnulus $|z|>1$:

$$
\begin{aligned}
f(z) & =\frac{1}{z^{2}} \cdot \frac{1}{z\left(\frac{1}{z}-1\right)}=-\frac{1}{z^{3}} \cdot \frac{1}{1-\frac{1}{z}}=-\frac{1}{z^{3}} \cdot \sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n}=-\sum_{n=0}^{\infty} \frac{1}{z^{n+3}} \\
& =-\frac{\infty}{n=3} \frac{1}{z^{n}} . \quad|z|>\mid
\end{aligned}
$$

$$
\text { 5. } \begin{aligned}
f(z) & =\frac{-1}{(z-1)(z-2)} \\
& =\frac{1}{z-1}-\frac{1}{z-2} .
\end{aligned}
$$

- annumus $|z|<1: \frac{1}{z-1}=-\frac{1}{1-z}=-\sum_{n=0}^{\infty} z^{n}$

$$
d^{\prime \prime} 3 k \quad \frac{1}{z-2}=-\frac{1}{2\left(-\frac{z}{2}\right)}=-\frac{1}{2} \cdot \sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n}=-\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}
$$

So. $f(z)=-\sum_{n=0}^{\infty} z^{n}-\left(-\sum_{n=0}^{\infty} \frac{z^{n}}{z^{n+1}}\right)=\sum_{n=0}^{\infty}\left(-1+\frac{1}{2^{n+1}}\right) z^{n}$.

$$
\begin{aligned}
& 1<|z|<2 \cdot \frac{1}{z-1}=+\frac{1}{z\left(1-\frac{1}{z}\right)}=\frac{1}{z} \cdot \frac{1}{1-\frac{1}{z}}=\frac{1}{z} \cdot \sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n}=\sum_{n=1}^{\infty} \frac{1}{z^{n}} \\
& \frac{1}{z-2}=-\frac{1}{2 \cdot\left(1-\frac{p}{2}\right)}=-\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}} \\
& \Rightarrow f(z)=\sum_{n=1}^{\infty} \frac{1}{z^{n}}-\left(-\sum_{n=0}^{\infty} \frac{z^{n}}{z^{n+1}}\right)=\sum_{n=1}^{\infty} \frac{1}{z^{n}}+\sum_{n=0}^{\infty} \frac{z^{n}}{z^{n+1}} . \\
& \text { - }|z|>2: \frac{1}{z-1}=\frac{1}{z \cdot\left(1-\frac{1}{z}\right)} \stackrel{\left|\frac{1}{z}\right|<1}{=} \frac{1}{z} \cdot \sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n}=\sum_{n=1}^{\infty}\left(\frac{1}{z}\right)^{n} \\
& \frac{1}{z-2}=\frac{1}{z\left(1-\frac{2}{z}\right)} \frac{\mid z k 1}{=} \frac{1}{z} \cdot \sum_{n=0}^{\infty}\left(\frac{2}{z}\right)^{n}=\sum_{n=0}^{\infty} \frac{z^{n}}{z^{n+1}}=\sum_{n=1}^{\infty} \frac{z^{n-1}}{z^{n}} \\
& \Rightarrow f(z)=\sum_{n=1}^{\infty}\left(\frac{1}{z}\right)^{n}-\sum_{n=1}^{\infty} \frac{2^{n-1}}{z^{n}}=\sum_{n=1}^{\infty} \frac{1-2^{n-1}}{z^{n}}
\end{aligned}
$$

6

$$
f(z)=\frac{z}{(z-1) \cdot(z-3)}=\frac{A}{z-1}+\frac{B}{z-3} \Rightarrow\left\{\begin{array} { l }
{ A + B = 1 } \\
{ - 3 A - B = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
A=-\frac{1}{2} \\
B=\frac{3}{2}
\end{array}\right.\right.
$$

$$
\Rightarrow f(z)=-\frac{1}{2} \cdot \frac{1}{z-1}+\frac{3}{2} \cdot \frac{1}{z-3}
$$

When $0<|z-1|<2$: $\frac{1}{z-1}=(z-1)^{-1}$.

$$
\begin{aligned}
\frac{1}{z-3} & =\frac{1}{(z-1)-2}=\frac{1}{2\left(\frac{z-1}{2}-1\right)}=-\frac{1}{2} \cdot \frac{1}{1-\frac{z-1}{2}} \\
& \left.=-\frac{1}{2} \cdot \sum_{n=0}^{\infty}\left(\frac{z-1}{2}\right)^{n}=-\sum_{n=0}^{\infty} \cdot \frac{(z-1)^{n}}{2^{n+1}} \right\rvert\,<1 \\
\Rightarrow f(z) & =-\frac{1}{2} \cdot(z-1)^{-1}+\frac{3}{2} \cdot\left(-\sum_{n=0}^{\infty} \frac{(z-1)^{n}}{2^{n+1}}\right)=-\frac{1}{2(z-1)}-3 \cdot \sum_{n=0}^{\infty} \frac{(z-1)^{n}}{2^{n+2}}
\end{aligned}
$$

7. (a). $\frac{a}{z-a}=\frac{a}{z\left(1-\frac{a}{z}\right)} \frac{\left|\frac{a}{z}\right|<1}{} \frac{a}{z} \cdot \sum_{n=0}^{\infty}\left(\frac{a}{z}\right)^{n}=\sum_{n=1}^{\infty} \frac{a^{n}}{z^{n}}$.
(b).

$$
\begin{aligned}
z= & e^{i \theta} \Rightarrow \frac{a}{z-a}=\frac{a}{e^{i \theta}-a}=\frac{a}{(\cos \theta+i \sin \theta)-a} \quad|a|<|z|<\infty \\
& =\frac{a \cdot((\cos \theta-a)-i \sin \theta)}{((\cos \theta-a)+i \sin \theta)((\cos \theta-a)-i \sin \theta)}=\frac{a \cos \theta-a)-i \cos \theta}{(\cos \theta-a)^{2}+\sin ^{2} \theta} \\
& =\frac{\left(a \cos \theta-a^{2}\right)-i \cdot a \sin \theta}{1-2 a \cdot \cos \theta+a^{2}}
\end{aligned}
$$

nigthendside: $\sum_{n=1}^{\infty} \frac{a^{n}}{z^{n}}=\sum_{n=1}^{\infty} \frac{a^{n}}{e^{i n} \theta}=\sum_{n=1}^{\infty} a^{n} \cdot(\cos (n \theta)-i \sin (n \theta))=\left(\sum_{N_{=1}}^{\infty} a^{n} \cos (n \theta)\right)$. compare both srodes to get:

$$
\left.\sum_{n=1}^{\infty} a^{n} \cos n \theta\right)=\frac{a \cos \theta-a^{2}}{1-2 \cos \theta+c^{2}}, \quad \sum_{n=1}^{\infty} a^{n} \sin (n \theta)=\frac{a \cdot \sin \theta}{1-2 \cos \theta+a^{2}}
$$

ved part
imegraty pant.

MAT 342

NAME :

FALL 2014
Practice MIDTERM II

ID :

THERE ARE SIX (6) PROBLEMS. THEY HAVE THE INDICATED VALUE. SHOW YOUR WORK DO NOT TEAR-OFF ANY PAGE NO CALCULATORS NO CELLS ETC.

ON YOUR DESK: ONLY test, pen, pencil, eraser.

1		50 pts
2		50 pts
3		50 pts
4		50 pts
5		50 pts
6		20 pts
Total		270 pts

!!! WRITE YOUR NAME, STUDENT ID AND LECTURE N. BELOW !!!

NAME :
ID :

1. $(50 \mathrm{pts})$
(1) Calculate $i^{i},\left|i^{i}\right|$ and $|i|^{i}$. What's the principal value of i^{i} ?
(2) Does $f(z)=1 / z$ have an antiderivative on the region $\mathbb{C} \backslash[1,+\infty)$? How about the region $\mathbb{C} \backslash[-1,+\infty)$?
2. (50pts) Denote by $D=\{|z| \leq 1, \operatorname{Re}(z) \geq 0\}$ and by $C=\partial D$ the boundary of D with positive orientation with respect to D. Calculate the following integrals:
(1)

$$
\begin{gather*}
\int_{C} \bar{z}^{2} d z \\
\int_{C}\left|\bar{z}^{2}\right||d z| \tag{2}\\
\int_{C} \sin (z) d z \tag{3}
\end{gather*}
$$

3. (50pts)

Calculate the following integrals:
(1)

$$
\int_{|z+i|=1} \frac{e^{\pi z}}{z^{2}+1} d z
$$

(2)

$$
\int_{|z|=2} \frac{d z}{(z-1)^{3}(z-3)^{3}}
$$

4. (50pts)
(1) Assume that $f(z)$ is an entire function satisfying $\operatorname{Im}(f(z))>1$. What can you say about the function $f(z)$? Explain the reason. How about with different assumption $\operatorname{Im}(f(z))<1$ or $\operatorname{Re}(f(z))>1$?
(2) Assume $f(z)=u(z)+i v(z)$ is analytic and continuous on the closed disk $\{|z| \leq 1\}$. Assume that $u(z)$ obtains a local minimum or local maximum at $z=0$. What can you say about the function $f(z)$? Explain the reason.
5. $(50 \mathrm{pts})$
(1) Calculate the series:

$$
\sum_{n=1}^{+\infty} \frac{1}{(2 i)^{n}}
$$

(2) Calculate the limit:

$$
\lim _{n \rightarrow+\infty} \operatorname{Arg}\left(i+(-1)^{n} \frac{100}{n}\right)
$$

6. (20pts)(Extra credit)

Estimate the following quantity from above without calculating it:

$$
\left|\int_{|z|=10} \frac{z-i}{z^{2}+z+1} d z\right| .
$$

1. (50pts)
(1) Calculate $i^{i},\left|i^{i}\right|$ and $|i|^{i}$. What's the principal value of i^{i} ?
(2) Does $f(z)=1 / z$ have an antiderivative on the region $\mathcal{C}[1,+\infty)$? How about the region $\mathbb{C} \backslash[-1,+\infty)$? $\mathbb{C}(\{0\} \cup[1,+\infty))$
(1)

$$
\begin{aligned}
& i^{i}=e^{i \log i}=e^{i\left(\ln 1+i\left(\frac{\pi}{2}+2 \pi \cdot n\right)\right)}=e^{-\left(\frac{2}{2}+2 \pi n\right)} n=0, \pm 1, \pm 2, \ldots \\
& \left|i^{i}\right|=e^{-\left(\frac{2}{2}+2 \pi n\right)} n=0, \pm 1, \pm 2, \cdots \\
& |i|^{i}=1^{i}=e^{i \log 1}=e^{i(\ln (+i \cdot 2 \pi n)}=e^{-2 \pi n} \quad n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

Principal value of $i^{i i}: \quad P \cdot V \cdot i^{i}=e^{i \cdot \log i}=e^{i\left(\ln 1+i \frac{\pi}{2}\right)}=e^{-\frac{\pi}{2}}$.
(2) $\frac{1}{z}$ does NOT have an
cuntiderivatite on the region $\mathbb{C} \backslash([1,+\infty) \cup\{0\})=D_{1}$

Otherntse, the integral of $\frac{1}{z}$ along any closed curve in D_{1} is zero. However $\int_{|z|=\frac{1}{2}} \frac{1}{z} d z=\int_{0} \pi z i d \theta=2 \pi i \neq 0$.

On the region $D_{2}=\mathbb{C} \backslash[-1, \infty)$
$\frac{1}{z}$ has an anstidentative given by the following branch of $\log z$:

$$
\log z=\ln |z|+i \cdot \arg z . \quad 0<\arg z<2 \pi
$$

or any branch st. $2 n \pi<\arg <(2 n+2) \pi$ Generated by CamScanner
2. (50pts) Denote by $D=\{|z| \leq 1, \operatorname{Re}(z) \geq 0\}$ and by $C=\partial D$ the boundary of D with positive orientation with respect to D. Calculate the following integrals:

$$
\begin{equation*}
\int_{C} \bar{z}^{2} d z \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\int_{C}\left|\bar{z}^{2}\right||d z| \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\int_{C} \sin (z) d z \tag{3}
\end{equation*}
$$

$$
\begin{array}{rl|l}
C=C_{1}+C_{2} . & C_{1}: \quad z=e^{i \theta}-\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2} . & C_{2}: z=\frac{(t) i}{} 0 \leqslant t \\
& z^{\prime}(\theta)=i \cdot e^{i \theta} \quad z^{\prime}(t) \mid=1 . & -1 \leqslant t \\
z^{\prime}(t)=-i . & \left|z^{\prime}(t)\right|=1
\end{array}
$$

(1)

$$
\begin{aligned}
\int_{C_{1}} \bar{z}^{2} d z & \left.=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cdot\left(e^{-i \theta}\right)^{2} \cdot i e^{j \theta} d \theta=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-i \theta} \cdot d(i \theta)=-e^{-i \theta}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \\
& =-e^{-i \cdot \frac{\pi}{2}}+e^{i \cdot \frac{\pi}{2}}=-(-i)+i=2 i \cdot \\
\int_{C_{2}} \bar{z}^{2} d z & \left.=\int_{-1}^{1}(t i)^{2} \cdot(-i) \cdot d t=+i \cdot \int_{-1}^{1} t^{2} d t=i \cdot \frac{t^{3}}{3}\right]_{-1}^{1}=i \cdot \frac{2}{3}
\end{aligned}
$$

so $\int_{c^{2}} \bar{z}^{2} d z=\int_{c_{1}}+\int_{c_{2}}=2 i+\frac{2 i}{3}=\frac{8 i}{3}$
(z). $\left.\left.\int_{C_{1}}\left|\bar{z}^{2}\right||d z|=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left|\left(e^{-i \theta}\right)^{2}\right| \cdot f i e^{i \theta} \right\rvert\, d \theta=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d \theta=\theta\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=\pi$.

$$
\left.\left.\int_{C_{2}}\left|\bar{z}^{2}\right||d z|=\int_{-1}^{1} \mid t t i\right)^{2}\left|1 \cdot d t=\int_{-1}^{1}\right| t^{2} \left\lvert\, d t=2 \cdot \int_{0}^{1} t^{2} d t=\frac{2}{3} t^{3}\right.\right]_{0}^{1}=\frac{2}{3}
$$

So $\int_{C}\left|\bar{z}^{2}\right||d z|=\pi+\frac{2}{3}$.
(3) Becams sin(z) is cunalytic on \bar{D}, by Candin-Goursot theorm.

$$
\int_{c}^{\infty} \sin (z) d z=0 .
$$

3. (50 pts)

Calculate the following integrals:
(1)

$$
\int_{|z+i|-1} \frac{e^{\pi z}}{z^{2}+1} d z
$$

(2)

$$
\int_{|z|=2} \frac{d z}{(z-1)^{3}(z-3)^{3}}
$$

(1).

$$
\begin{aligned}
& \int_{\mid(z+i)=1} \frac{e^{\pi z}}{z^{2}+1} d z=\int_{|z+i|) \mid} \frac{e^{\pi z}}{(z-i)(z+i)} d z \\
& \left.=2 \pi i \cdot \frac{e^{\pi z}}{z-i}\right]_{z=-i}=2 \pi i \cdot \frac{e^{-\lambda i}}{-i-i} \\
& =-\pi \cdot e^{-\lambda i} \\
& \\
& =\lambda .
\end{aligned}
$$

(2)

$$
\int_{|z|=2} \frac{d z}{(z-1)^{3}(z-3)^{3}} d z=\int_{|z|=2} \frac{\frac{1}{(z-3)^{3}}}{(z-1)^{3}} d z
$$

$$
\begin{aligned}
& \left.\left.=\frac{2 \pi i}{2!} \frac{d^{2}}{d z^{2}} \frac{1}{(z-3)^{3}}\right]_{z=1}=\pi \cdot \cdot(-3) \cdot(-4) \cdot(z-3)^{-5}\right]_{z=1} \\
& =+12 \pi i \cdot \frac{1}{(-2)^{5}}=-\frac{12 \pi i}{32}=\frac{-3 \pi i}{8}
\end{aligned}
$$

4. (50pts)
(1) Assume that $f(z)$ is an entire function satisfying $\operatorname{Im}(f(z))>1$. What can you
say about the function $f(z)$? Explain the reason. How about with different say about the function $f(z)$. Explain the reason. How about $\operatorname{Re}(f(z))>1$? (2) Assume $f(z)=u(z)+i v(z)$ is analytic and continuous on the closed disk $\{|z| \leq 1\}$. Assume that $u(z)$ obtains a local minimum or local maximum
$z=0$. What can you say about the function $f(z)$? Explain the reason.

$$
\begin{aligned}
& \text { (1) } \operatorname{Im}(f(z))=v(z)>1 \Rightarrow-v<-1 \\
& f(z)=u+i v \Rightarrow i \cdot f(z)=-v+i u \Rightarrow e^{i \cdot f(z)}=e^{-v} \cdot e^{i u} \\
& \Rightarrow\left|e^{i \cdot f(z)}\right|=e^{-v}<e^{-1} . \quad \text { Note that } e^{i \cdot f(z)} \text { is also endive }
\end{aligned}
$$

By Liowille Theorem for entire functions, we get $e^{i f(z)}=$ corot $=c_{1}$ $\Rightarrow f(z)=\frac{1}{2} \log c_{1}$ is constant.
Similarly, when $\operatorname{Im}(f(r))<1$, comider $e^{-i f}=e^{v-i u}$ then $\left|e^{-t t}\right|=e^{v}<e \& e^{-t f}$ entire $\Rightarrow e^{-i f}=$ constant - When $\operatorname{Re}(f(s)) \& 1$, cowider $e^{-f=e^{-u-i v} \text { instead. } f^{\frac{u}{\approx}} \text { constant. }}$
(2) consider $e^{f}=e^{u} \cdot e^{i v}$. $|e t|=e^{u}$

If u obtains a (local) maximum at $z=0$, then et obtains a (local) maximum at $z=0$. et is also andyefte on D. So by the Mari mum Modulus principle, $e^{t}=$ constant $\Rightarrow f=$ constant.
If u obtains a (local) minimum at $z=0$, then consider $e^{-f}=e^{-u-i v}$ and apply the same argument. We get again $e^{-t}=$ constant. $\Rightarrow f=$ coot

6
5. (50pts)
(1) Calculate the series:

$$
\sum_{n=1}^{+\infty} \frac{1}{(2 i)^{n}}
$$

(2) Calculate the limit:

$$
\lim _{n \rightarrow+\infty} \operatorname{Arg}\left(i+(-1)^{n} \frac{100}{n}\right)
$$

(1)

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{(2 i)^{n}} & =\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{1}{(2 i)^{n}}=\lim _{N \rightarrow \infty} \frac{\frac{1}{2 i}-\left(\frac{1}{2 i}\right)^{N+1}}{1-\frac{1}{2 i}} \\
& =\frac{\frac{1}{2 i}}{1-\frac{1}{2 i}}=\frac{1}{2 i-1}=\frac{-1-2 i}{(-1+2 i) \cdot(-1-2 i)} \\
& =\frac{1}{5}(-1-2 i) .
\end{aligned}
$$

(2). $\lim _{n \rightarrow+\infty} \operatorname{Arg}\left(i+(-1)^{n} \frac{100}{n}\right)=\operatorname{Arg}(i)=\frac{\pi}{2}$.
6. (20pts)(Extra credit)

Estimate the following quantity from above without calculating it:

$$
\begin{aligned}
& \left|\int_{|z|=10} \frac{z-i}{z^{2}+z+1} d z\right| . \\
& \left|\int_{(z|1| 0} \frac{z-1}{z^{2}+z+1} d z\right| \leq \int_{\mid z=10}\left|\frac{z-i}{z^{2}+z+1}\right||d z| \\
& \leqslant \int_{|z|=\mid} \frac{|z|+|,|}{|z|^{2}|z|-1}|d z| \\
& =\int_{|z|=\mid 0} \frac{10+1}{\left|0_{0}^{2}\right| p-1}|d z| \\
& =\frac{11}{89} \cdot 2 \pi 10=\frac{220 \pi}{89}
\end{aligned}
$$

converges to $f(z)$ at all points in some annular domain about z_{0}, then it is the Laurent series expansion for f in powers of $z-z_{0}$ for that domain.

The method of proof here is similar to the one used in proving Theorem 1. The hypothesis of this theorem tells us that there is an annular domain about z_{0} such that

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
$$

for each point z in it. Let $g(z)$ be as defined by equation (4), but now allow n to be a negative integer too. Also, let C be any circle around the annulus, centered at z_{0} and taken in the positive sense. Then, using the index of summation m and adapting Theorem 1 in Sec. 71 to series involving both nonnegative and negative powers of $z-z_{0}$ (Exercise 10), write

$$
\int_{C} g(z) f(z) d z=\sum_{m=-\infty}^{\infty} c_{m} \int_{C} g(z)\left(z-z_{0}\right)^{m} d z
$$

or

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}=\sum_{m=-\infty}^{\infty} c_{m} \int_{C} g(z)\left(z-z_{0}\right)^{m} d z \tag{9}
\end{equation*}
$$

Since equations (6) are also valid when the integers m and n are allowed to be negative, equation (9) reduces to

$$
\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}=c_{n} \quad(n=0, \pm 1, \pm 2, \ldots)
$$

which is expression (5), Sec. 66, for the coefficients c_{n} in the Laurent series for f in the annulus.

EXERCISES

1. By differentiating the Maclaurin series representation

$$
\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n} \quad(|z|<1)
$$

obtain the expansions

$$
\frac{1}{(1-z)^{2}}=\sum_{n=0}^{\infty}(n+1) z^{n} \quad(|z|<1)
$$

and

$$
\frac{2}{(1-z)^{3}}=\sum_{n=0}^{\infty}(n+1)(n+2) z^{n} \quad(|z|<1)
$$

2. By substituting $1 /(1-z)$ for z in the expansion

$$
\frac{1}{(1-z)^{2}}=\sum_{n=0}^{\infty}(n+1) z^{n} \quad(|z|<1),
$$

found in Exercise 1, derive the Laurent series representation

$$
\frac{1}{z^{2}}=\sum_{n=2}^{\infty} \frac{(-1)^{n}(n-1)}{(z-1)^{n}} \quad(1<|z-1|<\infty) .
$$

(Compare with Example 2, Sec. 71.)
3. Find the Taylor series for the function

$$
\frac{1}{z}=\frac{1}{2+(z-2)}=\frac{1}{2} \cdot \frac{1}{1+(z-2) / 2}
$$

about the point $z_{0}=2$. Then, by differentiating that series term by term, show that

$$
\frac{1}{z^{2}}=\frac{1}{4} \sum_{n=0}^{\infty}(-1)^{n}(n+1)\left(\frac{z-2}{2}\right)^{n} \quad(|z-2|<2)
$$

4. Show that the function defined by means of the equations

$$
f(z)= \begin{cases}(1-\cos z) / z^{2} & \text { when } z \neq 0 \\ 1 / 2 & \text { when } z=0\end{cases}
$$

is entire. (See Example 1, Sec. 71.)
5. Prove that if

$$
f(z)= \begin{cases}\frac{\cos z}{z^{2}-(\pi / 2)^{2}} & \text { when } z \neq \pm \pi / 2 \\ -\frac{1}{\pi} & \text { when } z= \pm \pi / 2\end{cases}
$$

then f is an entire function.
6. In the w plane, integrate the Taylor series expansion (see Example 1, Sec. 64)

$$
\frac{1}{w}=\sum_{n=0}^{\infty}(-1)^{n}(w-1)^{n} \quad(|w-1|<1)
$$

along a contour interior to its circle of convergence from $w=1$ to $w=z$ to obtain the representation

$$
\log z=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(z-1)^{n} \quad(|z-1|<1)
$$

7. Use the result in Exercise 6 to show that if

$$
f(z)=\frac{\log z}{z-1} \quad \text { when } z \neq 1
$$

and $f(1)=1$, then f is analytic throughout the domain

$$
0<|z|<\infty,-\pi<\operatorname{Arg} z<\pi
$$

8. Prove that if f is analytic at z_{0} and $f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(m)}\left(z_{0}\right)=0$, then the function g defined by means of the equations

$$
g(z)= \begin{cases}\frac{f(z)}{\left(z-z_{0}\right)^{m+1}} & \text { when } z \neq z_{0}, \\ \frac{f^{(m+1)}\left(z_{0}\right)}{(m+1)!} & \text { when } z=z_{0}\end{cases}
$$

is analytic at z_{0}.
9. Suppose that a function $f(z)$ has a power series representation

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

inside some circle $\left|z-z_{0}\right|=R$. Use Theorem 2 in Sec. 71, regarding term by term differentiation of such a series, and mathematical induction to show that

$$
f^{(n)}(z)=\sum_{k=0}^{\infty} \frac{(n+k)!}{k!} a_{n+k}\left(z-z_{0}\right)^{k} \quad(n=0,1,2, \ldots)
$$

when $\left|z-z_{0}\right|<R$. Then, by setting $z=z_{0}$, show that the coefficients $a_{n}(n=0,1,2, \ldots)$ are the coefficients in the Taylor series for f about z_{0}. Thus give an alternative proof of Theorem 1 in Sec. 72.
10. Consider two series

$$
S_{1}(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \quad \text { and } \quad S_{2}(z)=\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}},
$$

which converge in some annular domain centered at z_{0}. Let C denote any contour lying in that annulus, and let $g(z)$ be a function which is continuous on C. Modify the proof of Theorem 1, Sec. 71, which tells us that

$$
\int_{C} g(z) S_{1}(z) d z=\sum_{n=0}^{\infty} a_{n} \int_{C} g(z)\left(z-z_{0}\right)^{n} d z
$$

to prove that

$$
\int_{C} g(z) S_{2}(z) d z=\sum_{n=1}^{\infty} b_{n} \int_{C} \frac{g(z)}{\left(z-z_{0}\right)^{n}} d z
$$

Conclude from these results that if

$$
S(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}
$$

EXAMPLE. It is easy to see that the singularities of the function

$$
f(z)=\frac{z^{3}(1-3 z)}{(1+z)\left(1+2 z^{4}\right)}
$$

all lie inside the positively oriented circle C centered at the origin with radius 3. In order to use the theorem in this section, we write

$$
\begin{equation*}
\frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\frac{1}{z} \cdot \frac{z-3}{(z+1)\left(z^{4}+2\right)} \tag{8}
\end{equation*}
$$

Inasmuch as the quotient

$$
\frac{z-3}{(z+1)\left(z^{4}+2\right)}
$$

is analytic at the origin, it has a Maclaurin series representation whose first term is the nonzero number $-3 / 2$. Hence, in view of expression (8),

$$
\frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\frac{1}{z}\left(-\frac{3}{2}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+\cdots\right)=-\frac{3}{2} \cdot \frac{1}{z}+a_{1}+a_{2} z+a_{3} z^{2}+\cdots
$$

for all z in some punctured disk $0<|z|<R_{0}$. It is now clear that

$$
\operatorname{Res}_{z=0}\left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right]=-\frac{3}{2},
$$

and so

$$
\begin{equation*}
\int_{C} \frac{z^{3}(1-3 z)}{(1+z)\left(1+2 z^{4}\right)} d z=2 \pi i\left(-\frac{3}{2}\right)=-3 \pi i \tag{9}
\end{equation*}
$$

EXERCISES

1. Find the residue at $z=0$ of the function
(a) $\frac{1}{z+z^{2}}$;
(b) $z \cos \left(\frac{1}{z}\right)$;
(c) $\frac{z-\sin z}{z}$;
(d) $\frac{\cot z}{z^{4}}$;
(e) $\frac{\sinh z}{z^{4}\left(1-z^{2}\right)}$.

Ans.
(a) 1 ;
(b) $-1 / 2$;
(c) 0 ;
(d) $-1 / 45$;
(e) $7 / 6$
2. Use Cauchy's residue theorem (Sec. 76) to evaluate the integral of each of these functions around the circle $|z|=3$ in the positive sense:
(a) $\frac{\exp (-z)}{z^{2}}$;
(b) $\frac{\exp (-z)}{(z-1)^{2}}$;
(c) $z^{2} \exp \left(\frac{1}{z}\right)$;
(d) $\frac{z+1}{z^{2}-2 z}$.
Ans. (a) $-2 \pi i$;
(b) $-2 \pi i / e$;
(c) $\pi i / 3$;
(d) $2 \pi i$.
3. In the example in Sec. 76, two residues were used to evaluate the integral

$$
\int_{C} \frac{4 z-5}{z(z-1)} d z
$$

where C is the positively oriented circle $|z|=2$. Evaluate this integral once again by using the theorem in Sec. 77 and finding only one residue.
4. Use the theorem in Sec. 77, involving a single residue, to evaluate the integral of each of these functions around the circle $|z|=2$ in the positive sense:
(a) $\frac{z^{5}}{1-z^{3}}$;
(b) $\frac{1}{1+z^{2}}$;
(c) $\frac{1}{z}$.
Ans.
(a) $-2 \pi i$;
(b) 0 ;
(c) $2 \pi i$.
5. Let C denote the circle $|z|=1$, taken counterclockwise, and use the following steps to show that

$$
\int_{C} \exp \left(z+\frac{1}{z}\right) d z=2 \pi i \sum_{n=0}^{\infty} \frac{1}{n!(n+1)!}
$$

(a) By using the Maclaurin series for e^{z} and referring to Theorem 1 in Sec. 71, which justifies the term by term integration that is to be used, write the above integral as

$$
\sum_{n=0}^{\infty} \frac{1}{n!} \int_{C} z^{n} \exp \left(\frac{1}{z}\right) d z
$$

(b) Apply the theorem in Sec. 76 to evaluate the integrals appearing in part (a) to arrive at the desired result.
6. Suppose that a function f is analytic throughout the finite plane except for a finite number of singular points $z_{1}, z_{2}, \ldots, z_{n}$. Show that

$$
\operatorname{Res}_{z=z_{1}} f(z)+\operatorname{Res}_{z=z_{2}} f(z)+\cdots+\operatorname{Res}_{z=z_{n}} f(z)+\operatorname{Res}_{z=\infty} f(z)=0
$$

7. Let the degrees of the polynomials

$$
P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n} \quad\left(a_{n} \neq 0\right)
$$

and

$$
Q(z)=b_{0}+b_{1} z+b_{2} z^{2}+\cdots+b_{m} z^{m} \quad\left(b_{m} \neq 0\right)
$$

be such that $m \geq n+2$. Use the theorem in Sec. 77 to show that if all of the zeros of $Q(z)$ are interior to a simple closed contour C, then

$$
\int_{C} \frac{P(z)}{Q(z)} d z=0
$$

[Compare with Exercise 4(b).]

78. THE THREE TYPES OF ISOLATED SINGULAR POINTS

We saw in Sec. 75 that the theory of residues is based on the fact that if f has an isolated singular point at z_{0}, then $f(z)$ has a Laurent series representation

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\frac{b_{1}}{z-z_{0}}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\cdots+\frac{b_{n}}{\left(z-z_{0}\right)^{n}}+\cdots \tag{1}
\end{equation*}
$$

In the remaining sections of this chapter, we shall develop in greater depth the theory of the three types of isolated singular points just illustrated. The emphasis will be on useful and efficient methods for identifying poles and finding the corresponding residues.

EXERCISES

1. In each case, write the principal part of the function at its isolated singular point and determine whether that point is a removable singular point, an essential singular point,
or a pole:
(a) $z \exp \left(\frac{1}{z}\right)$;
(b) $\frac{z^{2}}{1+z}$;
(c) $\frac{\sin z}{z}$;
(d) $\frac{\cos z}{z}$;
(e) $\frac{1}{(2-z)^{3}}$.
2. Show that the singular point of each of the following functions is a pole. Determine the order m of that pole and the corresponding residue B.
(a) $\frac{1-\cosh z}{z^{3}}$;
(b) $\frac{1-\exp (2 z)}{z^{4}}$;
(c) $\frac{\exp (2 z)}{(z-1)^{2}}$.
Ans. (a) $m=1, B=-1 / 2$;
(b) $m=3, B=-4 / 3$;
(c) $m=2, B=2 e^{2}$.
3. Suppose that a function f is analytic at z_{0}, and write $g(z)=f(z) /\left(z-z_{0}\right)$. Show that
(a) if $f\left(z_{0}\right) \neq 0$, then z_{0} is a simple pole of g, with residue $f\left(z_{0}\right)$;
(b) if $f\left(z_{0}\right)=0$, then z_{0} is a removable singular point of g.

Suggestion: As pointed out in Sec. 62, there is a Taylor series for $f(z)$ about z_{0} since f is analytic there. Start each part of this exercise by writing out a few terms of that series.
4. Write the function

$$
f(z)=\frac{8 a^{3} z^{2}}{\left(z^{2}+a^{2}\right)^{3}} \quad(a>0)
$$

as

$$
f(z)=\frac{\phi(z)}{(z-a i)^{3}} \quad \text { where } \quad \phi(z)=\frac{8 a^{3} z^{2}}{(z+a i)^{3}} .
$$

Point out why $\phi(z)$ has a Taylor series representation about $z=a i$, and then use it to show that the principal part of f at that point is

$$
\frac{\phi^{\prime \prime}(a i) / 2}{z-a i}+\frac{\phi^{\prime}(a i)}{(z-a i)^{2}}+\frac{\phi(a i)}{(z-a i)^{3}}=-\frac{i / 2}{z-a i}-\frac{a / 2}{(z-a i)^{2}}-\frac{a^{2} i}{(z-a i)^{3}} .
$$

80. RESIDUES AT POLES

When a function f has an isolated singularity at a point z_{0}, the basic method for identifying z_{0} as a pole and finding the residue there is to write the appropriate Laurent series and to note the coefficient of $1 /\left(z-z_{0}\right)$. The following theorem provides an alternative characterization of poles and a way of finding residues at poles that is often more convenient.

P219.3 Taylor series of $\frac{1}{z}$ centered at $z_{0}=2$:

$$
\begin{aligned}
& \left.\frac{1}{z}=\frac{1}{(z-2)+2}=\frac{1}{2\left(1+\frac{z-2}{2}\right)}=\frac{1}{2} \cdot \sum_{i=0}^{\infty} \epsilon\right)^{n}\left(\frac{(z-2}{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{(z-2)^{n}}{2^{n+1}} \quad\left|\frac{z-2}{2}\right|<1 \\
& \text { Ditterentiate term by term: } \\
& -\frac{1}{z^{2}}=\sum_{n=1}^{\infty}(-1)^{n} \cdot \frac{n \cdot(z-2)^{n-1}}{2^{n+1}}=\sum_{n=0}^{\infty}(-1)^{n+1} \cdot \frac{(n+1) \cdot(z-2)^{n}}{2^{n+2}} \\
& \Rightarrow \frac{1}{z^{2}}=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{(n+1) \cdot(z-2)^{n}}{2^{n+2}}=\frac{1}{4} \sum_{n=0}^{\infty}(-1)^{n}(n+1) \cdot\left(\frac{z-2}{2}\right)^{n} \cdot \quad|z-2|<2
\end{aligned}
$$

$$
\text { 4. } f(z)=\left\{\begin{array}{ll}
\frac{1-\cos z}{z^{2}} & z \neq 0 \\
\frac{1}{2} & z=0
\end{array} \quad \cos z=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{z^{2 n}}{(2 n)!}=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\cdots\right.
$$

$$
\frac{1-\cos z}{z^{2}}=\frac{1-\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\cdots\right)}{z^{2}}=\frac{1}{2!}-\frac{z^{2}}{4!}+\frac{z^{4}}{6!}-\cdots
$$

$=\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot z^{n}}{(n+2)!} \quad$ analyite at any $z \in \mathbb{C}$ so entire

$$
\text { 6. } \frac{1}{w}=\frac{1}{1+w-1}=\sum_{n=0}(-1)^{n} \cdot(w-1)^{n} \quad|w-1|<1
$$

Integrate term by term:

$$
\begin{array}{lll}
\int_{1}^{z} \frac{1}{w} d w= & \sum_{n=0}^{\infty}(-1)^{n} \cdot \int_{1}^{z}\left((w-1)^{n} d w\right. & 11 \\
\log ^{11} z-\log 1 & \left.\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{(w-1))^{n+1}}{n+1}\right]_{1}^{z} \quad \Rightarrow \log z=\sum_{n=1}^{\infty}(-1)^{n+1} \cdot \frac{(z-1)^{n}}{n} \\
\log z & \sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{(z-1)^{n+1}}{n+1}=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(z-1)^{n}}{n}
\end{array}
$$

prro 8. $f(z)$ conalyter at $z_{0} \Rightarrow f(z)=\sum_{n=0}^{\infty} \frac{f(n)\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$

$$
\begin{aligned}
& f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f(m)\left(z_{0}\right)=0 \Rightarrow f(z)=\frac{f^{(m+1)}\left(z_{0}\right)}{(m+1)!}\left(z-z_{0}\right)^{m+1}+\frac{f^{(m-2)}}{(m+2)!}\left(z-z_{0}\right)^{m+2}+\cdots \\
& \Rightarrow \frac{f(z)}{\left(z-z_{0}\right)^{n+1}}=\frac{f^{(m+1)}\left(z_{0}\right)}{(m+1)!}+\frac{f^{(m+z)}(z)}{(m+2)!}\left(z-z_{0}\right)+\frac{f^{(m+3)}((z)}{(m+3)!}\left(z-z_{0}\right)^{2}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{f^{(m+n+n)}\left(z_{0}\right)}{(m+1+n)!}\left(z-z_{0}\right)^{n} \\
& \text { is } \frac{\text { analytir of } z_{0}}{\left(\text { differentadie in a mbtel of } z_{0}\right)}
\end{aligned}
$$

P237. 1. (a) $\frac{1}{z+z^{2}}=\frac{1}{z} \cdot \frac{1}{1+z}=\frac{1}{z}\left(1-z+z^{2}-\cdots\right)=\frac{1}{z}-1+z-\cdots$

$$
\Rightarrow \operatorname{Res}_{z=0} \frac{1}{z+z^{2}}=1
$$

(b)

$$
\begin{aligned}
& z \cdot \cos \left(\frac{1}{z}\right)=z \cdot\left(1-\frac{1}{2!}\left(\frac{1}{z}\right)^{2}+\frac{1}{\left.4!\left(\frac{1}{z}\right)^{4}-\cdots\right)=z-\frac{1}{2 z}+\frac{1}{24 z^{3}}-\cdots}\right. \\
& \quad \Rightarrow \text { Res } z \cdot \cos \left(\frac{1}{z}\right)=-\frac{1}{2}
\end{aligned}
$$

(c) $\frac{z-\sin z}{z}=\frac{z-\left(z-\frac{1}{3!} z^{3}+\frac{1}{5!} z^{5}-\ldots\right)}{z}=\frac{1}{3!} \cdot z^{2}-\frac{1}{5!} z^{4}-\ldots$

$$
\Rightarrow \operatorname{Res}_{z=0} \frac{z-\sin z}{z}=0
$$

P237.1 (d) $\frac{\cot z}{z^{4}}=\frac{\cos z}{z^{4} \cdot \sin z}=\frac{1-\frac{1}{2!} z^{2}+\frac{1}{4!} z^{4} \cdots \cdots}{z^{4} \cdot\left(z-\frac{1}{3!} z^{3}+\frac{1}{5!} z^{5} \cdots\right)}$.

$$
\begin{aligned}
& \quad=\frac{1}{z^{5}} \cdot \frac{1-\frac{1}{2} z^{2}+\frac{1}{24} z^{4} \cdots}{1-\frac{1}{6} z^{2}+\frac{1}{120} z^{4} \cdots}=\frac{1}{z^{5}} \cdot \frac{1-\frac{1}{2} z^{2}+\frac{1}{24} z^{4} \cdots}{1-\left(\frac{1}{6} z^{2}-\frac{1}{120} z^{4}+\cdots\right)} \\
& =\frac{1}{z^{5} \cdot\left(1-\frac{1}{2} z^{2}+\frac{1}{2^{4}} z^{4}-\cdots\right) \cdot\left(1+\left(\frac{1}{6} z^{2}-\frac{1}{120} z^{4}+\cdots\right)+\left(\frac{1}{36} z^{4}+\cdots\right)\right)} \\
& =\frac{1}{z^{5}} \cdot\left(1+\left(-\frac{1}{2}+\frac{1}{6}\right) z^{2}+\left(-\frac{1}{120}+\frac{1}{36}-\frac{1}{12}+\frac{1}{24}\right) z^{4}+0\left(z^{6}\right)\right) \\
& =\frac{1}{z^{5}} \cdot\left(1-\frac{1}{3} z^{2}+\frac{-3+10-30+15}{360} z^{4}+O\left(z^{6}\right)\right)=\frac{1}{z^{5}} \cdot\left(1-\frac{1}{3} z^{2}+\frac{-8}{360} z^{4}+0\left(z^{6}\right)\right) \\
& =\frac{1}{z^{5}}-\frac{1}{3} \cdot \frac{1}{z^{3}}-\frac{1}{45} \cdot \frac{1}{z}+O(z) \Rightarrow \operatorname{Res}_{z=0} \frac{\cot z}{z^{4}}=-\frac{1}{45} . \\
& \text { (e). }
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \frac{\sinh z}{z^{4} \cdot\left(1-z^{2}\right)}=\frac{1}{z^{4}} \cdot \frac{z+\frac{1}{3!z^{3}+\frac{1}{5!} z^{5}+\cdots}}{1-z^{2}}=\frac{1}{z^{3}} \cdot\left(1+\frac{1}{6} z^{2}+\frac{1}{120} z^{4}+\cdots\right) \cdot\left(1+z^{2}+z^{4}+\cdots\right) \\
& \quad=\frac{1}{z^{3}} \cdot\left(1+\left(\frac{1}{6}+1\right) z^{2}+O\left(z^{4}\right)\right)=\frac{1}{z^{3}}+\frac{7}{6} \cdot \frac{1}{z}+O(z) \\
& \Rightarrow \operatorname{Res}_{z=0} \frac{\sinh z}{z^{4} \cdot\left(1-z^{2}\right)}=\frac{7}{6} .
\end{aligned}
$$

P237. ${ }^{2}(a) . \quad f(z)=\frac{e^{-z}}{z^{2}}$
$C:|z|=3$
There is one singulanty inside the circle: $z=0$.

$$
\begin{aligned}
& \frac{e^{-z}}{z^{2}}=\frac{1-z+\frac{1}{2}(t)^{2}-\cdots}{z^{2}}=\frac{1}{z^{2}}-\frac{1}{z}+\frac{1}{2}-\cdots \Rightarrow \operatorname{Res}_{z=0} f(z)=-1 \\
& \Rightarrow \int_{|z|=3} \frac{e^{-z}}{z^{2}} d z=2 \pi i \cdot \operatorname{Res} \frac{e^{-z}}{z^{2}}=2 \pi i \cdot(-1)=-2 \pi i .
\end{aligned}
$$

(b). $f(z)=\frac{e^{-z}}{(z-1)^{2}}$. There ts one singeslenity $z=1$:

$$
\begin{aligned}
& \frac{e^{-z}}{(z-1)^{2}}=\frac{e^{-(z-1)-1}}{(z-1)^{2}}=e^{-1} \cdot \frac{1-(z-1)+\frac{1}{2!} \cdot(-(z-1))^{2} \cdots}{(z-1)^{2}}=\frac{1}{e}\left(\frac{1}{(z-1)^{2}}-\frac{1}{z-1}+\frac{1}{2} \cdots\right) \\
& \quad \Rightarrow \operatorname{Res}_{z=0} \frac{e^{-z}}{(z-1)^{2}}=-\frac{1}{e} \Rightarrow \int_{(z 1=3} \frac{e^{-z}}{(z-1)^{2}} d z=2 \pi i \cdot \operatorname{Res} \frac{e^{-z}}{(z-1)^{2}}=-\frac{2 z 11}{e} .
\end{aligned}
$$

(c). $z^{2} \cdot e^{\frac{1}{z}} \quad$ Sngulanity: $z=0$.

$$
\begin{aligned}
& z^{2}-e^{\frac{1}{z}}=z^{2} \cdot\left(1+\frac{1}{z}+\frac{1}{2!} \cdot\left(\frac{1}{z}\right)^{2}+\frac{1}{3!}\left(\frac{1}{z}\right)^{3}+\cdots\right)=z^{2}+z+\frac{1}{2}+\frac{1}{6} \cdot \frac{1}{z}+\cdots \\
& \Rightarrow \operatorname{Res}_{z=0}\left(z^{2} e^{\frac{1}{z}}\right)=\frac{1}{6} \Rightarrow \int_{|z|=3} z^{2} e^{\frac{1}{2}} d z=2 \pi i \operatorname{Res}_{z=0}\left(z^{2} e^{\frac{1}{z}}\right)=\frac{2 \pi i}{6}=\frac{\pi i}{3}
\end{aligned}
$$

(d). $\frac{z+1}{z^{2}-2 z}$. There are 2 singulanities inside the civele: $\begin{aligned} & z_{1}=0 \\ & z_{2}=2\end{aligned}$ $z_{2}=2$.
cramel $z=0: \frac{z+1}{z^{2}-2 z}=\frac{1+z}{z(z-2)}=\frac{1}{z}(1+z) \cdot \frac{-1}{2\left(1-\frac{z}{2}\right)}=\frac{-1}{z} \cdot(1+z) \cdot \frac{1}{2} \cdot\left(1+\frac{z}{2}+\left(\frac{z}{z}\right)^{2}+\cdots\right)$

$$
=-\frac{1}{2 z} \cdot\left(1+\frac{3 z}{2}+\cdots\right) \Rightarrow \operatorname{Res}_{z=0} \frac{z+1}{z^{2}-2 z}=-\frac{1}{2}
$$

4. (a). $f(z)=\frac{z^{5}}{1-z^{3}} \quad \frac{1}{z^{2}} \cdot f\left(\frac{1}{z}\right)=\frac{1}{z^{2}} \frac{\frac{1}{z^{5}}}{1-\frac{1}{z^{3}}}=\frac{1}{z^{2}} \cdot \frac{1}{z^{5}-z^{2}}$

$$
=\frac{1}{z^{4}} \frac{-1}{1-z^{3}}=-\frac{1}{z^{4}} \cdot\left(1+z^{3}+z^{6}+\cdots\right)=-\frac{1}{z^{4}}-\frac{1}{z}-z^{2}-\cdots
$$

So

$$
\begin{aligned}
& \operatorname{Res}_{z=\infty} f(z)=-\operatorname{Res}_{z=0}\left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right]=1 \quad \text { There } \\
& \Rightarrow \\
& \int_{|z|=2} \frac{z^{5}}{1-z^{3}} d z=-2 \lambda i \cdot \operatorname{Res} f(z)=-2 \pi i
\end{aligned}
$$

There are no singulanties outsite $|z|=2$

$$
\text { (b). } f(z)=\frac{1}{1+z^{2}} \quad \quad \frac{1}{z^{2}} \cdot f\left(\frac{1}{z}\right)=\frac{1}{z^{2}} \cdot \frac{1}{1+\frac{1}{z^{2}}}=\frac{1}{z^{2}+1}=1-z^{2}+z^{4} \ldots
$$

$$
\Rightarrow \operatorname{Res}_{z=\infty} f(z)=-\operatorname{Res}_{z=0}\left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right]=0
$$

There are no singalanities

$$
\Rightarrow \int_{|z|=2} \frac{1}{1+z^{2}} d z=-2 \pi i \operatorname{Res}_{z=\infty} f(z)=0
$$ outside $|z|=2$

(c)

$$
\begin{aligned}
& f(z)=\frac{1}{z} \cdot \quad \frac{1}{z^{2}} \cdot f\left(\frac{1}{z}\right)=\frac{1}{z^{2}} \cdot \frac{1}{\frac{1}{z}}=\frac{1}{z} \\
& \Rightarrow \frac{\operatorname{Res}}{z=\infty} f(z)=-1 \Rightarrow \int_{(z)=2} \frac{1}{z} d z=-2 \pi i-(-1)=2 \pi i
\end{aligned}
$$

P242. (a). $z \exp \left(\frac{1}{z}\right)=z \cdot\left(1+\frac{1}{z}+\frac{1}{2!}\left(\frac{1}{z}\right)^{2}+\frac{1}{3!}\left(\frac{1}{z}\right)^{3}+\cdots \cdot\right)$.

$$
\begin{aligned}
& =z+1+\frac{1}{2!} \cdot \frac{1}{z}+\frac{1}{3!} \frac{1}{z^{2}}+\cdots \\
& =z+1+\sum_{n=1}^{\infty} \frac{1}{(n+1)!} \cdot \frac{1}{z^{n}}
\end{aligned}
$$

230 beted sigulanity $z=0$.

Prineipal part $=$ sigulen part $=\sum_{n=1}^{\infty} \frac{1}{(n+1)!} \cdot \frac{1}{z^{n}}$ has infinizely many terms $\Rightarrow z=0$ is an essental singularity.
(b) $\frac{z^{2}}{1+z} \quad$ singularity: $z=-1$.

$$
\frac{(z+1-1)^{2}}{1+z}=\frac{(z+1)^{2}-2(z+1)+1}{z+1}=(z+1)-2+\frac{1}{z+1}
$$

principal part (esteglempart) $=\frac{1}{z+1} \Rightarrow z=-1$ is a pole forder 1 .
(c)

$$
\frac{\sin z}{z}=\frac{z-\frac{1}{3!} z^{3}+\frac{1}{8!} z^{5} \cdots}{z}=1-\frac{1}{6} z^{2}+\frac{1}{120} z^{4} \ldots
$$

primeipal part $=0 \Rightarrow z=0 \Rightarrow$ a removable sugulanity.
(d). $\frac{\cos z}{z}=\frac{1-\frac{1}{2!} z^{2}+\frac{1}{4!} z^{4} \cdots \cdot}{z}=\frac{1}{z}-\frac{1}{2} z+\frac{1}{24} z^{3} \cdots \cdot$
primeipal part $=\frac{1}{z} \Rightarrow z=0$-ss a pole of order 1 .
(e) $\frac{1}{(z-z)^{3}}=-(z-2)^{-3} \quad$ principal part $=\frac{-1}{(z-2)^{3}} \Rightarrow z=2$ is a pole of order 3.
$P_{237}^{2} \cdot(a) . \quad f(z)=\frac{e^{-z}}{z^{2}}$.
$C:|z|=3$

There is one singulanty inside the eircle: $z=0$.

$$
\begin{aligned}
& \frac{e^{-z}}{z^{2}}=\frac{1-z+\frac{1}{2}(t)^{2}-\cdots}{z^{2}}=\frac{1}{z^{2}}-\frac{1}{z}+\frac{1}{2} \cdots \Rightarrow \operatorname{Res}_{z=0} f(z)=-1 \\
& \Rightarrow \int_{|z|=3} \frac{e^{-z}}{z^{2}} d z=2 \pi i \cdot \operatorname{Res} \frac{e^{-z}}{z^{2}}=2 \pi i \cdot(-1)=-2 \pi i
\end{aligned}
$$

(b). $f(z)=\frac{e^{-z}}{(z-1)^{2}}$. There $t s$ one singulenty $z=1$:

$$
\begin{aligned}
\frac{e^{-z}}{(z-1)^{2}} & =\frac{e^{-(z-1)-1}}{(z-1)^{2}}=e^{-1} \cdot \frac{1-(z-1)+\frac{1}{2!} \cdot(-(z-1))^{2}}{(z-1)^{2}}=\frac{1}{e}\left(\frac{1}{(z-1)^{2}}-\frac{1}{z-1}+\frac{1}{2} \cdots\right) \\
& \Rightarrow \operatorname{Res}_{z=0} \frac{e^{-z}}{(z-1)^{2}}=-\frac{1}{e} \Rightarrow \int_{|z|=3} \frac{e^{-z}}{(z-1)^{2}} d z=2 \pi i \cdot \operatorname{Re} \frac{e^{-z}}{z=1}(z-1)^{2}
\end{aligned}=-\frac{2 \pi 1^{1}}{e} . \quad . \quad .
$$

(c). $z^{2} \cdot e^{\frac{1}{z}} \quad$ singulanity: $z=0$

$$
\begin{aligned}
& z^{2}-e^{\frac{1}{z}}=z^{2} \cdot\left(1+\frac{1}{z}+\frac{1}{2!}\left(\frac{1}{z}\right)^{2}+\frac{1}{3!}\left(\frac{1}{z}\right)^{3}+\cdots\right)=z^{2}+z+\frac{1}{2}+\frac{1}{6} \cdot \frac{1}{z}+\cdots \\
& \Rightarrow \operatorname{Res}_{z=0}\left(z^{2} e^{\frac{1}{z}}\right)=\frac{1}{6} \Rightarrow \int_{|z|=3} z^{2} e^{\frac{1}{2}} d z=2 \pi i \operatorname{Res}_{z=0}\left(z^{2} e^{\frac{1}{z}}\right)=\frac{2 \pi i}{6}=\frac{x i}{3}
\end{aligned}
$$

(d). $\frac{z+1}{z^{2}-2 z}$. There are 2 singulanities inside the circle: $\begin{aligned} & z_{1}=0 \\ & z_{2}=2\end{aligned}$
arand $\begin{aligned} z & =0: \frac{z+1}{z^{2}-2 z}=\frac{1+z}{z(z-2)}=\frac{1}{z}(1+z) \cdot \frac{-1}{2\left(1-\frac{z}{2}\right)}=\frac{-1}{z} \cdot(1+z) \cdot \frac{1}{2} \cdot\left(1+\frac{z}{2}+\left(\frac{z}{z}\right)^{2}+\cdots\right) \\ & =-\frac{1}{2} \cdot\left(1+\frac{3 z}{2}+\cdots\right)\end{aligned}$

$$
=-\frac{1}{2 z} \cdot\left(1+\frac{3 z}{2}+\cdots\right) \Rightarrow \operatorname{Res}_{z=0} \frac{z+1}{z^{2}-2 z}=-\frac{1}{2}
$$

Around $z=2: \frac{z+1}{z^{2}-2 z}=\frac{z+1}{z \cdot(z-2)} \quad \frac{z+1}{z}$ is andytir at $z=2$

$$
\left.\Rightarrow \operatorname{Res}_{z=2} \frac{z+1}{z^{2}-2 z}=\frac{z+1}{z}\right]_{z=2}=\frac{3}{2}
$$

the desired residue is to write out a few terms in the Laurent series

$$
\begin{aligned}
& \text { desired residue is to write out a few terms } \\
& \begin{aligned}
f(z) & =\frac{1}{z^{3}}\left[1-\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots\right)\right]=\frac{1}{z^{3}}\left(\frac{z^{2}}{2!}-\frac{z^{4}}{4!}+\frac{z^{6}}{6!}-\cdots\right) \\
& \left.=\frac{1}{2!} \cdot \frac{1}{z}-\frac{z}{4!}+\frac{z^{3}}{6!}-\cdots<|z|<\infty\right)
\end{aligned}
\end{aligned}
$$

This shows that $f(z)$ has a simple pole at $z=0$, not a pole of order 3 , the residue at $z=0$ being $B=1 / 2$.

EXAMPLE 5. Since $z^{2} \sinh z$ is entire and its zeros are (Sec. 39)

$$
z=n \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

the point $z=0$ is clearly an isolated singularity of the function

$$
f(z)=\frac{1}{z^{2} \sinh z}
$$

Here it would be a mistake to write

$$
f(z)=\frac{\phi(z)}{z^{2}} \quad \text { where } \quad \phi(z)=\frac{1}{\sinh z}
$$

and try to use the theorem in Sec. 80 with $m=2$. This is because the function $\phi(z)$ is not even defined at $z=0$. The needed residue, namely $B=-1 / 6$, follows at once from the Laurent series

$$
\frac{1}{z^{2} \sinh z}=\frac{1}{z^{3}}-\frac{1}{6} \cdot \frac{1}{z}+\frac{7}{360} z+\cdots \quad(0<|z|<\pi)
$$

that was obtained in Exercise 5, Sec.73. The singularity at $z=0$ is, of course, a pole of the third order, not the second order.

EXERCISES

1. In each case, show that any singular point of the function is a pole. Determine the order m of each pole, and find the corresponding residue B.
(a) $\frac{z+1}{z^{2}+9}$;
(b) $\frac{z^{2}+2}{z-1}$;
(c) $\left(\frac{z}{2 z+1}\right)^{3}$;
(d) $\frac{e^{z}}{z^{2}+\pi^{2}}$.
Ans. (a) $m=1, B=\frac{3 \pm i}{6}$;
(b) $m=1, B=3$;
(c) $m=3, B=-\frac{3}{16}$:
(d) $m=1, B= \pm \frac{i}{2 \pi}$.
2. Show that
(a) $\operatorname{Res}_{z=-1} \frac{z^{1 / 4}}{z+1}=\frac{1+i}{\sqrt{2}} \quad(|z|>0,0<\arg z<2 \pi)$;
(b) $\operatorname{Res}_{z=i} \frac{\log z}{\left(z^{2}+1\right)^{2}}=\frac{\pi+2 i}{8}$;
(c) $\operatorname{Res}_{z=i} \frac{z^{1 / 2}}{\left(z^{2}+1\right)^{2}}=\frac{1-i}{8 \sqrt{2}} \quad(|z|>0,0<\arg z<2 \pi)$.
3. In each case, find the order m of the pole and the corresponding residue B at the singularity
(a) $\frac{\sinh z}{z^{4}}$;
(b) $\frac{1}{z\left(e^{z}-1\right)}$.

Ans.
(a) $m=3, B=\frac{1}{6}$;
(b) $m=2, B=-\frac{1}{2}$.
4. Find the value of the integral

$$
\int_{C} \frac{3 z^{3}+2}{(z-1)\left(z^{2}+9\right)} d z
$$

taken counterclockwise around the circle $(a)|z-2|=2 ;(b)|z|=4$.
Ans. (a) πi;
(b) $6 \pi i$.
5. Find the value of the integral

$$
\int_{C} \frac{d z}{z^{3}(z+4)}
$$

taken counterclockwise around the circle $(a)|z|=2 ;(b)|z+2|=3$.
Ans. (a) $\pi i / 32$; (b) 0.
6. Evaluate the integral

$$
\int_{C} \frac{\cosh \pi z}{z\left(z^{2}+1\right)} d z
$$

when C is the circle $|z|=2$, described in the positive sense.
Ans. $4 \pi i$.
7. Use the theorem in Sec. 77, involving a single residue, to evaluate the integral of $f(z)$ around the positively oriented circle $|z|=3$ when
(a) $f(z)=\frac{(3 z+2)^{2}}{z(z-1)(2 z+5)}$;
(b) $f(z)=\frac{z^{3} e^{1 / z}}{1+z^{3}}$.

Ans. (a) $9 \pi i$; (b) $2 \pi i$.
8. Let z_{0} be an isolated singular point of a function f and suppose that

$$
f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}}
$$

where m is a positive integer and $\phi(z)$ is analytic and nonzero at z_{0}. By applying the extended form (3), Sec. 55, of the Cauchy integral formula to the function $\phi(z)$, show that

$$
\operatorname{Res}_{z=z_{0}} f(z)=\frac{\phi^{(m-1)}\left(z_{0}\right)}{(m-1)!}
$$

as stated in the theorem of Sec. 80.
Suggestion: Since there is a neighborhood $\left|z-z_{0}\right|<\varepsilon$ throughout which $\phi(z)$ is analytic (see Sec. 25), the contour used in the extended Cauchy integral formula can be

Next, we show that the integral on the right in equation (3) tends to 0 as R tends to ∞. To do this, we observe that when $R>1$,

$$
\left|z^{6}+1\right| \geq\left||z|^{6}-1\right|=R^{6}-1
$$

So, if z is any point on C_{R},

$$
\begin{aligned}
& |f(z)|=\frac{1}{\left|z^{6}+1\right|} \leq M_{R} \quad \text { where } \quad M_{R}=\frac{1}{R^{6}-1}
\end{aligned}
$$

and this means that

$$
\begin{equation*}
\left|\int_{C_{R}} f(z) d z\right| \leq M_{R} \pi R, \tag{4}
\end{equation*}
$$

$$
M_{R} \pi R=\frac{\pi R}{R^{6}-1}
$$

is a quotient of polynomials in R and since the degree of the numerator is less than the degree of the denominator, that quotient must tend to zero as R tends to ∞. More precisely, if we divide both numerator and denominator by R^{6} and write

$$
M_{R} \pi R=\frac{\frac{\pi}{R^{5}}}{1-\frac{1}{R^{6}}}
$$

it is evident that $M_{R} \pi R$ tends to zero. Consequently, in view of inequality (4),

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=0
$$

It now follows from equation (3) that

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{d x}{x^{6}+1}=\frac{2 \pi}{3}
$$

or

$$
\text { P.V. } \int_{-R}^{R} \frac{d x}{x^{6}+1}=\frac{2 \pi}{3}
$$

Since the integrand here is even, we know from equation (7) in Sec. 85 that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d x}{x^{6}+1}=\frac{\pi}{3} \tag{5}
\end{equation*}
$$

EXERCISES

Use residues to derive the integration formulas in Exercises 1 through 6.

1. $\int_{0}^{\infty} \frac{d x}{x^{2}+1}=\frac{\pi}{2}$.
2. $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}=\frac{\pi}{4}$.
3. $\int_{0}^{\infty} \frac{d x}{x^{4}+1}=\frac{\pi}{2 \sqrt{2}}$.
4. $\int_{0}^{\infty} \frac{x^{2} d x}{x^{6}+1}=\frac{\pi}{6}$.
5. $\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{\pi}{6}$.
6. $\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}}=\frac{\pi}{200}$.

Use residues to find the Cauchy principal values of the integrals in Exercises 7 and 8.
7. $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+2 x+2}$.
8. $\int_{-\infty}^{\infty} \frac{x d x}{\left(x^{2}+1\right)\left(x^{2}+2 x+2\right)}$.

$$
\text { Ans. }-\pi / 5 .
$$

9. Use a residue and the contour shown in Fig. 101, where $R>1$, to establish the integration formula

$$
\int_{0}^{\infty} \frac{d x}{x^{3}+1}=\frac{2 \pi}{3 \sqrt{3}}
$$

FIGURE 101

10. Let m and n be integers, where $0 \leq m<n$. Follow the steps below to derive the integration formula

$$
\int_{0}^{\infty} \frac{x^{2 m}}{x^{2 n}+1} d x=\frac{\pi}{2 n} \csc \left(\frac{2 m+1}{2 n} \pi\right)
$$

(a) Show that the zeros of the polynomial $z^{2 n}+1$ lying above the real axis are

$$
c_{k}=\exp \left[i \frac{(2 k+1) \pi}{2 n}\right] \quad(k=0,1,2, \ldots, n-1)
$$

and that there are none on that axis.
(b) With the aid of Theorem 2 in Sec. 83, show that

$$
\operatorname{Res}_{z=c_{k}} \frac{z^{2 m}}{z^{2 n}+1}=-\frac{1}{2 n} e^{i(2 k+1) \alpha} \quad(k=0,1,2, \ldots, n-1)
$$

EXERCISES

Use residues to derive the integration formulas in Exercises 1 through 5.

1. $\int_{-\infty}^{\infty} \frac{\cos x d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{\pi}{a^{2}-b^{2}}\left(\frac{e^{-b}}{b}-\frac{e^{-a}}{a}\right) \quad(a>b>0)$.
2. $\int_{0}^{\infty} \frac{\cos a x}{x^{2}+1} d x=\frac{\pi}{2} e^{-a} \quad(a>0)$.
3. $\int_{0}^{\infty} \frac{\cos a x}{\left(x^{2}+b^{2}\right)^{2}} d x=\frac{\pi}{4 b^{3}}(1+a b) e^{-a b} \quad(a>0, b>0)$.
4. $\int_{-\infty}^{\infty} \frac{x \sin a x}{x^{4}+4} d x=\frac{\pi}{2} e^{-a} \sin a \quad(a>0)$.
5. $\int_{-\infty}^{\infty} \frac{x^{3} \sin a x}{x^{4}+4} d x=\pi e^{-a} \cos a \quad(a>0)$.

Use residues to evaluate the integrals in Exercises 6 and 7.
6. $\int_{-\infty}^{\infty} \frac{x \sin x d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$.
7. $\int_{0}^{\infty} \frac{x^{3} \sin x d x}{\left(x^{2}+1\right)\left(x^{2}+9\right)}$.

Use residues to find the Cauchy principal values of the improper integrals in Exercises 8 through 11.
8. $\int_{-\infty}^{\infty} \frac{\sin x d x}{x^{2}+4 x+5}$.

$$
\text { Ans. }-\frac{\pi}{e} \sin 2
$$

9. $\int_{-\infty}^{\infty} \frac{x \sin x d x}{x^{2}+2 x+2}$

$$
\text { Ans. } \frac{\pi}{e}(\sin 1+\cos 1)
$$

10. $\int_{-\infty}^{\infty} \frac{(x+1) \cos x}{x^{2}+4 x+5} d x$.

Ans. $\frac{\pi}{e}(\sin 2-\cos 2)$.
11. $\int_{-\infty}^{\infty} \frac{\cos x d x}{(x+a)^{2}+b^{2}} \quad(b>0)$.
12. Follow the steps below to evaluate the Fresnel integrals, which are important in diffraction theory:

$$
\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\frac{1}{2} \sqrt{\frac{\pi}{2}}
$$

P246. 1 (a) $\frac{z+1}{z^{2}+9}=\frac{z+1}{(z+3 i(z-3 i)}$ poles. $\pm 3 i$ oder $=1$

$$
\begin{aligned}
& \operatorname{Res}_{20 i} f(z)=\left.\frac{z+1}{z+3 i}\right|_{3 i}=\frac{3 i+1}{6 i}=\frac{3-i}{6} \\
& \operatorname{Res} f(z)=\left.\frac{z+1}{z-3 i}\right|_{-3 i}=\frac{-3 i+1}{-6 i}=\frac{3+i}{6} .
\end{aligned}
$$

(b) $\frac{z^{2}+2}{z-1}$ pole: $z=1$. oder $m=1$

$$
\left.\operatorname{Res}_{z=1} \frac{z^{2}+2}{z-1}=z^{2}+2\right]_{z=1}=3
$$

(c) $\left(\frac{z}{z z+1}\right)^{3}$ ple. $z=-\frac{1}{2}$. order $m=3 . \quad f(z)=\frac{\left(\frac{z}{2}\right)^{3}}{\left(z+\frac{1}{2}\right)^{3}}$

$$
\Rightarrow \operatorname{Res}_{z=-\frac{1}{2}} f=\left.\frac{1}{2!} \frac{d^{2}}{d z^{2}}\left(\frac{z}{2}\right)^{3}\right|_{z=-\frac{1}{2}}=\left.\frac{1}{16} \cdot 6 z\right|_{z=-\frac{1}{2}}=-\frac{3}{16} .
$$

$$
\begin{aligned}
& \text { (d) } \frac{e^{z}}{z^{2}+\pi^{2}}=\frac{e^{z}}{(z+\pi i)(z-\pi i)} \text { poles: } z= \pm \pi i \\
& \operatorname{Res}_{z=i} f(z)=\left.\frac{e^{z}}{z+\pi i}\right|_{z \pi i}=\frac{e^{2 i}}{2 \pi i}=\frac{-1}{2 \pi i}=\frac{i}{2 \pi} \\
& \operatorname{Res}_{z=-\pi i} f(z)=\left.\frac{e^{z}}{z-\pi i}\right|_{z-\pi i}=\frac{e^{-\pi i}}{-2 \pi i}=\frac{-1}{-2 \pi i}=\frac{-i}{2 \lambda}
\end{aligned}
$$

$$
\begin{aligned}
& \text { P247. 5. } \int \frac{d z}{z^{3}(z+4)} f(z)=\frac{1}{z^{3}((2+4)} \quad \begin{array}{c}
\text { podes } \\
\text { order }
\end{array} \\
& \text { Res } f(z)=\left.\frac{1}{2!} \frac{d^{2}}{d z^{2}}\left(\frac{1}{z+4}\right)\right|_{z=0}=\left.\frac{1}{2} \cdot(-1)(-2) \cdot \frac{1}{(z+4)^{3}}\right|_{z=0}=\frac{1}{64}
\end{aligned}
$$

$$
\operatorname{Res}_{z-4} f(z)=\left.\frac{1}{z^{3}}\right|_{z-4}=-\frac{1}{64}
$$

(a) $\int_{C} f(z) d z=2 \pi i \cdot \operatorname{Res} f(z)=\frac{2 \pi i}{64}=\frac{2 i}{32}$

(b) $\int_{C} f(z) d z=2 \pi i \cdot\left(\operatorname{Res}_{2 \rightarrow 0}+\operatorname{Res}_{z i 4}\right)=2 \pi i \cdot\left(\frac{1}{64}-\frac{1}{64}\right)=0$.
7. (a). $f(z)=\frac{(3 z+2)^{2}}{z(z-1)(z+5)}$ singularities: $0,1,-\frac{5}{2}$ all inside $|z|=3$.

$$
\begin{aligned}
& \frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\frac{1}{z^{2}} \cdot \frac{\left(\frac{3}{z}+2\right)^{2}}{\frac{1}{z}\left(\frac{1}{z}-1\right)\left(\frac{2}{z}+5\right)}=\frac{1}{z^{2}} \frac{\frac{(3+2 z)^{2}}{z^{2}}}{\frac{(1-z)(z+5 z)}{z^{3}}}=\frac{(3+2 z) z}{(1-z)(2+5 z) z} \quad \text { zoo: pole } \\
\Rightarrow & \operatorname{Res}_{z=0} \frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\left.\frac{(z+2 z)^{2}}{(1-z)(2+5 z)}\right|_{z=0}=\frac{9}{2} \quad=-\operatorname{Res} f(z) \\
\Rightarrow & \int_{|z|=3} f(z) d z=-2 \pi i \cdot \operatorname{Res} f(z)=2 \pi i \cdot \frac{9}{2}=9 \pi i .
\end{aligned}
$$

(b). $f(z)=\frac{z^{3} e^{\frac{1}{z}}}{1+z^{3}} \quad \frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\frac{1 \frac{1}{z^{z}} e^{z}}{z^{2} 1+\left(\frac{1}{z}\right)^{3}}=\frac{e^{z}}{\left(z^{3}+1\right) z^{2}} z=0$: ple of order 2.
Res $\frac{1}{z^{2}} f\left(\frac{1}{\frac{1}{z}}=d\left(\frac{e^{z}}{z^{z}}\right)\right.$

$$
\begin{aligned}
& \Rightarrow \operatorname{Res}_{z=0} \frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\left.\frac{d}{d z}\left(\frac{e^{z}}{z^{3}+1}\right)\right|_{z=0}=\left.\frac{\left.e^{z}\left(z^{3}+1\right)-e^{z} \cdot 3 z^{2}\right)}{\left(z^{3}+1\right)^{2}}\right|_{z=0}=1 \Rightarrow \operatorname{Res}_{z=\infty} f(z)=-1 \\
& \Rightarrow \int_{|z|-0} f(z) d z=2 \pi i \cdot(-\operatorname{los} f(x))
\end{aligned}
$$

$$
\Rightarrow \int_{|z|=3} f(z) d z \underset{\uparrow}{=} 2 \pi i \cdot\left(-\log _{z=\infty} f(z)\right)=2 \pi i
$$

Sungulanities $z=(-1)^{\frac{1}{3}}$ are contrmed inside $|z|=3$.
Generated by CamScanner

$$
\begin{aligned}
& \text { P264. 3. } \int_{0}^{\infty} \frac{d x}{x^{4}+1}=\frac{1}{2} \int_{-\infty}^{+\infty} \frac{d x}{x^{4}+1}=\frac{1}{2} \lim _{R \rightarrow+\infty} \int_{-R}^{R} \frac{d x}{x^{4}+1} \text {. } \\
& \int_{-R}^{R} \frac{d x}{x^{4}+1}+\int_{C_{R}} \frac{d z}{z^{4}+1}=2 \pi i \cdot\left(\begin{array}{l}
\text { Res } \\
z=z_{1} \\
z_{2}+R_{z=3} \\
Z=z_{2}
\end{array}\right) \\
& z_{1}=e^{\frac{i \pi}{4}}=\frac{1}{2}(1+i) \\
& z_{2}=e^{\frac{\text { 響 }}{2}}=\frac{1}{\sqrt{2}}(1-i) \text {. } \\
& \operatorname{Res}_{z=e^{\frac{z}{4}}} f(z)=\left.\frac{1}{\left(z^{2}+i\right)\left(z-e^{\left.\frac{z_{2}^{2}}{2}\right)}\right.}\right|_{z=e \frac{i x}{4}}=\frac{1}{2 i \cdot \sqrt{2}(1+i)}=\frac{1}{2 \sqrt{2} \cdot(+i+i)} \\
& =\frac{-1-i}{\sqrt{2} \cdot(-1+1)(-i)}=\frac{-1-i}{4 \sqrt{2}} \\
& \xrightarrow{\substack{z_{8} \\
z_{3} \\
z_{3} \\
z_{0} \\
e^{z_{1}} \\
e_{2}}} \\
& z_{3}=e^{\frac{i 3 x}{4}}=\frac{1}{\sqrt{2}}(-1-t) \\
& \operatorname{Res}_{z=e^{\frac{z 3}{4}}} f(z)=\left.\frac{1}{\left(z^{2}-i\right) \cdot\left(z-e^{\left.-\frac{i z}{4}\right)}\right.}\right|_{z=e^{\frac{3 z}{4}}}=\frac{1}{(-2 i) \cdot(\sqrt{2}) \cdot(1+i)}=\frac{z_{4}=e^{-i z}=\frac{1}{\sqrt{2}}(1-i)}{\frac{1}{2 \sqrt{2}(1+i)}=\frac{1-i}{4 \sqrt{2}}} \\
& \Rightarrow \int_{-\infty}^{+\infty} \frac{d x}{x^{4}+1}=2 \pi i \cdot\left(\frac{(-1-i)+(1-i)}{4 \sqrt{2}}\right)=2 \pi \cdot \cdot \frac{-2 i}{4 \sqrt{2}}=\frac{\pi}{\sqrt{2}} \\
& \Rightarrow \int_{0}^{\infty} \frac{d x}{x^{4}+1}=\frac{\lambda}{2 \sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 4 . \\
& \text { 4. } \int_{0}^{\infty} \frac{x^{2} d x}{x^{6}+1}=\frac{1}{2} \int_{-\infty}^{+\infty} \frac{x^{2} d x}{x^{6}+1} \quad \text { let } f(z)=\frac{z^{2}}{z^{6}+1}
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{z_{i_{0}}}_{c} \underbrace{a}_{0} \\
& \sum_{k=1}^{3} \operatorname{Res}_{z=\frac{2}{a}} f(z)=-\frac{1}{6}\left(\left(e^{\frac{i \pi}{6}}\right)^{3}+\left(e^{\frac{i \pi}{2}}\right)^{3}+\left(e^{\frac{5 \pi i}{6}}\right)^{3}\right)=\frac{-1}{6}\left(e^{\frac{j \pi}{2}}+e^{\frac{3 i x}{2}}+e^{\frac{5 z i}{2}}\right) \\
& =-\frac{1}{6}(i+(-i)+i)=-\frac{i}{6} . \\
& \Rightarrow \quad \int_{-\infty}^{+\infty} \frac{x^{2} d x}{x^{6}+1}=2 \pi i \cdot \sum_{k=1}^{3} \operatorname{Res} f(z)=2 \pi i \cdot\left(-\frac{1}{6}\right)=\frac{\pi}{3} \\
& \Rightarrow \quad \int_{0}^{\infty} \frac{x^{2} d x}{x^{6}+1}=\frac{2}{6} \text {. } \\
& \text { 5. } \quad \int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{1}{2} \int_{-\infty}^{+\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)(x+4)} \quad f(z)=\frac{z^{2}}{\left(z^{2}+1\right)\left(z^{2}+4\right)} \\
& \operatorname{Res}_{z=i} f(z)=\left.\frac{z^{2}}{\left(z^{2}+4\right)(z+i)}\right|_{z=i}=\frac{-1}{32 i}=\frac{i}{6} \\
& \operatorname{Res}_{z=2 i} f(z)=\left.\frac{z^{2}}{\left(z^{2}+1\right)(z+2 i)}\right|_{z=2 i}=\frac{-4}{(-3) \cdot 4 i}=\frac{1}{3 i}=-\frac{i}{3} \\
& \Rightarrow \quad \int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+2+1\right.}=\frac{1}{2} \cdot 2 i\left(\operatorname{Res}_{z=i}+\operatorname{Res}_{z=i}\right)=\pi i \cdot\left(\frac{i}{6}-\frac{i}{3}\right)=\pi i \cdot\left(-\frac{i}{6}\right)=\frac{\pi}{6} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6. } \int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+4\right)\left(x^{2}+4\right)^{2}}=\frac{1}{2} \int_{-\infty}^{+\infty} \frac{x^{2} d x}{\left(x^{2}+4\right)\left(x^{2}+4\right)^{2}} . \quad f(z)=\frac{z^{2}}{\left(z^{2}+4\right)\left(z^{2}+4\right)^{2}} \\
& \operatorname{kes}_{z=2 i} f(z)=\left.\frac{d}{d z}\left(\frac{z^{2}}{\left(z^{2}+9\right)\left(z^{\prime}+2 i\right)^{2}}\right)\right|_{z=2 i} \\
& =\left.\left[\frac{2 z}{\left(z^{2}+4\right)\left(z_{i}+i\right)^{2}}-\frac{z^{2} \cdot 2 z}{\left(z^{2}+4\right)^{2}\left(z^{(z i} \cdot i\right)^{2}}-2 \cdot \frac{z^{2} \cdot z}{\left(z^{2}+4\right)\left(z^{2}+2 i\right)^{3}}\right]\right|_{z=2 i} \\
& =\frac{4 i}{5 \times(-16)}-\frac{-8 i \times 2}{5^{2} \cdot(-16)}-2 \cdot \frac{-4}{5 \times(-64 i)} \\
& =-\frac{i}{20}-\frac{i}{25}+\frac{i}{40}=\frac{i}{200}(-10-8+5)=-\frac{B i}{200}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+4\right)\left(x^{2}+4\right)^{2}}=\frac{1}{2^{2 z i}}\left(\operatorname{Res}_{z=2 i} f(z)+\operatorname{Res}_{z=3 i} f(z)\right)=\# \pi i \cdot\left(-\frac{13}{200}+\frac{12}{200}\right) i \\
& =\frac{z}{200}
\end{aligned}
$$

$$
\begin{align*}
& \text { 7. } \int_{-\infty}^{\infty} \frac{d x}{x^{2}+2 x+2} \quad f(z)=\frac{1}{z^{2}+2 z+2} \quad \text {. inguterity: } z^{2}+2 z+2=0 \\
& z=\frac{-2 \pm \sqrt{2^{2}-8}}{2} \\
& \operatorname{Res}_{z=-1+i} f(z)=\left.\frac{1}{z-(-1-i)}\right|_{z=-1+i}=\frac{1}{2 i}=-\frac{i}{2} . \\
& \Rightarrow \quad \int_{-\infty}^{+\infty} \frac{d x}{x_{i}^{2}+2 x+2}=2 \pi i \cdot \operatorname{Res} f(z)=2 \pi i \cdot \frac{1}{2 i^{i}}=\pi . \\
& =-1 \pm i \\
& \xrightarrow[-R_{0} \rightarrow R_{R}]{0} \\
& \text { 8. } \int_{-\infty}^{+\infty} \frac{x d x}{\left(x^{2}+1\right)\left(x^{2}+2 x+2\right)} \quad f(z)=\frac{z}{\left(z^{2}+1\right)\left(z^{2}+2(z+2)\right.} \\
& \text { singularities } \\
& \text { pole } \pm i-1 \pm 2 i \\
& \operatorname{Res}_{z=i} f(z)=\left.\frac{z}{(z+i)\left(z^{2}+2 z+2\right)}\right|_{z=i}=\frac{i}{(2 i) \cdot(1+2 i+2)}=\frac{\frac{\text { trder } 1}{1-2 i} 1}{2 \cdot(1+2 i)(1-2 i)}=\frac{1-2 i}{10} \\
& \operatorname{Res}_{z=-1+i} f(z)=\left.\frac{z}{\left(z^{2}+1\right)(z-(-1-i))}\right|_{z=-1+i}=\frac{-1+i}{(1-2 i) \cdot(2 i)}=\frac{1}{2} \cdot \frac{(-1+i) \cdot(2-i)}{(2+i) \cdot(2-i)}=\frac{-1+3 i}{10} \\
& \Rightarrow \int_{-\infty}^{+\infty} \frac{x d x}{\left(x^{2}+1\right)\left(x^{2}+2 x+2\right)}=2 \pi i \cdot\left(\frac{1-2 i}{10}+\frac{-1+3 i}{10}\right)=2 \pi i \cdot \frac{i}{10}=-\frac{\pi}{5} \tag{a}
\end{align*}
$$

P273. 2. $\int_{0}^{\infty} \frac{\cos (a x)}{x^{2}+1} d x \quad f(z)=\frac{e^{i a z}}{z^{2}+1}=\frac{e^{i a(x+i y)}}{z^{2}+1}=\frac{e^{-a y} e^{i a x}}{z^{2}+1}$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{\operatorname{Cos}(a x)+i s m(a))}{x^{2}+1} d x=2 \pi i \cdot \operatorname{Res} f(z) \\
& \quad=\left.2 \pi i \cdot \frac{\left.e^{i a}\right)}{2+i}\right|_{z=i}=2 \pi i \cdot \frac{e^{-a}}{2 i}=\pi \cdot e^{-a} \\
& \Rightarrow \int_{0}^{\infty} \frac{\cos (a x)}{x^{2}+1} d x=\frac{1}{2} \int_{-\infty}^{+\infty} \frac{\cos (a x)}{x^{2}+1} d x=\frac{\pi}{2} e^{-a} .
\end{aligned}
$$

4. $\int_{-\infty}^{+\infty} \frac{x \cdot \sin (a x)}{x^{4}+4} d x . \quad f(z)=\frac{z \cdot e^{i a z}}{z^{4}+4}=\frac{z}{z^{4}+4} \cdot e^{-a y}\left(\cos \left(a_{0}\right)+i \sin (a, x)\right)$
singularities are simple poles

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \frac{x e^{+i a \cdot x}}{x^{4}+4} d x=2 \pi i\left(\operatorname{Res}_{z=z_{1}} f(z)+\operatorname{Res}_{z=z_{2}} f(z)\right) \\
& \operatorname{Res}_{z-z_{i}} \frac{z \cdot e^{i a_{z}}}{z^{4}+4}=\left.\frac{z \cdot e^{i a z}}{4 z^{3}}\right|_{z=z_{i}}=\frac{e^{i a z_{i}}}{4 z_{i}^{2}} \\
& z_{1}=(1+i) \\
& z_{2}=(-1+i) \\
& \underset{z=z_{1}}{\operatorname{Res}} \left\lvert\,=\frac{e^{i a(1+i)}}{412 i}=\frac{e^{-a} e^{i a}}{8 i}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \int_{-\infty}^{+\infty} \frac{x(\cos (x)+i \sin (\sin) d x}{x^{4}+4}=2 \pi i \cdot \frac{e^{-a}}{4} \sin (a) \\
& \Rightarrow \int_{-\infty}^{+\infty} \frac{x \cdot \sin (a x)}{x^{4}+4} d x=\frac{2}{2} e^{-a} \sin (a) .
\end{aligned}
$$

6. $\int_{-\infty}^{+\infty} \frac{x \cdot \sin x d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$

$$
f(z)=\frac{z \cdot e^{i z}}{\left(z^{2}+1\right)\left(z^{2}+4\right)}
$$

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \frac{x \cdot e^{i x} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=2 z_{i} \cdot\left(\operatorname{Res} f(z)+\operatorname{Res}_{z=i}^{z=2 i} f(z)\right)=2 \pi i\left(\frac{1}{6 e}-\frac{1}{6 e^{2}}\right) \\
& \operatorname{Res}_{z=i} f(z)=\left.\frac{z e^{i z}}{\left(z^{2}+4\right)(z+i)}\right|_{z=i}=\frac{i \cdot e^{-1}}{3 \cdot 2 i}=\frac{1}{6 e} . \\
& \operatorname{Res} f(z)-\frac{z \cdot e^{i z}}{\left(z^{2}+1\right)(z+2 i)}=\frac{2 i \cdot e^{-2}}{(-3) \cdot 4 i}=-\frac{1}{6 e^{2}} \\
& \Rightarrow \int_{-\infty i}^{+\infty} \frac{x \cdot \sin x d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{2 \pi}{6 e^{2}}\left(e-\frac{1}{2}\right)=\frac{z}{3 e^{2}}(e-1) .
\end{aligned}
$$

11. $\int_{-\infty}^{+\infty} \frac{\cos x \cdot d x}{(x+c)^{2}+b^{2}} \quad f(z)=\frac{e^{i z}}{(z+a)^{2}+b^{2}}$

$$
\operatorname{Res}_{z=-a+b i} f(z)=\left.\frac{e^{i z}}{z-(-a-b i)}\right|_{-a+b i}=\frac{e^{i\left(-a+b_{i}\right)}}{2 b_{i}}=\frac{e^{-b} e^{-i a}}{2 b i}
$$

$$
\begin{aligned}
z_{-b=}^{2} & \Rightarrow \int_{-\infty}^{+\infty} \frac{e^{i x} d x}{(x+a)^{2}+b^{2}}=2 \pi i \cdot \operatorname{Res} f(z)=2 z i \cdot \frac{e^{-b} e^{-i a}}{2 b i}=\frac{\pi e^{-b}}{b} \cdot e^{-i a} \\
\Rightarrow & \int_{-\infty}^{+\infty} \frac{\cos x d x}{(x+a)^{2}+b^{2}}=\frac{\pi e^{-b}}{b} \cos (a)=\frac{\pi \cdot \cos (a)}{b \cdot e^{b}} \\
& \int_{-\infty}^{+\infty} \frac{\sin x d x}{(x+a)^{2}+b^{2}}=\frac{\pi \cdot e^{-b}}{b} \cdot(-\sin (a))=-\frac{\pi \cdot \sin (a)}{b \cdot e^{b}}
\end{aligned}
$$

NAME :
ID :

THERE ARE NINE (9) PROBLEMS. THEY HAVE THE INDICATED VALUE.
SHOW YOUR WORK
DO NOT TEAR-OFF ANY PAGE
NO CALCULATORS NO CELLS ETC.
ON YOUR DESK: ONLY test, pen, pencil, eraser.

1		50 pts
2		50 pts
3		50 pts
4		50 pts
5		50 pts
6		50 pts
7		50 pts
8		50 pts
9		50 pts
Total		450 pts

!!! WRITE YOUR NAME, STUDENT ID. BELOW !!!

NAME : ID :

1. (50pts) (a): Find complex numbers z such that $e^{1 / z}=2(1-i)$. (b): Solve for z such that $\cos (z)=2$.
2. (50pts)
(a): What's the image D_{2} of the region $D_{1}=\{z \in \mathbb{C} ; 0<\operatorname{Re}(z)<\pi\}$ under the map $w=i z$?
(b): What's the image of the region D_{2} (from above) under the map $w=e^{z}$?

3. (50pts)

(a): Suppose $f(z)=u+i v$ is analytic. If we know that $u(z)=x^{3}-3 x y^{2}$, what equations does v satisfy? Solve them to get $v=v(z)$.
(b): Assume that f is an entire function. If there is an analytic function $g(z)$ satisfying $f(z)=e^{g(z)}$, show that $f(z)$ has no zero point. Calculate $g^{\prime}(z)$ in terms of the function $f(z)$. Reversely if $f(z)$ has no zero point on \mathbb{C}, does there exist such a $g(z)$?
4. (50pts) Calculate the following contour integrals.
(a):

$$
\int_{|z|=3} \frac{\cos (z)}{z^{5}} d z
$$

(b):

$$
\int_{0}^{2 \pi i} \frac{1}{\cos ^{2}(z)} d z
$$

along any path from 0 to $2 \pi i$.
(c):

$$
\int_{|z|=3} \bar{z} d z
$$

5. (50pts) (a): Find the Taylor series of the following function centered at 0 .

$$
\frac{z}{(z-2)^{2}}
$$

What's the radius of convergence?
(b): Find the Taylor series of the above function centered at 1 . What's the convergence of radius?
6. (50pts) Find the Laurent series centered at 0 of the following function in the given region.

$$
\begin{gathered}
\frac{2}{(z-1)^{2}(z-2)} \\
(a)|z|<1 \\
\\
(b) 1<|z|<2 \quad
\end{gathered}(c)|z|>2
$$

7. (50pts) Calculate the contour integrals using residues:
(a):

$$
\int_{|z|=3} \frac{2}{(z-1)^{2}(z-2)} d z
$$

(b):

$$
\int_{|z|=10} \frac{z^{9}}{z^{5}+1} d z
$$

8. (50pts) Classify the isolated singularities and calculate their residues:
(a) $\frac{\log z}{z-1}$ at $z=1$.
(b) $\cos (1 / z)$ at $z=0$.
(c) $\frac{\sin (z)}{(z-\pi)^{4}}$ at $z=\pi$.
9. (50pts) Calculate the following integrals (a):

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{x^{4}+1} d x
$$

(b):

$$
\int_{0}^{\infty} \frac{\cos (2 x)}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x
$$

(c):

$$
\int_{0}^{2 \pi} \frac{d \theta}{3+2 \cos \theta}
$$

Scratch paper

$$
\begin{aligned}
& \text { (.a) } \begin{aligned}
& e^{\frac{1}{z}}=2(1-i) . \\
& \begin{aligned}
2(1-i) & =2 \sqrt{2} \cdot e^{-i \frac{\pi}{4}} \Rightarrow \frac{1}{z} \\
\quad{ }_{2(1-i)} & \log (2(1-i))
\end{aligned}=\ln 2 \sqrt{2}+i\left(-\frac{\pi}{4}+2 \pi \cdot n\right) \\
&=\frac{3}{2} \cdot \ln 2+i\left(-\frac{\pi}{4}+2 \pi \cdot n\right) n=0, \pm 1 \pm 2, \\
& \Rightarrow z=\frac{1}{\frac{3}{2} \ln 2+i\left(-\frac{\pi}{4}+2 \pi \cdot n\right)} \quad n=0, \pm 1, \pm 2, \cdots .
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \cos (z)=2 . \quad \cos (z)=\frac{e^{i z}+e^{-i z}}{2} \\
& \Rightarrow \quad \frac{e^{i z}+e^{-i z}}{2}=2 \Rightarrow e^{i z}-4+e^{-i z}=0 \text {. Let } e^{i z}=w \text {, then } e^{-i z}=w^{-1} \\
& \Rightarrow w^{2}-4 w+1=0 \Rightarrow w=\frac{4 \pm \sqrt{4^{2}-4}}{2}=\frac{4 \pm \sqrt{12}}{2}=2 \pm \sqrt{3}>0 . \\
& \Rightarrow i z=\log w=\ln (2 \pm \sqrt{3})+i \cdot(0+2 \pi \cdot n) \quad n=0, \pm 1, \pm 2, \cdots \\
& \Rightarrow z=-i \cdot \ln (2 \pm \sqrt{3})+2 \pi \cdot n= \pm i \ln (2+\sqrt{3})+2 \pi n . \quad n=0, \pm 1, \pm 2, \cdots \\
& \quad(\ln (2-\sqrt{3})=-\ln (2+\sqrt{3})) .
\end{aligned}
$$

j it

$e^{w}=e^{u} \cdot e^{i y} \begin{aligned} & \text { horizontal line } \rightarrow \text { ray } \\ & \text { vertical line } \rightarrow \text { semicircle }\end{aligned}$
$0<\operatorname{Arg}\left(e^{* v}\right)<\pi$
$\| /$
v open upper half place
3. (a) $f(z)=u+i v$ cualytr \Rightarrow Caudy-Riemann equations $\left\{\begin{array}{l}u_{0}=v_{y} \\ u_{y}=-v_{0}\end{array}\right.$

$$
\begin{aligned}
& \Longrightarrow\left\{\begin{array}{l}
v_{y}=3 x^{3}-3 x x^{2}-3 y^{2}(1) \Rightarrow V(x, y)=3 x^{2} y-y^{3}+C(x) \\
v_{x}=-\left(v_{y}\right)=-(-6 x y)=6 x y(2) \quad \|
\end{array}\right. \\
& \Downarrow \\
& C^{\prime}(x)=0 \Rightarrow(\infty)=\text { constant }
\end{aligned}
$$

(b). If $\left.g_{x, y} y\right)=u(z)+i v(z)$, then $e^{g(z)}=e^{u(z)} \cdot e^{i v(z)} \Rightarrow f(z) \neq 0$.

$$
f(z)=e^{g(z)} \Rightarrow f^{\prime}(z)=e^{g(z)} \cdot g^{\prime}(z)=f(z) \cdot g^{\prime}(z) \Rightarrow g^{\prime}(z)=\frac{f^{\prime}(z)}{f(z)}
$$

If $f(z)$ has no zero point in $\left(C\right.$, then $\frac{f^{\prime}(z)}{f(z)}$ is an entire (analyite) function.
Define $\tilde{g}(z)=\int_{0}^{z} \frac{f^{\prime}(w)}{f(v)} d w \quad$ (along any path from 0 to z) then $\tilde{g}^{\prime}(z)=\frac{f^{\prime}(z)}{f(z)}=(\log f(z))^{\prime}$ locally. So the cunalytir function $\tilde{g}(z)$ differs fum $\log f(z)$. (any branch) by a constant that is equal to $\log f(0)-\tilde{g}(0)$ $\log ^{1} f(0)$. so $g(z)=\tilde{g}(z)+\log f(0)=\int_{0}^{z} \frac{f^{\prime}(w)}{f(w)} d w+\log f(0)\left(\begin{array}{c}(2 \pi n) i) \\ \text { any } n \in \mathbb{Z}\end{array}\right.$
4.(a).

$$
\int_{|z|=3} \frac{\cos (z)}{z^{5}}=\left.\frac{2 \pi i}{4!} \frac{d 4}{d z^{4}} \cos z\right|_{z=0}=\left.\frac{2 \pi i}{24} \frac{d^{2}}{d z^{2}}(-\cos)\right|_{z=0}
$$

$$
=\left.\frac{2 i}{12} \cdot \cos z\right|_{z=0}=\frac{2 i}{12} \quad \text { by Canchy's formula for dervetives }
$$

(or Resitue Tleremen).
(b) $\frac{1}{\cos ^{2} z}=\sec ^{2} z$ has an antiderivative $\tan (z)$:

$$
\begin{aligned}
& \text { (c) } \quad|z|=3: \quad z=3 e^{i \theta} \quad 0 \leq \theta \leq 2 \pi \quad \quad z(\theta)=3 e^{i \theta} \cdot i d \theta \\
& \Rightarrow \int_{|z|=3} \bar{z} d z=\int_{0}^{2} 3 e^{-i \theta} 3 e^{i \theta} \cdot i d \theta=9 \int_{0}^{2 \pi} i d \theta=18 \pi i
\end{aligned}
$$

$$
\begin{aligned}
& (\tan (z))^{\prime}=\left(\frac{\sin z}{\cos z}\right)^{\prime}=\frac{\cos ^{2} z+\sin ^{2} z}{\cos ^{2} z}=\frac{1}{\cos ^{2} z} \\
& \Rightarrow \int_{0}^{\pi i} \frac{1}{\cos ^{2} z} d z=\left.\tan (z)\right|_{0} ^{2 \pi i}=\frac{\sin (2 \pi)}{\cos \left(z_{i} i\right)}-\frac{\sin (0)}{\cos (0)}=\frac{\frac{e^{i\left(x_{i}\right)}-e^{-i\left(x_{i}\right)}}{2 i}}{\frac{\left.e^{i\left(z_{i} i\right.}\right)+e^{-i\left(z_{i}\right)}}{2}}-0 \\
& =\frac{\frac{e^{-2 \pi}-e^{2 \pi}}{x i}}{e^{-2 \pi}+e^{2 \pi}}=i \cdot \frac{e^{2 \pi}-e^{-2 \pi}}{e^{2 \pi} \cdot e^{-2 \pi}}(-i \cdot \tanh (2 \pi)) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5. (a). } \frac{z}{(z-2)^{2}}=z \cdot \frac{1}{(z-2)^{2}} \\
& \frac{1}{z-z}=-\frac{1}{2\left(1-\frac{p}{2}\right)}=-\frac{1}{2} \cdot \sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n}=-\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}} \\
& \Rightarrow-\frac{1}{(z-2)^{2}}=\frac{d}{d z}\left(-\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}\right)=-\sum_{n=1}^{\infty} \frac{n \cdot z^{n-1}}{2^{n+1}}=-\sum_{n=0}^{\infty} \frac{(n+1) z^{n}}{2^{n+2}} \\
& \frac{d^{\prime \prime}}{d z}\left(\frac{1}{z-2}\right) \\
& \Rightarrow \frac{z}{\left(z^{-2}\right)^{2}}=z \cdot \sum_{n=0}^{\infty}(n+1) z^{n} 2^{n+2}=\sum_{n=0}^{\infty} \frac{(n+1) \cdot z^{n+1}}{2^{n+2}}=\sum_{n=1}^{\infty} \frac{n \cdot z^{n}}{2^{n+1}} . \\
& \begin{array}{l}
\lim _{n \rightarrow \infty}\left|\frac{C_{n+1}}{C_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{(n+1)}{2^{n+2}}}{\frac{n}{2^{n+1}}}=\lim _{n \rightarrow \infty} \frac{n+1}{2 n}=\frac{1}{2} \Rightarrow \text { Relines of corverigme } \\
\left(\frac{1}{2}\right)^{-1}=2 .
\end{array} \\
& \text { (b) } \frac{z}{(z-2)^{2}}=\frac{(z-1)+1}{(z-2)^{2}}=(z-1) \cdot \frac{1}{(z-2)^{2}}+\frac{1}{(z-2)^{2}} \text {. } \\
& \frac{1}{z-2}=\frac{1}{(z-1)-1}=-\frac{1}{1-(z-1)}=-\sum_{n=0}^{\infty}(z-1)^{n} \Rightarrow-\frac{1}{\text { diffecelte }} \frac{1}{(z-2)^{2}}=-\sum_{n=1}^{\infty} n \cdot(z-1)^{n-1}=-\sum_{n=0}^{\infty}(n+1)(z-1)^{n} \text {. } \\
& \Rightarrow \frac{z}{(z-2)^{2}}=(z-1) \cdot \sum_{n=1}^{\infty} n \cdot(z-1)^{n-1}+\sum_{n=0}^{\infty}(n+1)(z-1)^{n}=\sum_{n=1}^{\infty} n \cdot(z-1)^{n}+\sum_{n=0}^{\infty}(n+1) \cdot(z-1)^{n} \\
& =\sum_{n=0}^{\infty}(2 n+1) \cdot(z-1)^{n} \\
& \lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|=\lim _{n \rightarrow \infty} \frac{2(n+1)+1}{2 n+1}=1 \Rightarrow \text { Ractius of convergeme }=1^{-1}=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6. } \left.\frac{2}{(z-1)^{2}(z-2)}=\frac{A}{(z-1)^{2}}+\frac{B}{z-1}+\frac{C}{z-2} \text { (or } \frac{A z+B}{(z-1)^{2}}+\frac{C}{z-2}\right) \\
& =\frac{A(z-2)+B(z-1)(z-2)+\left(\cdot(z-1)^{2}\right.}{(z-1)^{2}(z-2)}=\frac{(B+C) z^{2}+(A-3 B-2 C) z+(-2 A+2 B+C)}{(z-1)^{2}(z-2)} \\
& \Rightarrow\left\{\begin{array}{l}
B+C=0 \\
A-3 B-2 C=0 \\
-2 A+2 B+C=2
\end{array} \Rightarrow C=-B+A-B=0 \Rightarrow A=-2 \Rightarrow\left\{\begin{array}{l}
A=-2 \\
B=-2 \\
C=2 .
\end{array} \Rightarrow\right.\right. \\
& \Rightarrow \frac{2}{(z-1)^{2}(z-2)}=-\frac{2}{(z-1)^{2}}-\frac{2}{z-1}+\frac{2}{z-2} \text {. }
\end{aligned}
$$

(a). $|z|<1 \quad \frac{1}{1-z}=\left\lvert\,+z+z^{2}+\cdots=\sum_{n=0}^{\infty} z^{n} \Rightarrow \frac{1}{(1-z)^{2}}=\sum_{n=1}^{\infty} \cdot n \cdot z^{n-1}=\sum_{n=0}^{\infty}(n+1) z^{n}\right.$.

$$
\frac{2}{z-2}=-\frac{2}{2} \cdot \frac{1}{1-\frac{z}{2}}=-\sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n}=-\sum_{n=0}^{\infty} \frac{z^{n}}{2 n}(-|z|<2) \quad|z|<1
$$

So $\frac{2}{(z-4)^{2}(z-2)}=-2 \cdot \sum_{n=0}^{\infty}(n+1) z^{n}+2 \cdot \sum_{n=0}^{\infty} z^{n}-\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n}}=\sum_{n=0}^{\infty}\left(-2 n-\frac{1}{z^{n}}\right) \cdot z^{n}$
(b) $\left|<|z|<2 \cdot \frac{1}{z \|}=\frac{1}{z} \cdot \frac{1}{1-\frac{1}{z}}=\frac{1}{z} \cdot \sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}=\sum_{n=1}^{\infty} \frac{1}{z^{n}}\right.$

$$
\begin{aligned}
& \Rightarrow \frac{1}{(z-1)^{2}}=-\frac{d}{d z} \frac{1}{(z-1)}=-\frac{d}{d z} \sum_{n=0}^{\infty} \frac{1}{z^{n+1}}=\sum_{n=0}^{\infty}(n+1) \cdot z^{-(n+2)}=\sum_{n=2}^{\infty} \frac{(n-1)}{z^{n}} . \\
& \Rightarrow \frac{2}{(z-1)^{2}(z-2)}=-2 \cdot \sum_{n=2}^{\infty} \frac{n-1}{z^{n}}-2 \cdot \sum_{n=1}^{\infty} \frac{1}{z^{n}}+1 \cdot\left(-\sum_{n=0}^{\infty} \frac{z^{n}}{2 n}\right) \\
&=\sum_{n=1}^{\infty} \frac{1}{z^{n}} \cdot(-2(n-1)-2)-\sum_{n=0}^{\infty} \frac{z^{n}}{z^{n}}=-\sum_{n=1}^{\infty} \frac{2 n^{\prime}}{z^{n}}-\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n}} . \\
& 1<|z|<2 .
\end{aligned}
$$

6.(c) $\frac{2}{(z-1)^{2}(z-2)}=-\frac{2}{(z-1)^{2}}-\frac{2}{z-1}+\frac{2}{z-2}$
$|z|>2$. As before. $-\frac{2}{(z-1)^{2}}-\frac{z}{z-1}=-\sum_{n=1}^{\infty} \frac{2 n}{z^{n}}$.

$$
\begin{aligned}
& \frac{2}{z-z}=\frac{2}{z} \cdot \frac{1}{1-\frac{2}{z}}=\frac{2}{z} \cdot \sum_{n=0}^{\infty}\left(\frac{2}{z}\right)^{n}=\sum_{n=0}^{\infty} \frac{2^{n+1}}{z^{n+1}}=\sum_{n=1}^{\infty} \frac{z^{n}}{z^{n}} . \\
\Rightarrow & \frac{z}{(z-1)^{2}(z-z)}=-\sum_{n=1}^{\infty} \frac{z n}{z^{n}}+\sum_{n=1}^{\infty} \frac{z^{n}}{z^{n}}=\sum_{n=1}^{\infty} \frac{\left(-2 n+2^{n}\right)}{z^{n}} . \mid(\mid>2)
\end{aligned}
$$

$7^{(a)}$
7

$$
\begin{aligned}
& =2 \pi i \cdot\left(\operatorname{Res} f(z)+\operatorname{Res}_{z=2} f(z)\right) \\
& \operatorname{Res} f(z)=\left.\frac{1}{\pi=1} \cdot \frac{d}{d z} \cdot\left(\frac{2}{z-2}\right)\right|_{z=1}=-\left.\frac{2}{(z-2)^{2}}\right|_{z=1}=-2 \\
& \operatorname{Res} f(z)=\left.\frac{2}{(z-1)^{2}}\right|_{z=2}=2 \\
& \Rightarrow \int_{|z|=3} f(z) d z=2 \pi i \cdot(-2+z)=0
\end{aligned}
$$

(b). $\int_{|z|=10} \frac{z^{9}}{z^{5}+1} d z$. because all the singularities of $f(z)=\frac{z^{9}}{z^{5}+1}$ are contained inside $|z|=10$.

$$
\begin{aligned}
& =-2 \pi i \cdot \operatorname{Res} \frac{z^{9}}{z^{9}+1} \quad \quad \frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\frac{1}{z^{2}} \cdot \frac{\frac{1}{z^{9}}}{\frac{1}{z^{5}}+1}=\frac{1}{z^{11}} \cdot \frac{z^{5}}{z^{5}+1}=\frac{1}{z^{6}} \cdot \frac{1}{1+z^{5}} \\
& \operatorname{Res}_{z=i \infty} f(z)=-\operatorname{Res}_{z=0} \frac{1}{z^{2}} f\left(\frac{1}{z}\right)=-(-1)=1 . \\
& \int_{1(z \mid=10} \frac{z^{9}}{z^{5}+1} d z=-2 \pi i \cdot 1=-2 \pi i . \\
&
\end{aligned} \quad \frac{1}{z^{6}} \cdot\left(1-z^{5}+z^{10}-z^{15}+\cdots\right) .
$$

8.

$$
\begin{aligned}
& \text { (a) } \frac{\log z}{z-1} \\
& \lim _{z \rightarrow 1} \frac{\log z}{z-1} \xlongequal{\text { L'Hoptal }} \lim _{z \rightarrow 1} \frac{\frac{1}{z}}{1}=1
\end{aligned}
$$

$\Rightarrow z=1$ is a vemerable singulanity $\Rightarrow \operatorname{Res} \frac{\log z}{z-1}=0$.
Actually: $\log z=\log (1+(z-1))=(z-1)-\frac{(z-1)^{2}}{2}+\frac{(z-1)^{3}}{3} \cdots|z-1|<\mid$.
$\Rightarrow \frac{\log z}{z-1}=1-\frac{z-1}{2}+\frac{(z-1)^{2}}{3}-\cdots$ no singulen part.
(b) $\cos \left(\frac{1}{z}\right)=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{\left(\frac{1}{z}\right)^{2 n}}{(z n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \frac{1}{z^{2 n}}=1-\frac{1}{2!} \cdot \frac{1}{z^{2}}+\frac{1}{4!} \cdot \frac{1}{z^{4}}-\cdots$
infiniely mary singden terms \Rightarrow essential sungalierity.
$\operatorname{Res}_{z=0}^{\cos }\left(\frac{1}{z}\right)=0$ because the coefficient $C_{-1}=0$ (no $\frac{1}{z}$ term).
(c). $\frac{\sin z}{(z-\lambda)^{4}}=\frac{\sin (\pi-z)}{(z-\pi)^{4}}=-\frac{\sin (z-\pi)}{(z-\pi)^{4}}=-\frac{1}{(z-\lambda)^{4}} \frac{\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{(z-\pi}{(2}}{=-\frac{1}{(z-\pi)^{4}} \cdot\left((z-\pi)-\frac{1}{3!} \cdot(z-\pi)^{3}+\frac{1}{5!}(z-x)^{5}-\cdots\right)=-\frac{1}{(z \pi)^{3}}+\frac{1}{6} \frac{1}{((z-\pi)}}$
tindely meny singular terns \Rightarrow poles (of orden 2).
(2)

$$
\begin{aligned}
& \operatorname{Res}_{z=\pi} \frac{\sin z}{(z \rightarrow \pi) 4}=\left(-1=+\frac{1}{6} \text {. on } \operatorname{Res}_{z=\pi} \frac{\sin z}{(z-z)^{4}}=\left.\frac{1}{3!d d^{3}} \sin (z)\right|_{z=\pi}=\left.\frac{1}{6}(-\cos z)\right|_{z=}\right. \\
& =\frac{1}{6} \text {. }
\end{aligned}
$$

9
9.

$$
\begin{aligned}
& =\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{z^{2}}{z^{4}+1} d z \\
& =\lim _{R \rightarrow \infty}\left(\int_{-R}^{R} \frac{z^{2}}{z^{4}+1} d z+\int_{C_{R}} \frac{z^{2}}{z^{4}+1} d z\right)=2 \pi i \cdot\left(\operatorname{Res}_{z=z_{1}} f(z)+R_{z=s} f(z)\right) \\
& \operatorname{Res}_{z=z_{1}} \frac{z^{2}}{z^{4}+1}=\left.\frac{z^{2}}{4 z^{3}}\right|_{z=z_{1}}=\frac{1}{4 z_{1}}=\frac{1}{4} \cdot e^{-i \frac{\pi}{4}}=\frac{1}{4} \frac{1}{\sqrt{2}}(1-i) \\
& \operatorname{Res}_{z=z_{2}} \frac{z^{2}}{z^{4}+1}=\left.\frac{z^{2}}{4 z^{3}}\right|_{z=z_{2}}=\frac{1}{4 z_{2}}=\frac{1}{4} \cdot e^{-i \frac{i \pi}{4}}=\frac{1}{4} \cdot \frac{1}{\sqrt{2}} \cdot(-1-i) . \\
& \Rightarrow \int_{-\infty}^{+\infty} \frac{x^{2}}{x^{4}+1} d x=2 z i \cdot\left(\frac{1}{4 \sqrt{2}} \cdot(1-i)+\frac{1}{4 \sqrt{2}} \cdot(-1-i)\right)=\frac{\pi i}{2 \sqrt{2}}(-2 i)=\frac{z}{\sqrt{2}} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b). } \int_{0}^{\infty} \frac{\cos (2 x)}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{1}{2} \int_{-\infty}^{+\infty} \frac{\cos (2 x)}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x \quad f(z)=\frac{e^{2 i z}}{\left(z^{2}+1\right)\left(z^{2}+4\right)}=\frac{e^{-2 y} \cdot e^{i \cdot(2 x)}}{\left(z^{2}+1\right)\left(z^{2}+4\right) .} \\
& \operatorname{Res}_{z=i} f(z)=\left.\frac{e^{2 i z}}{\left(z^{2}+4\right)(z+i)}\right|_{z=i}=\frac{e^{-2}}{3 \cdot 2 i}=\frac{e^{-2}}{6 i} . \\
& \operatorname{Res}_{z=2 i} f(z)=\left.\frac{e^{2 i z}}{\left(z^{2}+1\right)(z+i i)}\right|_{z=2 i}=\frac{e^{-4}}{(-3) \cdot 4 i}=-\frac{e^{-4}}{12 i} \\
& \Rightarrow \int_{-\infty}^{\infty} \frac{\cos (2 x) d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=2 \pi i \cdot\left(\frac{R e s}{2-i}+\frac{\operatorname{Ras})}{z-2 i}\right)=2 \pi i \frac{1}{i} \cdot\left(\frac{e^{-2}}{6}-\frac{e^{-4}}{12}\right)=\frac{2 \pi \cdot e^{4}}{12}\left(2 e^{2}-1\right)=\frac{\pi}{6} \cdot \frac{2 e^{2}-1}{e^{4}} \\
& \Rightarrow \int_{0}^{\infty} \frac{\cos (2 x) d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{\pi}{12} \cdot \frac{2 e^{2}-1}{e^{4}} .
\end{aligned}
$$

9. (c) $\int_{0}^{2} x \frac{d \theta}{3+2 \cos \theta}$

$$
\begin{gathered}
11
\end{gathered} \Rightarrow d \theta=\frac{d z}{i z}, \text { and } \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}=
$$

Singulanity of $f(z): \quad z^{2}+3 z+1=0 \Rightarrow z=\frac{-3 \pm \sqrt{3^{2}-4}}{2}=\frac{-3 \pm \sqrt{5}}{2}$ $z_{1}=\frac{-3+\sqrt{5}}{2}$ is contained instide $\left\lvert\, z k=1 . \quad z_{2}=\frac{-3-\sqrt{5}}{2}\right.$ is citside

$$
\begin{aligned}
& \operatorname{Res}_{z=z_{1}} \frac{1}{z^{2}+3 z+1}=\left.\frac{1}{2 z+3}\right|_{z=\frac{-3+\sqrt{5}}{2}}=\frac{1}{(-3+\sqrt{5})+3}=\frac{1}{\sqrt{5}} . \\
& \Rightarrow \int_{\mid z 1=1} \frac{d z}{z^{2}+3 z+1}=2 \pi i \cdot \frac{1}{\sqrt{5}} \\
& \Rightarrow \int_{0}^{2 \pi} \frac{d \theta}{3+2 \cos \theta}=\frac{1}{2} \cdot 2 \pi i \cdot \frac{1}{\sqrt{5}}=\frac{2 \pi}{\sqrt{5}}
\end{aligned}
$$

$1 .(a)$.

$$
\begin{aligned}
z=i^{\frac{1}{2}} & =1^{\frac{1}{2}} e^{\left.i \cdot \frac{(\pi}{2}+2 \pi \cdot n\right)} 2 \\
& =e^{i\left(\left(\frac{\pi}{4}\right)+0 \pi\right)}, e^{i \cdot\left(\frac{\pi}{4}+\pi\right)} \\
& =e^{i \frac{\pi}{4}}, e^{i \frac{5 \pi}{4}}= \pm \frac{1}{\sqrt{2}}(1+i) . \quad 10
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b). } \sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}=2 i \Rightarrow e^{i z}-e^{-i z}=-4 \\
& w=e^{i z} \Rightarrow \quad w+4-\frac{1}{w}=0 \Leftrightarrow w^{2}+4 w-1=0 \cdot 5 \\
& \Rightarrow w=\frac{-4 \pm \sqrt{4^{2}+4}}{2}=\frac{-4 \pm 2 \sqrt{5}}{2}=-2 \pm \sqrt{5}=e^{i z} \quad 5+5 \\
& \Rightarrow \quad i z=\log (-2 \pm \sqrt{5})=\left\{\begin{array}{l}
\ln (-2+\sqrt{5})+i \cdot 2 \pi n \\
\ln (2+\sqrt{5})+i \cdot(2+2 \pi n)
\end{array} \quad n=0, \pm 1, \pm 2, \cdots\right. \\
& \Rightarrow z=\left\{\begin{array}{l}
-i \ln (\sqrt{5}-2)+2 \pi n . \\
-i \ln (\sqrt{5}+2)+(2 n+1) \pi=i \ln (\sqrt{5}-2)+(2 n+1) \pi
\end{array}\right.
\end{aligned}
$$

$$
\int e^{w}
$$

$$
25
$$

Generated by CamScanner
(a). $\left\{\begin{array}{ll}U_{x}=V_{y}=-2 y & 10 \\ U_{y}=-V_{x}=-2 x_{0} & \end{array} d(x, y)=-2 x y+C(y)^{5} .{ }^{5}\right.$

$$
c^{\prime \prime}(y)=0 \Rightarrow c(y)=\text { constant }
$$

So

$$
\begin{aligned}
& f(x, y)=-2 x y^{5} \Rightarrow f(z)=(-2 x y)+i \cdot\left(x^{2}-y^{2}\right) \\
& \text { real consent } \quad=i \cdot\left(\left(x^{2} y^{2}\right)+i\left(\sum x y\right)\right)=i \cdot z^{2} .
\end{aligned}
$$

(b).

$$
\begin{aligned}
& \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=4 \text { to } \Rightarrow v \text { is not hammer } \Rightarrow \nexists f(z) s t . \\
& v \operatorname{In} f(z) . \\
& 25 .
\end{aligned}
$$

4. (a)

$$
\text { a). } \begin{aligned}
& \int_{|z-\pi|-3} \frac{\sin (z)}{(z-\pi)^{4}} d z=\left.\frac{2 \pi i}{3!} \frac{d^{3}}{d z^{3}} \sin (z)\right|_{z-\pi} 15 \\
& =\left.\frac{2 \pi i}{6} \cdot(-\cos z)\right|_{z=\pi}=\frac{2 \pi i}{6}(-(-1))=\frac{\pi i}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b). } \frac{1}{z+1}=\frac{d}{d z} \log (z+1) . \\
& \int_{0}^{1} \frac{1}{z+1} d z=\left.\log (z+1)\right|_{0} ^{15}=\log (z+1) \log 1=\ln \sqrt{2}+i \cdot \frac{\pi}{4}
\end{aligned}
$$

or

$$
\begin{aligned}
z(t) & =t i \cdot 0 \leq t \leq 1 \quad z^{\prime}(t)=i \cdot 5 \\
\int_{0}^{i} \frac{1}{z+1} d z & =\int_{0}^{1} \frac{1}{1} \cdot d t \\
t i+1 & =i \cdot \int_{0}^{1} \frac{1-i t}{1+t^{2}} d t . \\
& =i \cdot \int_{0}^{1} \frac{d t}{1+t^{2}}+\int_{0}^{1} \frac{t d t}{1+t^{2}} \\
& \left.=i \cdot \tan ^{-1} t\right]_{0}^{1}+\left.\frac{1}{2} \ln \left(1+t^{2}\right)\right|_{0} ^{1} \\
5 & =i \cdot \frac{z}{4}+\frac{1}{2} \ln 2 .
\end{aligned}
$$

5. (a).

$$
\frac{1}{1+z}=\sum_{n=0}^{\infty}(-1)^{n} \cdot z^{n} \quad 10 .
$$

$$
\Rightarrow \log (1+z)=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{z^{n+1}}{n+1}=\sum_{n=1}^{\infty}(-1)^{n-1} \cdot \frac{z^{n}}{n}=\left(z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\frac{z^{4}}{4}+\cdots\right)
$$

$\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{1}{n+1}}{\frac{1}{\hbar}}=1 \Rightarrow$ radius of cowrergence $=1.5$.
(b).

$$
\begin{aligned}
\frac{1}{1+z}=\frac{1}{2+(z-1)} & =\frac{1}{2} \cdot \frac{1}{1+\frac{z-1}{2}}=\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{(z-1}{2}\right)^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{(z-1)^{n}}{2^{n+1}} 10
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \log (1+z) & =\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{(z-1)^{n+1}}{(n+1) 2^{n+1}}+\log 2 . \\
& =\ln 2+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(z-1)^{n}}{n \cdot 2^{n}} \\
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{C_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{\frac{1}{(n+1) \cdot 2^{n+1}}}{\frac{1}{n \cdot 2^{n}}}=\lim _{n \rightarrow \infty} \frac{n}{2(n+1)}=\frac{1}{2}
\end{aligned}
$$

\Rightarrow vachins of convergence $=\left(\frac{1}{2}\right)^{-1}=2$.
OR: $\log (1+z)=\log (2+(z-1))=\log 2+\log \left(1+\frac{z-1}{2}\right)^{5}$.

$$
=\log 2+\sum_{n=1}^{\infty}(-1)^{n-1} \cdot \frac{(2-)^{n}}{n \cdot 2^{n}} 10
$$

$$
\text { 6. } \frac{1}{(z-1)(z-2)}=-\frac{1}{z-1}+\frac{1}{z-2}=f(z) \quad 10
$$

(a)

$$
\begin{aligned}
& \text { a) }|z|<1, \left.-\frac{1}{z-1}=\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n} . \quad \right\rvert\, \theta \\
& \left.\frac{1}{z-2}=-\frac{1}{2\left(1-\frac{z}{2}\right)}=-\frac{1}{2} \cdot \sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n}=-\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}} \right\rvert\, \theta \\
& \Rightarrow f(z)=\sum_{n=0}^{\infty}\left(1-\frac{1}{2^{n+1}}\right) z^{n} .
\end{aligned}
$$

(b).

$$
\begin{aligned}
& \text { (3). }\left|<|z|<2 .-\frac{1}{z-1}=-\frac{1}{z} \cdot \frac{1}{1-\frac{1}{z}}=-\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n}=-\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}=-\sum_{n=1}^{\infty} \frac{1}{z^{n}} .\right. \\
& \quad \frac{1}{z-2}=\frac{-1}{2} \cdot \frac{1}{1-\frac{z}{2}}=-\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{z}{z}\right)^{n}=-\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}} \quad 10 \\
& \Rightarrow f(z)=-\sum_{n=1}^{\infty} \frac{1}{z^{n}}-\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7. (a). } \int_{(z)=4} \frac{d z}{(z-3)^{2}(z-1)} \quad f(z)=\frac{1}{(z-3)^{2}(z-1)} \\
& \operatorname{Res}_{z=1} f(z)=\left.\frac{1}{(z-3)^{2}}\right|_{z=1}=\frac{1}{(-2)^{2}}=\frac{1}{4} . \quad 10 \\
& \operatorname{Res} f(z)=\left.\frac{d}{d z}\left(\frac{1}{z-1}\right)\right|_{z=3}=-\left.\frac{1}{\left.(z-1)^{2}\right)^{2}}\right|_{z=3}=-\frac{1}{z^{2}}=-\frac{1}{4 .} \quad 10 \\
& \Rightarrow \int_{(z=3} \frac{d z}{(z-3)^{2}(z-1)}=2 \pi i \cdot\left(\operatorname{Res}_{z=1} f(z)+\operatorname{Res}_{z=3} f(z)\right)=0.5 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b). } f(z)=\frac{z^{9}}{z^{5}-2} \quad \frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\frac{\frac{1}{z^{4}}}{\frac{1}{z^{3}}-2} \cdot \frac{1}{z^{2}}=\frac{\frac{1}{z^{4}}}{\frac{12 z^{5}}{}} \frac{10}{z^{2}}=\frac{1}{z^{6}} \cdot \frac{1}{1 z^{5}} \\
& \Rightarrow \operatorname{Res} f(z)=-\operatorname{Res} \frac{1}{z=0}\left(\frac{1}{z^{2}}\right) \quad=\frac{1}{z^{6}}\left(1+z^{5} 4+z^{10}+\cdots\right) \\
& =2 . \\
& \left.=\frac{1}{z^{6}}+\frac{2}{z}+4 z^{4}+\cdots \cdot \right\rvert\, g \\
& \Rightarrow \int_{(z) \mid 0} f(z) d z=2 \pi \cdot \operatorname{les} \frac{1}{z=0} \frac{1}{z^{2}} f\left(\frac{1}{z}\right)=2 \pi i \cdot 2=4 \pi i .5
\end{aligned}
$$

8. (a). $\frac{1-\cos z}{z^{3}}=\frac{1-\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\cdots\right)}{z^{3}}=\frac{1}{2 z}-\frac{z}{4!}+\frac{z^{3}}{6!} \cdots$
$\Rightarrow z=0$ is a pole of order 1. $\operatorname{Res}_{z=0}^{105} f(z)=\frac{1}{2}$.
(b). $z^{6} e^{\frac{1}{z}}=z^{6} \cdot \sum_{n=0}^{\infty} \frac{1}{n!} \frac{11^{n}}{z}=\sum_{n=0}^{\infty} \frac{1}{n!} \cdot z^{6-n}$.
infinitely mary singular terns $\Rightarrow \begin{aligned} & z=0 \text { is an } 5 \\ & \text { essential sugulanity. }\end{aligned}$

$$
\operatorname{Res}_{z=0} f(z)=\frac{1}{7!} 5
$$

(c) $f(z)=\frac{1}{\sin z} \quad$ singular points $\quad z=\pi \cdot n^{2} . \quad n=0, \pm 1, \pm 2, \cdots$
$z=0 . \quad f(z)=\left(\frac{z}{\sin z}\right) \cdot \frac{1}{z}=\frac{g(z)}{z \cdot 2} \quad g(z)=\frac{z}{\sin z}$ has removable singularity at $Z=0.2$
$\Rightarrow z=0$ is a pole f order 1. $\operatorname{kes}_{z=0} f(z)=1 . \quad \lim _{z \rightarrow 0} g(z)=\lim _{z \rightarrow 0} \frac{z}{\sin z}=1$.
Similarly
Because $\sin z=\sin (z-(2 m) \pi)$. So. $z=(2 m) \pi$ is pole if order 1 .

$$
\begin{aligned}
& \operatorname{Res}_{z=2 m \pi} f(z)=1 \\
& \sin (z)=-\sin (z-(2 m+1) \pi) . \\
& \\
& \\
& \\
& \operatorname{Res}_{z=[\operatorname{min+1} / 2} f(z)=-1
\end{aligned}
$$

Generated by CamScanner
(a). $\int_{-\infty}^{+\infty} \frac{1}{x^{4}+4} d x \quad f(z)=\frac{1}{z^{4}+4} \quad 5$

$$
\begin{aligned}
& \operatorname{Res}_{z=z_{1}} f(z)=\left.\frac{1}{4 \cdot z^{3}}\right|_{z=z_{1}}=\frac{1}{4 \cdot z_{1}^{3}}=\frac{z_{1}}{4-z_{1}^{4}}=-\frac{z_{1}}{16}=-\frac{1}{16} \cdot(1+i) \\
& \operatorname{leg}_{z=z_{2}} f(z)=\left.\frac{1}{4 \cdot z^{3}}\right|_{z=z_{2}}=\frac{1}{4 \cdot z_{2}^{3}}=\frac{z_{2}}{4 z_{z}^{3}}=-\frac{z_{2}}{16}=-\frac{1}{16}(-1+i) . \\
\Rightarrow & \int_{-\infty}^{+\infty} \frac{1}{x^{4}+4} d x=2 \pi i \cdot\left(\operatorname{Res}_{z=z_{1}} f(z)+\operatorname{pes}_{z=z_{2}} f(z)\right)=2 \pi i-\frac{i}{8}=\frac{\pi}{4} .5 .
\end{aligned}
$$

(b) $\int_{0}^{\infty} \frac{\cos (2 x)}{x^{2}+1} d x=\frac{1}{2} \int_{-\infty}^{+\infty} \frac{\cos (2 x)}{x^{2}+1} d x, \quad f(z)=\frac{e^{2 i z}}{z^{2}+1}=\frac{e^{-2 y} e^{i z x}}{z^{2}+1}$

$$
\begin{aligned}
& \operatorname{Res}_{z=i} f(z)=\left.\frac{e^{2 i z}}{z+1}\right|_{z=i}=\frac{e^{-2}}{2 i} .5
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-R}^{+R} \frac{\cos \left(x_{0}\right)+i \sin \left(x_{0}\right)}{x^{2}+1} d x \\
& \Rightarrow \quad \int_{0}^{\infty} \frac{\cos (2 x)}{x^{2}+1} d x=\frac{\pi}{2 e^{2}} \text {. }
\end{aligned}
$$

$q(c)$
12. $\int_{0}^{2} \frac{d \theta}{2+\sin \theta}$.
$z=e^{i \theta} \quad d z=i e^{i \theta} d \theta=i^{\prime} \cdot z d \theta$

$$
\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}=\frac{z-\frac{1}{z}}{2 i^{i}}
$$

$$
=\int_{|z|=1} \frac{\frac{d z}{i z}}{2+\frac{z-\frac{1}{z}}{2 i}}=2 \cdot \int_{|z|=1} \frac{d z}{z^{2}+4 i z-1} 2
$$

Singularity: $z^{2}+4 i z-1=0 \Rightarrow z=\frac{-4 i \pm \sqrt{(4 i)^{2}+4}}{2} 2$.

$$
\begin{aligned}
& f(z)=\frac{1}{z^{2}+4 i z-1} \quad=\frac{-4 i \pm \sqrt{-12}}{2}=\frac{-4 i \pm 2 \sqrt{3 i}}{2} \\
& =(-2 \pm \sqrt{3}) i^{i} \text {. } \\
& \operatorname{Res}_{z=(-2+\sqrt{3}) ;} f(z)=\left.\frac{1}{2 z+4 i}\right|_{z=(-2+\sqrt{3}) i}=\frac{1}{2 \sqrt{3} 1} \quad 2 \\
& \Rightarrow 2 \int_{\sqrt{z}+1 \cdot} \frac{d z}{z^{2}+4 i z-1}=2 \cdot 2 x i \cdot \operatorname{Res}_{z=(-2+1) i} f(z)=4 \pi i \cdot \frac{1}{2 \sqrt{3} i}=\frac{2 \pi}{\sqrt{3}} \text {. } \\
& 11 \\
& \int_{0}^{2 \pi} \frac{d \theta}{2+\sin \theta}
\end{aligned}
$$

1. (50 pts) Let $z_{1}=-1+i, z_{2}=\sqrt{2} e^{i \frac{\pi}{4}}$.
(a): Calculate $\bar{z}_{1} \cdot z_{2}$ (write the result in the form of $a+b i$).

$$
\bar{z}_{1}=-1-i, \quad z_{2}=\sqrt{2} \cdot\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=1+i . \quad 10
$$

So $\bar{z}_{1} \cdot z_{2}=(-1-i) \cdot(1+i)=-1-i-i+1=-2 i$.

$$
\text { or } \quad z_{1}=\sqrt{2} \cdot e^{\frac{3 \pi}{4} i}, \bar{z}_{1} \cdot z_{2}=\sqrt{2} \cdot e^{-\frac{3 \pi}{4} i} \cdot \sqrt{2} \cdot e^{i \frac{\pi}{4}}=2 \cdot e^{-\frac{\pi}{2} i}=-2 i
$$

(b): Calculate $z_{1}^{1 / 3}$ and sketch the roots on a regular polygon.

$$
\begin{aligned}
& z_{1}=-1+i=\sqrt{2} \cdot e^{i \cdot \frac{3 \pi}{4}} \\
& \Rightarrow z_{1}^{\frac{1}{3}}=2^{\frac{1}{6}} e^{i \cdot \frac{1}{3} \cdot\left(\frac{3 \pi}{4}+2 \pi k\right)}=2^{\frac{1}{6}} \cdot e^{i \frac{\pi}{4}} \cdot\left(e^{\frac{2 i \pi}{3}}\right)^{k} \quad k=0,1,2 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& k=1: \quad c_{2}=c_{1} \cdot e^{\frac{2 i \pi}{3}}=2^{-\frac{1}{3}} \cdot(1+i) \cdot\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
& =2^{-\frac{4}{3}} \cdot(-1+\sqrt{3} i-i-\sqrt{3})=2^{-\frac{4}{3}} \cdot((-1-\sqrt{3})+i(\sqrt{3}-1)) \text {. } \\
& k=2: \quad c_{3}=c_{1}\left(e^{\frac{2 i \pi}{3}}\right)^{2}=c_{1} \cdot e^{-\frac{2 i \pi}{3}}=2^{-\frac{1}{3}}(1+i) \cdot\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right) \\
& =2^{-\frac{4}{3}} \cdot(-1-\sqrt{3} i-i+\sqrt{3})=2^{-\frac{4}{3}} \cdot((-1+\sqrt{3})+i \cdot(-\sqrt{3}-1)) \text {. } \\
& 8 \\
& \frac{\pi}{4}, \frac{\pi}{4}+\frac{2 \pi}{3}=\frac{11 \pi}{12}, \frac{\pi}{4}+\frac{4 \pi}{3}=\frac{19 \pi}{12}=\left(\frac{\pi}{4}-\frac{\pi}{31}\right)+2 \pi
\end{aligned}
$$

2. (50pts) Determine whether the limit exists or not. If it exist, then calculate it.
(a)

$$
\begin{aligned}
& \lim _{z \rightarrow 1} \frac{(z-i)^{2}}{(z-i)^{2}} \text {. } \\
& \lim _{z \rightarrow i} \frac{\overline{(z-i)^{2}}}{(z-i)^{2}}=\lim _{(z-i) \rightarrow 0} \frac{\overline{(z-i)^{2}}}{(z-i)^{2}}=\lim _{w \rightarrow 0} \frac{\bar{w}^{2}}{w^{2}} \xlongequal{w=r e^{j} \theta} \lim _{\substack{w \rightarrow \rightarrow 0 \\
r}} \frac{\overline{r^{2} e^{2 i \theta}}}{r^{2} e^{2 i \theta}} \\
& =\lim _{r \rightarrow 0} \frac{r^{2} \cdot e^{-2 i \theta}}{r^{2} e^{2 i \theta}}=\lim _{r \rightarrow 0} e^{-4 i \theta}=e^{-4 i \theta}
\end{aligned}
$$

The limits cong different directions are not the same \Rightarrow the limit does

$$
\begin{aligned}
& \text { (b) } \\
& \begin{aligned}
\lim _{z \rightarrow e^{i \frac{\pi}{4}}} \frac{z^{2}-i}{\lim _{z \rightarrow e^{4}} \frac{z^{2}-i}{z^{4}+1}+1} & =\lim _{z \rightarrow e^{\frac{i z}{4}}} \frac{z^{2}-i}{\left(z^{2}+i\right)\left(z^{2}-i\right)}=\lim _{z \rightarrow e^{\frac{3}{4}}} \frac{1}{z^{2}+1^{i}} \\
& =\frac{1}{e^{i \frac{3}{2}}+i}=\frac{1}{2 i}=-\frac{i}{2}
\end{aligned}
\end{aligned}
$$

or $\lim _{z \rightarrow e^{\frac{2 \pi}{4}}} \frac{z^{2}-i}{z^{4}+1}=\lim _{z \rightarrow e^{i \frac{i}{4}}} \frac{2 z}{4 z^{3}}=\lim _{z \rightarrow e^{\frac{3}{4}}} \frac{1}{2 z^{2}}$

$$
=\frac{1}{2 \cdot e^{\frac{i \pi}{2}}}=\frac{1}{2 i}=-\frac{i}{2}
$$

3. (5 Opts)
(1) Sketch the region given by:

$$
-\frac{\pi}{6}<\operatorname{Arg} z \leq 0, \quad 1<|z|<2^{1 / 3}
$$

(2) Find the image of the above region under the mapping $w=z^{3}$.
1.

$$
v w=z^{3}
$$

4. (5 Opts)
(a) Find the domain of the following function. Explain why the following function is analytic in its domain and calculate $f^{\prime}(z)$:

$$
f(z)=e^{\frac{z+1}{z-1}}
$$

- Domain $^{\text {on }}\{\{z \in \mathbb{C} ; z \neq 1\}=\mathbb{C} \backslash\{1\}$.
- $z+1, z-1$ analytic $\Rightarrow \frac{z+1}{z-1}$ analytic $\stackrel{e^{z a n g y t i c}}{\Longrightarrow}$ composition $e^{\frac{z+1}{z 1}}$ analytic

Chain rale: $f^{\prime}(z)=e^{\frac{z+1}{z-1}} \cdot\left(\frac{z+1}{z-1}\right)^{\prime}=e^{\frac{z+1}{z-1}} \cdot \frac{|(z-1)(z+1) \cdot|}{(z-1)^{2}}$

$$
=e^{\frac{z+1}{z-1}} \cdot\left(-\frac{z}{(z-1)^{2}}\right)=-\frac{2}{(-1)^{2}} e^{\frac{z+1}{z-1}}
$$

(b) If $g(z)$ is an analytic function analytic function in a domain D and $\operatorname{Im}(g(z))$ is constant on D, what can you say about $g(z)$? Explain your reason.

Let $g(z)=u(z)+i v(z)$.
By assumption, $\operatorname{Im}(g(z))=V(z)=$ const $=C_{2}$ -
By Cancly-Riemam equations:

$$
v_{x}=V_{y}=0
$$

$$
{ }_{10} \begin{aligned}
& u_{x}=v_{y}=0 \\
& u_{y}=-v_{x}=0
\end{aligned} \Rightarrow d u=0 \Rightarrow u=\text { constant. }=c_{1}
$$

So $g(z)=c_{1}+i c_{2}$ is a constant function.
5. (50pts) Find the points where the function $f(z)$ is differentiable and then calculate $f^{\prime}(z)$ at those points. Is the function analytic at those points? $\left(z=x+y i=r e^{i \theta}\right)$
(a) $f(z)=\left(x^{2}+y^{2}\right)+(x-y) i$

$$
u(x, y)=x^{2}+y^{2}, v=x-y .
$$

$$
\begin{array}{ll}
u_{x}=2 x, & u_{y}=2 y \\
v_{x}=1, & V_{y}=-1 .
\end{array}
$$

Canchy-Rierem equations:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ 2 x = - 1 } \\
{ 2 y = - 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
5 \\
x=-\frac{1}{2} \\
y=-\frac{1}{2}
\end{array} \text { so } f(z)\right.\right. \text { is differentiable only at } \\
& z=-\frac{1}{2}-\frac{1}{2} i .
\end{aligned}
$$

$f(z)$ is not ditterentril in any neighborhood $\Rightarrow f(z)$ is not analytic at any point.
(b) $f\left(e^{i \theta}\right)=e^{\theta} \cos (\ln r)-i \cdot e^{\theta} \sin (\ln r), \quad r>0,0<\theta<2 \pi$.

$$
\begin{aligned}
& u(r, \theta)=e^{\theta} \cdot \cos (\ln r), v(r, \theta)=-e^{\theta} \sin (\ln r) . \\
& u_{r}=-e^{\theta} \cdot \sin (\ln r) \cdot \frac{1}{r} \cdot u_{\theta}=e^{\theta} \cdot \cos (\ln r) . \\
& v_{r}=-e^{\theta} \cos (\ln r) \cdot \frac{1}{r}, v_{\theta}=-e^{\theta} \sin (\ln r) \\
& \Rightarrow \quad\left\{\begin{array}{l}
r u_{r}=v_{\theta}=-e^{\theta} \cdot \sin (\ln r) . \quad \text { ie. } C R \text { eqs are satisfied } \\
u_{\theta}=-r v_{r}=e^{\theta} \cdot \cos (\ln r) \quad \text { for } r>0,0<\theta<2 \pi
\end{array} 5\right.
\end{aligned}
$$

$\Rightarrow f(z)$ is analytic at any point in the clomain 5 (differentiable) $\{r>0,0<\theta<2 \pi\}$

$$
\begin{aligned}
f^{\prime}\left(r e^{i \theta}\right) & =e^{-i \theta} \cdot\left(u_{r}+i v_{r}\right)=e^{-i \theta} \cdot\left(\frac{-e^{\theta} \cdot \sin (\ln r)}{r}+i \cdot \frac{e^{\theta} \cdot \cos (\ln r)}{r}\right) . \\
& =-\frac{e^{\theta}(\sin (\ln r)+i \cdot \cos (\ln r)]}{r \cdot e^{i \theta}}=-i \cdot \frac{f(z)}{z} \\
(f(z) & \left.=e^{\theta} \cdot e^{-i \ln r}=e^{-i \log z} \Rightarrow f^{\prime}(z)=e^{-i \log z} \cdot \frac{-i}{z}=-i \frac{f(z)}{z}\right)
\end{aligned}
$$

Extra Crediz Problem
z-plane

w-plare

2
!!! WRITE YOUR NAME, STUDENT ID BELOW !!!

NAME :
ID :

1. (50pts) Let $z_{1}=-1-i, z_{2}=\sqrt{2} e^{i \frac{\pi}{4}}$.
(a): Calculate $\bar{z}_{1} \cdot z_{2}$ (write the result in the form of $a+b i$).

$$
\bar{z}_{1}=-1+i, \quad z_{2}=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\sqrt{2} \cdot\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=1+i
$$

So $\bar{z}_{1} \cdot z_{2}=(-1+i) \cdot(1+i)=-1-i+i-1=-2$.
or $z_{1}=\sqrt{2} \cdot e^{-\frac{3 \pi}{4} i}, \bar{z}_{1} \cdot z_{2}=\sqrt{2} \cdot e^{\frac{3 \pi}{4} i} \cdot \sqrt{2} \cdot e^{t \frac{\pi}{4}}=2 \cdot e^{\pi i}=-2$.
(b): Calculate $z_{1}^{1 / 3}$ and sketch the roots on a regular polygon.

$$
\begin{aligned}
& z_{1}=-1-i=\sqrt{2} \cdot e^{-i \frac{3 \pi}{4}} . \\
& \Rightarrow z_{1}^{\frac{1}{3}}=z^{\frac{1}{6}} \cdot e^{i \frac{1}{3}\left(-\frac{3 \pi}{4}+2 \pi k\right)}=2^{\frac{1}{6}} \cdot e^{-\frac{i \pi}{4}}\left(e^{\frac{2 \pi i}{3}}\right)^{k} \quad k=0,1,2 . \\
& k=0: c_{1}=2^{\frac{1}{6}} \cdot e^{-\frac{i \pi}{4}}=2^{\frac{1}{6}} \cdot \frac{1}{\sqrt{2}} \cdot(1-i)=2^{-\frac{1}{3} \cdot(1-i)} \\
& k=1: c_{2}=c_{1} \cdot e^{\frac{2 \pi}{3}}=2^{\frac{1}{6}} \cdot e^{i \cdot\left(-\frac{\pi}{4}+\frac{2 \pi}{3}\right)}=2^{\frac{1}{6}} e^{i \cdot \frac{5 \pi}{12}}=2^{\frac{1}{6}} e^{i \frac{5 \pi}{12}} \\
&=2^{-\frac{1}{3}}(1-i) \cdot\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=2^{-\frac{4}{3}} \cdot((-1+\sqrt{3})+i \cdot(\sqrt{3}+1)) \\
& k=2: c_{3}=c_{1} \cdot e^{-\frac{2 \pi i}{3}}=2^{\frac{1}{6}} \cdot e^{i\left(-\frac{\pi}{4}-\frac{2 \pi}{3}\right)}=2^{\frac{1}{6}} e^{-i \cdot \frac{11 \pi}{12}}=2^{\frac{1}{6}} e^{i \frac{i 3 \pi}{12}} \\
&=2^{-\frac{1}{3}(1-i) \cdot\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)=2^{-\frac{4}{3}} \cdot((-1-\sqrt{3})+i \cdot(-\sqrt{3}+1))}
\end{aligned}
$$

2. (50pts) Determine whether the limit exists or not. If it exist, then calculate it.
(a)

$$
\begin{aligned}
\lim _{z \rightarrow 1} \frac{\overline{(z-1)^{2}}}{(z-1)^{2}} & =\lim _{(z i 1 \rightarrow 0} \frac{\frac{\lim _{z \rightarrow 1} \frac{\overline{(z-1)^{2}}}{(z-1)^{2}}}{(z-1)^{2}}}{(z-1)^{2}}=\lim _{w \rightarrow 0} \frac{\overline{w^{2}}}{w^{2}} \stackrel{w=r e^{i \theta}}{=} \lim _{r \rightarrow 0} \frac{r^{2} e^{-2 i \theta}}{r^{2} e^{2 i \theta}} \\
& =\lim _{r \rightarrow 0} e^{-4 i \theta}=e^{-4 i \theta} .
\end{aligned}
$$

The limits along different directions are not the same \Rightarrow the limit does not exist.

$$
\begin{aligned}
& \text { (b) } \\
& \lim _{z=e^{2}} \frac{z^{2}-i}{z^{4}+1} \text {. } \\
& \lim _{z \rightarrow e^{i \frac{3}{4}}} \frac{z^{2}-i}{z^{4}+1}=\lim _{z \rightarrow e^{i \frac{3}{4}}} \frac{z^{2}-i}{\left(z^{2}+i\right)\left(z^{z}-i\right)}=\lim _{z \rightarrow e^{-\frac{3}{4}}} \frac{1}{z^{2}+i} \\
& =\frac{1}{e^{i \frac{\pi}{2}}+i^{i}}=\frac{1}{2 i}=-\frac{i}{2}
\end{aligned}
$$

or

$$
\begin{gathered}
\lim _{z \rightarrow e^{3 \frac{3}{4}}} \frac{z^{2}-i}{z^{4}+1} \stackrel{L^{\prime} H_{\text {capital }}}{ } \lim _{z \rightarrow e^{-3 z}} \frac{2 z}{4 z^{3}}=\lim _{z \rightarrow e^{\frac{3}{4}}} \frac{1}{2 z^{2}} \\
=\frac{1}{2 \cdot e^{\frac{i \pi}{2}}}=\frac{1}{2 i}=-\frac{i}{2}
\end{gathered}
$$

3. (5 Opts)
(1) Sketch the region given by:

$$
-\frac{\pi}{3}<\operatorname{Arg} z \leq 0, \quad 1<|z|<2^{1 / 3}
$$

(2) Find the image of the above region under the mapping $w=z^{3}$.

$$
\downarrow w=z^{3}
$$

4. (50pts)
(a) Find the domain of the following function. Explain why the following function is analytic in its domain and calculate $f^{\prime}(z)$:

$$
D_{\text {oman }}=\{z \in \mathbb{C} ; z \neq-1\}=\mathbb{C} \backslash\{-1\}
$$

Chain rule:

$$
\begin{aligned}
f^{\prime}(z) & =e^{\frac{z-1}{z+1}} \cdot\left(\frac{z-1}{z+1}\right)^{\prime}=e^{\frac{z-1}{z+1}} \frac{1 \cdot(z+1)-(z-1) \cdot 1}{(z+1)^{2}} \\
& =\frac{2}{(z+1)^{2}} e^{\frac{z-1}{z+1}}
\end{aligned}
$$

(b) If $g(z)$ is an analytic function analytic function in a domain D and $\operatorname{Im}(g(z))$ is constant on D, what can you say about $g(z)$? Explain your reason.

Let $g(z)=u(z)+i v(z)$.
By cossumption, $\operatorname{Im}(g(z))=V(z)=$ const $=C_{2}$.
By Cenelry-Riemann equations.

$$
v_{x}=v y=0
$$

$$
\begin{aligned}
& u_{x}=v_{y}=0 \\
& W_{y}=-v_{x}=0
\end{aligned} \Rightarrow d u=0 \Rightarrow u=\text { constant }=c_{1}
$$

so $g(z)=c_{1}+i i_{2}$ is a constant function.

6
5. (50pts) Find the points where the function $f(z)$ is differentiable and then calculate $f^{\prime}(z)$ at those points. Is the function analytic at those points? $\left(z=x+y i=r e^{i \theta}\right)$
(a) $f(z)=\left(x^{2}-y^{2}\right)+(x+y) i$

$$
u(x, y)=x^{2}-y^{2}, v(x, y)=x+y .
$$

$$
\begin{array}{ll}
u_{x}=2 x, & u_{y}=-2 y \\
u_{0}=1, & v_{y}=1 .
\end{array}
$$

Cauely-Riemarn equations:

$$
\left\{\begin{array} { l }
{ 2 x = 1 } \\
{ - 2 y = - 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=\frac{1}{2} \\
y=\frac{1}{2}
\end{array} \text { so } f(z)\right.\right. \text { is differentiable only at. }
$$

$f(z)$ is not ditterenticble in any nergibahood $\Rightarrow f(z)$ is not analytic at any
(b) $f\left(r e^{i \theta}\right)=e^{\theta} \sin (\ln r)+i e^{\theta} \cos (\ln r), \quad r>0,0<\theta<2 \pi$.

$$
\begin{gathered}
\text { (b) } f\left(r e^{i \theta}\right)=e^{\theta} \sin (\ln r)+i e^{\theta} \cos (\ln r), \quad r>0,0<\theta<2 \pi . \\
u(r, \theta)=e^{\theta} \cdot \sin (\ln r), v(r, \theta)=e^{\theta} \cdot \cos (\ln r)
\end{gathered}
$$ point.

$$
\begin{aligned}
& u_{r}=e^{\theta} \cdot \cos (\ln r) \cdot \frac{1}{r}, u_{\theta}=e^{\theta} \cdot \sin (\ln r) . \\
& v_{r}=-e^{\theta} \cdot \sin (\ln r) \cdot \frac{1}{r}, \quad v_{\theta}=e^{\theta} \cdot \cos (\ln r) \\
& \Rightarrow\left\{\begin{array}{l}
r u_{r}=v_{\theta}=e^{\theta} \cdot \cos (\ln r) \\
u_{\theta}=-r v_{r}=e^{\theta} \cdot \sin (\ln r)
\end{array}\right.
\end{aligned}
$$

$\Rightarrow f(z)$ is cualytite at cony point in the domain
(dartlenentable)
$\qquad r>0,0<\theta<2 z\}$
$\Rightarrow f(z)$ is cualyitic at cony point in the domain
(dartlenenteble)
$\qquad r>0,0<\theta<2 z\}$

$$
\begin{aligned}
& f^{\prime}\left(r e^{i \theta}\right)=e^{-i \theta}\left(u_{r}+i v_{r}\right)=e^{-i \theta \cdot} \cdot\left(\frac{e^{\theta} \cos (\ln r)}{r}+i \cdot \frac{-e^{\theta} \operatorname{san}(\ln r}{r} \cdot\right) \\
&=\frac{e^{\theta} \cdot \cos (\ln r)-\dot{z} e^{\theta} \sin (\ln r)}{r e^{i \theta}}=-i \cdot \frac{f(z)}{z} \\
&(f(z)\left.=i \cdot e^{\theta} \cdot(\cos (\ln r)-i \cdot \sin (\ln r))=i e^{\theta} \cdot e^{-i \ln r}=i^{\prime} \cdot e^{-i \log z}\right) \\
&\left(\begin{array}{l}
\text { Generated }
\end{array}\right)=i e^{-i \log z \cdot \frac{-i t}{z} E \frac{4}{z}(z} \frac{\text { Cam Scanner }}{z}
\end{aligned}
$$

Extra Credir Problem
z-plane

$$
\downarrow z^{2}
$$

w-plare

NAME :

1. (5 Opts) (a): Calculate the principal value of $(1+i)^{(1+i)}$.

$$
\begin{aligned}
1+i & =\sqrt{2} \cdot e^{i \frac{\pi}{4}} \Rightarrow \log (1+i)=\ln \sqrt{2}+i \operatorname{lng}(1+i)=\frac{1}{2} \ln 2+i \cdot \frac{\pi}{4} \\
\text { P.V. }(1+i)^{1+i} & =e^{(1+i) \cdot \log (1+i)}=e^{(1+i) \cdot\left(\frac{1}{2} \ln 2+i \cdot \frac{\pi}{4}\right)} \\
& =e^{\left(\frac{1}{2} \ln 2-\frac{\pi}{4}\right)+i\left(\frac{1}{2} \ln 2+\frac{\pi}{4}\right)} \\
& =e^{\left(\frac{1}{2} \ln 2-\frac{\pi}{4}\right)}\left(\cos \left(\frac{1}{2} \ln 2+\frac{\pi}{4}\right)+i \cdot \sin \left(\frac{1}{2} \ln 2+\frac{\pi}{4}\right)\right)
\end{aligned}
$$

(b): Choose the branch of $\log z$ as

$$
\log z=\ln |z|+i \theta,-\frac{5 \pi}{3} \leq \theta<\frac{\pi}{3}
$$

Calculate $\log (1+i)^{2}$ and $2 \log (1+i)$. Are they equal to each other?

$$
(1+i)^{2}=2 i \quad \Rightarrow \quad \log (1+i)^{2}=\ln 2+i \cdot\left(\frac{\pi}{2}+2 \pi \cdot n\right)
$$

$(1+i) \cdot(1+i)=(1-1)+(i+1) \quad$ To fit in the chosen branch, we need to take $n=-1$ to get $\quad\left(-\frac{5 \pi}{3}<-\frac{3 \pi}{2}<\frac{\pi}{3}\right)$

$$
\log (1+i)^{2}=\ln 2+i \cdot\left(\frac{\pi}{2}-2 \pi\right)=\ln 2-i \cdot \frac{3 \pi}{2}
$$

On the other hand, (since $-\frac{5 \pi}{3}<\frac{\pi}{4}<\frac{\pi}{3}$)

$$
2 \log (1+i)=2 \cdot\left(\ln \sqrt{2}+i \cdot \frac{\pi}{4}\right)=\ln 2+i \cdot \frac{\pi}{2}
$$

So

$$
\log (1+i)^{2}=\ln 2-i \cdot \frac{3 \pi}{2} \neq \ln 2+i \cdot \frac{\pi}{2}=2 \cdot \log (1+i)
$$

2.(50pts) Let C denote the upper semicircle of the circle $|z|=\pi$ oriented anticlockwisely. (a). Calculate

$$
\int_{C}(\bar{z})^{-2} d z
$$

$$
\begin{aligned}
& C: \quad z=\pi \cdot e^{i \theta} \quad 0 \leqslant \theta \leqslant \pi, \\
& z^{\prime}(\theta)=\pi i \cdot e^{i \theta}, \overline{z(\theta)}=\pi \cdot e^{-i \theta} \\
& \begin{aligned}
\int_{C}(\bar{z})^{-2} d z & =\int_{0}^{\pi} \pi^{-2} \cdot\left(e^{-i \theta}\right)^{-2} \cdot \pi \cdot i e^{i \theta} d \theta=\int_{0}^{\pi} \cdot \pi^{-1} \cdot e^{3 i \theta} d(i \theta) \\
& \left.=\frac{1}{\pi} \cdot \frac{e^{3 i \theta}}{3}\right]_{0}^{\pi}=\frac{1}{3 \pi}\left(e^{3 i \theta}-e^{0}\right)=-\frac{2}{3 \pi} .
\end{aligned}
\end{aligned}
$$

(b). Calculate the contour integral: $\int_{C} \sin (z) d z$.

$$
\begin{aligned}
& \sin (z)=-(\cos z)^{\prime} \text { so } \\
& \begin{aligned}
\int_{C} \sin (z) d z & \left.=\int_{C}-(\cos z)^{\prime} d z=-\cos z\right]_{-\pi}^{\pi} \\
& =-(\cos \pi-\cos (-\pi))=-(-1-(-1))=0
\end{aligned}
\end{aligned}
$$

3. (50pts) (a). Factorize the polynomial $z^{3}-1$ into linear factors.

$$
z^{3}-1=(z-1) \cdot\left(z^{2}+z+1\right)=(z-1) \cdot\left(z-\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\right) \cdot\left(z-\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\right) \text {. }
$$

Or cubing roots $1^{\frac{1}{3}}=1^{\frac{1}{3}} \cdot e^{i \cdot\left(\frac{0}{3}+\frac{2 \pi}{3} \cdot k\right)} \quad k=0,1,2$

$$
\begin{aligned}
&=1, e^{i \cdot \frac{2 \pi}{3}}, e^{i \cdot \frac{4 \pi}{3}} \\
&=1,-\frac{1}{2}+\frac{\sqrt{3}}{2} i,-\frac{1}{2}-\frac{\sqrt{3}}{2} i \\
& \Rightarrow z^{3}-1=(z-1) \cdot\left(z-\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\right)\left(z-\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\right)
\end{aligned}
$$

(b). Calculate the integral:

$$
\begin{aligned}
\int_{|z-1|=1} \frac{d z}{z^{3}-1} & =\int_{|z-1|=1} \frac{d z}{(z-1)(z-\omega)\left(z-\omega^{2}\right)} \\
& =\int_{|z-1|=1} \frac{d z}{(z-1) \cdot\left(z^{2}+z+1\right)} \\
& \left.=2 \pi i \cdot \frac{1}{z^{2}+z+1}\right]_{z=1}=\frac{2 \pi i}{3}
\end{aligned}
$$

4. (50pts)(a). Calculate the integral:

$$
\begin{aligned}
\int_{|z-1|} & =1 \frac{d z}{\left(z^{2}-1\right)^{3}}=\int_{|z-1|=1} \frac{d z}{(z+1)^{3}(z-1)^{3}} 3 \\
& \left.\left.=\frac{2 \pi i}{2!} \cdot \frac{d^{2}}{d z^{2}}(z+1)^{-3}\right]_{z=1}^{10}=\pi i \cdot(-3) \cdot(-4) \cdot(z+1)^{-5}\right]_{z=1}^{5} \\
& =\frac{12 \pi i}{2^{5}}=\frac{12 \pi i}{32}=\frac{3 \pi i}{8} \quad 2
\end{aligned}
$$

(b). Calculate the series:

$$
\sum_{n=1}^{+\infty} \frac{1-i^{n}}{2^{n}}
$$

$$
\begin{aligned}
\sum_{n=1}^{+\infty} \frac{1-i^{n}}{2^{n}} & =\sum_{n=1}^{+\infty}\left(\frac{1}{2}\right)^{n}-\sum_{n=1}^{+\infty}\left(\frac{i}{2}\right)^{n} \\
& =\frac{\frac{1}{2}}{1-\frac{1}{2}} \frac{\frac{i}{2}}{1-\frac{i}{2}} \\
& =1-\frac{i}{2-i}=1-\frac{i \cdot(2+i)}{(2-i) \cdot(2+i)} \\
& =1-\frac{-1+2 i}{5}=\frac{6}{5}-\frac{2}{5} i
\end{aligned}
$$

5.(50pts) (a). Assume $f(z)=u(z)+i v(z)$ is analytic on the closed disk $\{|z| \leq 2\}$. Assume that $u(z)$ obtains a minimum at $z=1$. What can you say about the function $f(z)$? Explain your reason.

By assumptions, $u(z) \geqslant u(1)$, for any $z \in D_{11}$
Consider the function $g(z)=e^{-f(z)}$ $\{|z| \leq 2\}$.

$$
=e^{-u-i v}
$$

Then $u(z) \geqslant u(1) \Rightarrow-u(z) \leqslant-u(1)$.

$$
|g(z)|=\left|e^{-u} \cdot e^{-i v}\right|=e^{-u(z)} \leqslant e^{-u(1)}
$$

f analyst e on $D \Rightarrow g(z)$ is also arolfor on D.
So the analytic function $g(z)$ obtains its maximum at the interior point $z=\mid \in D$. By maximum modulus principle, $g(z)$ is a constant function. So
$f(z)=-\log g(z)$ must also be a constant function.
(b). Assume that $f(z)$ is an entire function satisfying $|f(z)|<A|z|+B$ for every $z \in \mathbb{C}$, for some uniform constants $A>0$ and $B>0$. What can you say about the function $f(z)$? Explain your reason.

This is problem PI71.10 of homework 10 .
$f(z)$ is a linear function because of the following reasons.
By Cauchy's formula for the Ind order derivative:

$$
\begin{aligned}
& \Rightarrow\left|f^{\prime \prime}\left(z_{0}\right)\right|=\left|\frac{z}{z_{i}}\right| \cdot \int_{\left(z-z_{0}\right)=R}\left|\frac{f(z)}{\left(z-z_{0}\right)^{3}}\right||d z| \quad 5 \\
& \leqslant \frac{1}{\pi} \int_{\left|z-z_{0}\right| \mid R R} \frac{A \cdot|z|+B}{R^{3}}|d z| \leqslant \frac{1}{\pi R^{3}} \int_{\left|z-z_{0}\right|=R^{2}}\left(A\left(\left|z-z_{0}\right|+\left|z_{0}\right|\right)+B\right)|d z| \\
& =\frac{1}{\pi R^{3}} \cdot\left(A\left(R+\left|z_{0}\right|\right)+B\right) \cdot 2 \pi R=\frac{2\left(A R+A\left|z_{0}\right|+B\right)}{R^{2}} \xrightarrow{R \rightarrow+\infty} 0 \\
& \text { So } f^{\prime \prime}\left(z_{0}\right)=0 \text { for any } z_{0} \in \mathbb{C} \text {. } \\
& \text { for any } z_{0} \in \mathbb{C} \\
& \Rightarrow f^{\prime}(z)=a_{1} \text { constant } \Rightarrow f(z)=a_{1} \cdot z+b .5^{\circ} \\
& \left(\begin{array}{c}
|f(z)|=|a z+b| \leqslant A|z|+B \quad \forall z \in \mathbb{C} \Rightarrow \quad|a| \leqslant A) \\
\left|a_{\|}\right| z|-|b|
\end{array}\right.
\end{aligned}
$$

6. (10pts)(Extra credit)

Estimate the following quantity from above without calculating it:

$$
\begin{gathered}
\left|\int_{|z|=10} \frac{z-10}{(z-1)(z-2)} d z\right| \\
\left|\int_{|z|=10} \frac{z-10}{(z-1)(z-z)} d z\right| \leqslant \int_{|z|=10}\left|\frac{z-10}{(z-1) \cdot(z-2)}\right||d z| \\
=\int_{|z|=10} \frac{|z-10|}{|z-1| \cdot|z-z|}|d z| \\
\end{gathered}
$$

or estriate as $\left|\frac{z-10}{(z-1) \mid(z-2)}\right|=\left|\frac{z-10}{z^{2}-3 z+2}\right| \leqslant \frac{|z|+10}{|z|^{2}-3|z|-2}$

$$
\begin{array}{r}
\stackrel{2 k 10}{=} \frac{10+10}{100-30-2}=\frac{20}{68}=\frac{5}{17} \\
\text { to got } \left.\left\lvert\, \int_{|z| \mid 10} \frac{z-10}{10(z-1)(z) 2}\right.\right) d z \left\lvert\, \leqslant \frac{5}{17} \cdot 2 \pi 10=\frac{100 \pi}{17} .\right.
\end{array}
$$

Index of /~chili/mat342f/hw1

Name Last modified Size Description

Parent D	-
飶 sol1.pdf	2014-09-11 23:13 411K
640.95.jpg	2014-08-25 20:54 1.9M
24.9.jpg	2014-08-25 20:54 2.1M
23.jpg	2014-08-25 20:54 1.8M
17.jpg	2014-08-25 20:54 2.1M
16.0.jpg	2014-08-25 20:54 2.1M
14.jpg	2014-08-25 20:54 2.0M
13.jpg	2014-08-25 20:54 2.1M
898.jpg	2014-08-25 20:54 2.1M
7 7.jpg	2014-08-25 20:54 1.9M
-9.3.jpg	2014-08-25 20:54 2.2M
国 4.jpg	2014-08-25 20:54 1.9M

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Index of /~chili/mat342f/hw1

Name Last modified Size Description

- Parent Directory	-
- $4 . \mathrm{y}$ 2.jg	2014-08-25 20:54 1.9M
- 5.jpg	2014-08-25 20:54 2.2M
- 7.jpg	2014-08-25 20:54 1.9M
- 8.jpg	2014-08-25 20:54 2.1M
- 13.jpg	2014-08-25 20:54 2.1M
- 14.jpg	2014-08-25 20:54 2.0M
- 16.jpg	2014-08-25 20:54 2.1M
- 17.jpg	2014-08-25 20:54 2.1M
- 23.jpg	2014-08-25 20:54 1.8M
-24.jpg	2014-08-25 20:54 2.1M
- $25 . \mathrm{jpg}$	2014-08-25 20:54 1.9M
國 sol1.pdf	2014-09-11 23:13 411K

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Index of /~chili/mat342f/hw1

Name Last modified Size Description

- Parent D	-
碃 sol1.pdf	2014-09-11 23:13 411K
23.jpg	2014-08-25 20:54 1.8M
7.jpg	2014-08-25 20:54 1.9M
4.jpg	2014-08-25 20:54 1.9M
- 25.jpg	2014-08-25 20:54 1.9M
14.jpg	2014-08-25 20:54 2.0M
16.jpg	2014-08-25 20:54 2.1M
- $8 . \mathrm{y}$.jpg	2014-08-25 20:54 2.1M
13.jpg	2014-08-25 20:54 2.1M
17.jpg	2014-08-25 20:54 2.1M
-24.jpg	2014-08-25 20:54 2.1M
65.jpg	2014-08-25 20:54 2.2M

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Index of /~chili/mat342f/hw1

Name Last modified Size Description

- Parent Directory	-
- $4 . \mathrm{y}$ 2.jg	2014-08-25 20:54 1.9M
- 5.jpg	2014-08-25 20:54 2.2M
- 7.jpg	2014-08-25 20:54 1.9M
- 8.jpg	2014-08-25 20:54 2.1M
- 13.jpg	2014-08-25 20:54 2.1M
- 14.jpg	2014-08-25 20:54 2.0M
- 16.jpg	2014-08-25 20:54 2.1M
- 17.jpg	2014-08-25 20:54 2.1M
- 23.jpg	2014-08-25 20:54 1.8M
-24.jpg	2014-08-25 20:54 2.1M
- $25 . \mathrm{jpg}$	2014-08-25 20:54 1.9M
國 sol1.pdf	2014-09-11 23:13 411K

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Index of／～chili／mat342f

Name Last modified Size Description

＊Parent Directory	
－${ }^{\text {S }}$ Slide1．jpg	2014－10－06 08：30 52K
－Slide2．jpg	2014－11－09 23：32 50K
耨 contour1．pdf	2014－10－20 12：19 437K
䭍 exam．html	2014－12－18 13：22 1．7K
㦴 final－sol．pdf	2014－12－18 13：11 3．0M
嘓 finalprac．pdf	2014－12－06 17：40 103K
O）hw1／	2014－09－11 23：19
hw2／	2014－09－17 13：37
．hw3／	2014－09－21 23：34
［） $\mathrm{hw} 4 /$	2014－09－24 13：58
［）hw5／	2014－09－27 21：41
）hw6／	2014－10－13 13：24
）hw7／	2014－10－19 14：03
¢ hw8／	2014－10－26 21：28
E）hw9／	2014－11－02 11：21
hww10／	2014－12－18 13：20
E）hw11／	2014－11－18 15：06
）hw12／	2014－11－29 12：53
E）hw13／	2014－12－06 17：26
㜢 main．html	2014－09－09 10：42 6．5K
㦱 mid1－SOL．pdf	2014－10－06 08：26 1．9M
国 mid1－sol．pdf	2014－10－05 22：05 1．9M
㦱 mid2－SOL．pdf	2014－11－10 09：03 2．2M
㦴 midprac1．pdf	2014－09－24 14：14 87K
易 midprac2．pdf	2014－10－29 22：46 100K
㜢 my．css	2014－08－24 21：00 2．4K
辰 notes1．pdf	2014－09－11 23：22 645K
－${ }^{\text {a }}$ overall．jpg	2014－12－18 13：23 47K
E－pf－sol．pdf	2014－12－11 15：49 3．7M
Elprac1－sol．pdf	2014－09－30 14：23 2．0M
㫛 prac1－wrong．pdf	2014－09－29 16：20 1．7M

㦱 prac2－sol．pdf	2014－11－06 14：10 1．6M
䭑 syllabus3（copy）．html	2014－09－29 17：23 6．0K
怔 syllabus3．html	2014－12－18 13：24 9．2K
䭝 syllabus3b．html	2014－09－27 21：44 5．8K

Apache／2．4．7（Ubuntu）Server at www．math．stonybrook．edu Port 80
for every complex number z. Furthermore, 0 and 1 are the only complex numbers with such properties (see Exercise 8).

There is associated with each complex number $z=(x, y)$ an additive inverse

$$
\begin{equation*}
-z=(-x,-y) \tag{5}
\end{equation*}
$$

satisfying the equation $z+(-z)=0$. Moreover, there is only one additive inverse for any given z, since the equation

$$
(x, y)+(u, v)=(0,0)
$$

implies that

$$
u=-x \quad \text { and } \quad v=-y
$$

For any nonzero complex number $z=(x, y)$, there is a number z^{-1} such that $z z^{-1}=1$. This multiplicative inverse is less obvious than the additive one. To find it, we seek real numbers u and v, expressed in terms of x and y, such that

$$
(x, y)(u, v)=(1,0)
$$

According to equation (4), Sec. 1, which defines the product of two complex numbers, u and v must satisfy the pair

$$
x u-y v=1, \quad y u+x v=0
$$

of linear simultaneous equations; and simple computation yields the unique solution

$$
u=\frac{x}{x^{2}+y^{2}}, \quad v=\frac{-y}{x^{2}+y^{2}}
$$

So the multiplicative inverse of $z=(x, y)$ is

$$
\begin{equation*}
z^{-1}=\left(\frac{x}{x^{2}+y^{2}}, \frac{-y}{x^{2}+y^{2}}\right) \quad(z \neq 0) \tag{6}
\end{equation*}
$$

The inverse z^{-1} is not defined when $z=0$. In fact, $z=0$ means that $x^{2}+y^{2}=0$; and this is not permitted in expression (6).

EXERCISES

1. Verify that
(a) $(\sqrt{2}-i)-i(1-\sqrt{2} i)=-2 i$;
(b) $(2,-3)(-2,1)=(-1,8)$;
(c) $(3,1)(3,-1)\left(\frac{1}{5}, \frac{1}{10}\right)=(2,1)$.
2. Show that
(a) $\operatorname{Re}(i z)=-\operatorname{Im} z$;
(b) $\operatorname{Im}(i z)=\operatorname{Re} z$.
3. Show that $(1+z)^{2}=1+2 z+z^{2}$.
4. Verify that each of the two numbers $z=1 \pm i$ satisfies the equation $z^{2}-2 z+2=0$.
5. Prove that multiplication of complex numbers is commutative, as stated at the beginning of Sec. 2.
6. Verify
(a) the associative law for addition of complex numbers, stated at the beginning of Sec. 2 ;
(b) the distributive law (3), Sec. 2.
7. Use the associative law for addition and the distributive law to show that

$$
z\left(z_{1}+z_{2}+z_{3}\right)=z z_{1}+z z_{2}+z z_{3}
$$

8. (a) Write $(x, y)+(u, v)=(x, y)$ and point out how it follows that the complex number $0=(0,0)$ is unique as an additive identity.
(b) Likewise, write $(x, y)(u, v)=(x, y)$ and show that the number $1=(1,0)$ is a unique multiplicative identity.
9. Use $-1=(-1,0)$ and $z=(x, y)$ to show that $(-1) z=-z$.
10. Use $i=(0,1)$ and $y=(y, 0)$ to verify that $-(i y)=(-i) y$. Thus show that the additive inverse of a complex number $z=x+i y$ can be written $-z=-x-i y$ without ambiguity.
11. Solve the equation $z^{2}+z+1=0$ for $z=(x, y)$ by writing

$$
(x, y)(x, y)+(x, y)+(1,0)=(0,0)
$$

and then solving a pair of simultaneous equations in x and y.
Suggestion: Use the fact that no real number x satisfies the given equation to show that $y \neq 0$.

Ans. $z=\left(-\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)$.

3. FURTHER ALGEBRAIC PROPERTIES

In this section, we mention a number of other algebraic properties of addition and multiplication of complex numbers that follow from the ones already described in Sec. 2. Inasmuch as such properties continue to be anticipated because they also apply to real numbers, the reader can easily pass to Sec .4 without serious disruption.

We begin with the observation that the existence of multiplicative inverses enables us to show that if a product $z_{1} z_{2}$ is zero, then so is at least one of the factors z_{1} and z_{2}. For suppose that $z_{1} z_{2}=0$ and $z_{1} \neq 0$. The inverse z_{1}^{-1} exists; and any complex number times zero is zero (Sec. 1). Hence

$$
z_{2}=z_{2} \cdot 1=z_{2}\left(z_{1} z_{1}^{-1}\right)=\left(z_{1}^{-1} z_{1}\right) z_{2}=z_{1}^{-1}\left(z_{1} z_{2}\right)=z_{1}^{-1} \cdot 0=0
$$

There are some expected properties involving quotients that follow from the relation

$$
\begin{equation*}
\frac{1}{z_{2}}=z_{2}^{-1} \quad\left(z_{2} \neq 0\right) \tag{9}
\end{equation*}
$$

which is equation (2) when $z_{1}=1$. Relation (9) enables us, for instance, to write equation (2) in the form

$$
\begin{equation*}
\frac{z_{1}}{z_{2}}=z_{1}\left(\frac{1}{z_{2}}\right) \quad\left(z_{2} \neq 0\right) \tag{10}
\end{equation*}
$$

Also, by observing that (see Exercise 3)

$$
\left(z_{1} z_{2}\right)\left(z_{1}^{-1} z_{2}^{-1}\right)=\left(z_{1} z_{1}^{-1}\right)\left(z_{2} z_{2}^{-1}\right)=1 \quad\left(z_{1} \neq 0, z_{2} \neq 0\right)
$$

and hence that $z_{1}^{-1} z_{2}^{-1}=\left(z_{1} z_{2}\right)^{-1}$, one can use relation (9) to show that

$$
\begin{equation*}
\left(\frac{1}{z_{1}}\right)\left(\frac{1}{z_{2}}\right)=z_{1}^{-1} z_{2}^{-1}=\left(z_{1} z_{2}\right)^{-1}=\frac{1}{z_{1} z_{2}} \quad\left(z_{1} \neq 0, z_{2} \neq 0\right) \tag{11}
\end{equation*}
$$

Another useful property, to be derived in the exercises, is

$$
\begin{equation*}
\left(\frac{z_{1}}{z_{3}}\right)\left(\frac{z_{2}}{z_{4}}\right)=\frac{z_{1} z_{2}}{z_{3} z_{4}} \quad\left(z_{3} \neq 0, z_{4} \neq 0\right) . \tag{12}
\end{equation*}
$$

Finally, we note that the binomial formula involving real numbers remains valid with complex numbers. That is, if z_{1} and z_{2} are any two nonzero complex numbers, then

$$
\begin{equation*}
\left(z_{1}+z_{2}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} z_{1}^{k} z_{2}^{n-k} \quad(n=1,2, \ldots) \tag{13}
\end{equation*}
$$

where

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad(k=0,1,2, \ldots, n)
$$

and where it is agreed that $0!=1$. The proof is left as an exercise. Because addition of complex numbers is commutative, the binomial formula can, of course, be written

$$
\begin{equation*}
\left(z_{1}+z_{2}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} z_{1}^{n-k} z_{2}^{k} \quad(n=1,2, \ldots) \tag{14}
\end{equation*}
$$

EXERCISES

1. Reduce each of these quantities to a real number:
(a) $\frac{1+2 i}{3-4 i}+\frac{2-i}{5 i}$;
(b) $\frac{5 i}{(1-i)(2-i)(3-i)}$
(c) $(1-i)^{4}$.
Ans. $(a)-\frac{2}{5} ; \quad(b)-\frac{1}{2}$
(c) -4 .
2. Show that

$$
\frac{1}{1 / z}=z \quad(z \neq 0)
$$

3. Use the associative and commutative laws for multiplication to show that

$$
\left(z_{1} z_{2}\right)\left(z_{3} z_{4}\right)=\left(z_{1} z_{3}\right)\left(z_{2} z_{4}\right)
$$

4. Prove that if $z_{1} z_{2} z_{3}=0$, then at least one of the three factors is zero.

Suggestion: Write $\left(z_{1} z_{2}\right) z_{3}=0$ and use a similar result (Sec. 3) involving two factors.
5. Derive expression (6), Sec. 3, for the quotient z_{1} / z_{2} by the method described just after it. 6. With the aid of relations (10) and (11) in Sec. 3, derive the identity

$$
\left(\frac{z_{1}}{z_{3}}\right)\left(\frac{z_{2}}{z_{4}}\right)=\frac{z_{1} z_{2}}{z_{3} z_{4}} \quad\left(z_{3} \neq 0, z_{4} \neq 0\right)
$$

7. Use the identity obtained in Exercise 6 to derive the cancellation law

$$
\frac{z_{1} z}{z_{2} z}=\frac{z_{1}}{z_{2}} \quad\left(z_{2} \neq 0, z \neq 0\right)
$$

8. Use mathematical induction to verify the binomial formula (13) in Sec. 3. More precisely, note that the formula is true when $n=1$. Then, assuming that it is valid when $n=m$ where m denotes any positive integer, show that it must hold when $n=m+1$.

$$
\begin{aligned}
& \text { Suggestion: When } n=m+1 \text {, write } \\
& \begin{aligned}
\left(z_{1}+z_{2}\right)^{m+1} & =\left(z_{1}+z_{2}\right)\left(z_{1}+z_{2}\right)^{m}=\left(z_{2}+z_{1}\right) \sum_{k=0}^{m}\binom{m}{k} z_{1}^{k} z_{2}^{m-k} \\
& =\sum_{k=0}^{m}\binom{m}{k} z_{1}^{k} z_{2}^{m+1-k}+\sum_{k=0}^{m}\binom{m}{k} z_{1}^{k+1} z_{2}^{m-k}
\end{aligned}
\end{aligned}
$$

and replace k by $k-1$ in the last sum here to obtain

$$
\left(z_{1}+z_{2}\right)^{m+1}=z_{2}^{m+1}+\sum_{k=1}^{m}\left[\binom{m}{k}+\binom{m}{k-1}\right] z_{1}^{k} z_{2}^{m+1-k}+z_{1}^{m+1}
$$

Finally, show how the right-hand side here becomes

$$
z_{2}^{m+1}+\sum_{k=1}^{m}\binom{m+1}{k} z_{1}^{k} z_{2}^{m+1-k}+z_{1}^{m+1}=\sum_{k=0}^{m+1}\binom{m+1}{k} z_{1}^{k} z_{2}^{m+1-k}
$$

4. VECTORS AND MODULI

It is natural to associate any nonzero complex number $z=x+i y$ with the directed line segment, or vector, from the origin to the point (x, y) that represents z in the complex plane. In fact, we often refer to z as the point z or the vector z. In Fig. 2 the numbers $z=x+i y$ and $-2+i$ are displayed graphicallv
when $z \neq 0$. Next, we multiply through equation (7) by z^{n} :

$$
w z^{n}=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n-1} z^{n-1}
$$

This tells us that

$$
|w \| z|^{n} \leq\left|a_{0}\right|+\left|a_{1}\right||z|+\left|a_{2}\right||z|^{2}+\cdots+\left|a_{n-1}\right||z|^{n-1},
$$

or

$$
\begin{equation*}
|w| \leq \frac{\left|a_{0}\right|}{|z|^{n}}+\frac{\left|a_{1}\right|}{|z|^{n-1}}+\frac{\left|a_{2}\right|}{|z|^{n-2}}+\cdots+\frac{\left|a_{n-1}\right|}{|z|} \tag{9}
\end{equation*}
$$

Now that a sufficiently large positive number R can be found such that each of the quotients on the right in inequality (9) is less than the number $\left|a_{n}\right| /(2 n)$ when $|z|>R$, and so

$$
|w|<n \frac{\left|a_{n}\right|}{2 n}=\frac{\left|a_{n}\right|}{2} \quad \text { whenever } \quad|z|>R
$$

Consequently,

$$
\left|a_{n}+w\right| \geq \| a_{n}|-|w||>\frac{\left|a_{n}\right|}{2} \quad \text { whenever } \quad|z|>R
$$

and, in view of equation (8),
(10) $\left|P_{n}(z)\right|=\left|a_{n}+w \| z\right|^{n}>\frac{\left|a_{n}\right|}{2}|z|^{n}>\frac{\left|a_{n}\right|}{2} R^{n} \quad$ whenever $\quad|z|>R$.

Statement (6) follows immediately from this.

EXERCISES

1. Locate the numbers $z_{1}+z_{2}$ and $z_{1}-z_{2}$ vectorially when
(a) $z_{1}=2 i, \quad z_{2}=\frac{2}{3}-i$;
(b) $z_{1}=(-\sqrt{3}, 1), \quad z_{2}=(\sqrt{3}, 0)$;
(c) $z_{1}=(-3,1), \quad z_{2}=(1,4)$;
(d) $z_{1}=x_{1}+i y_{1}, \quad z_{2}=x_{1}-i y_{1}$.
2. Verify inequalities (3), Sec. 4 , involving $\operatorname{Re} z, \operatorname{Im} z$, and $|z|$.
3. Use established properties of moduli to show that when $\left|z_{3}\right| \neq\left|z_{4}\right|$,

$$
\frac{\operatorname{Re}\left(z_{1}+z_{2}\right)}{\left|z_{3}+z_{4}\right|} \leq \frac{\left|z_{1}\right|+\left|z_{2}\right|}{\left|\left|z_{3}\right|-\left|z_{4}\right|\right|}
$$

4. Verify that $\sqrt{2}|z| \geq|\operatorname{Re} z|+|\operatorname{Im} z|$.

Suggestion: Reduce this inequality to $(|x|-|y|)^{2} \geq 0$.
5. In each case, sketch the set of points determined by the given condition:
(a) $|z-1+i|=1$;
(b) $|z+i| \leq 3$
(c) $|z-4 i| \geq 4$.
6. Using the fact that $\left|z_{1}-z_{2}\right|$ is the distance between two points z_{1} and z_{2}, give a geometric
7. Show that for R sufficiently large, the polynomial $P(z)$ in Example 3, sec. 5 , satisfies
the inequality $\quad|P(z)|<2\left|a_{n}\right||z|^{n}$ whenever $|z|>R$.
Suggestion: Observe that there is a positive number R such that $\left|a_{n}\right| / n$ when $|z|>R$. each quotient in inequality (9), Sec. 5 , is less than $\left|a_{n}\right| / n$ when
8. Let z_{1} and z_{2} denote any complex numbers

$$
z_{1}=x_{1}+i y_{1} \quad \text { and } \quad z_{2}=x_{2}+i y_{2}
$$

Use simple algebra to show that
bra to show that
are the same and then point out how the identity

$$
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|
$$

follows.
9. Use the final result in Exercise 8 and mathematical induction to show that

$$
\left|z^{n}\right|=|z|^{n} \quad(n=1,2, \ldots)
$$

where z is any complex number. That is, after noting that this identity is obviously true when $n=1$, assume that it is true when $n=m$ where m is any positive integer and then show that it must be true when $n=m+1$.

6. COMPLEX CONJUGATES

The complex conjugate, or simply the conjugate, of a complex number $z=x+i y$ is defined as the complex number $x-i y$ and is denoted by \bar{z}; that is,

$$
\begin{equation*}
\bar{z}=x-i y \tag{1}
\end{equation*}
$$

The number \bar{z} is represented by the point $(x,-y)$, which is the reflection in the real axis of the point (x, y) representing z (Fig. 5). Note that

$$
\overline{\bar{z}}=z \quad \text { and } \quad|\bar{z}|=|z|
$$

for all z.
 way.

EXAMPLE 2. Property (8) tells us that $\left|z^{2}\right|=|z|^{2}$ and $\left|z^{3}\right|=|z|^{3}$. Hence if z is

$$
\begin{aligned}
& \text { from the generalized triangle inequality } \\
& \qquad\left|z^{3}+3 z^{2}-2 z+1\right| \leq|z|^{3}+3|z|^{2}+2|z|+1<25
\end{aligned}
$$

EXERCISES

1. Use properties of conjugates and moduli established in Sec. 6 to show that
(a) $\overline{\bar{z}+3 i}=z-3 i$;
(b) $\overline{i z}=-i \bar{z}$;
(c) $\overline{(2+i)^{2}}=3-4 i$;
(d) $|(2 \bar{z}+5)(\sqrt{2}-i)|=\sqrt{3}|2 z+5|$.
2. Sketch the set of points determined by the condition
(a) $\operatorname{Re}(\bar{z}-i)=2$;
(b) $|2 \bar{z}+i|=4$.
3. Verify properties (3) and (4) of conjugates in Sec. 6.
4. Use property (4) of conjugates in Sec. 6 to show that
(a) $\overline{z_{1} z_{2} z_{3}}=\overline{z_{1}} \overline{z_{2}} \overline{z_{3}}$;
(b) $\overline{z^{4}}=\bar{z}^{4}$.
5. Verify property (9) of moduli in Sec. 6.
6. Use results in Sec. 6 to show that when z_{2} and z_{3} are nonzero,
(a) $\overline{\left(\frac{z_{1}}{z_{2} z_{3}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}} \overline{z_{3}}}$;
(b) $\left|\frac{z_{1}}{z_{2} z_{3}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|\left|z_{3}\right|}$.
7. Show that

$$
\left|\operatorname{Re}\left(2+\bar{z}+z^{3}\right)\right| \leq 4 \quad \text { when }|z| \leq 1
$$

8. It is shown in Sec. 3 that if $z_{1} z_{2}=0$, then at least one of the numbers z_{1} and z_{2} must be zero. Give an alternative proof based on the corresponding result for real numbers and using identity (8), Sec. 6.
9. By factoring $z^{4}-4 z^{2}+3$ into two quadratic factors and using inequality (2), Sec. 5, show that if z lies on the circle $|z|=2$, then

$$
\left|\frac{1}{z^{4}-4 z^{2}+3}\right| \leq \frac{1}{3}
$$

10. Prove that
(a) z is real if and only if $\bar{z}=z$;
(b) z is either real or pure imaginary if and only if $\bar{z}^{2}=z^{2}$.
11. Use mathematical induction to show that when $n=2,3, \ldots$,
(a) $\overline{z_{1}+z_{2}+\cdots+z_{n}}=\overline{z_{1}}+\overline{z_{2}}+\cdots+\overline{z_{n}}$;
(b) $\overline{z_{1} z_{2} \cdots z_{n}}=\overline{z_{1}} \overline{z_{2}} \cdots \overline{z_{n}}$.
12. Let $a_{0}, a_{1}, a_{2}, \ldots, a_{n}(n \geq 1)$ denote real numbers, and let z be any complex number. With the aid of the results in Exercise 11, show that

$$
\overline{a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}}=a_{0}+a_{1} \bar{z}+a_{2} \bar{z}^{2}+\cdots+a_{n} \bar{z}^{n}
$$

13. Show that the equation $\left|z-z_{0}\right|=R$ of a circle, centered at z_{0} with radius R, can be written

$$
|z|^{2}-2 \operatorname{Re}\left(z \overline{z_{0}}\right)+\left|z_{0}\right|^{2}=R^{2}
$$

14. Using expressions (6), Sec. 6 , for $\operatorname{Re} z$ and $\operatorname{Im} z$, show that the hyperbola $x^{2}-y^{2}=1$ can be written

$$
z^{2}+\bar{z}^{2}=2
$$

15. Follow the steps below to give an algebraic derivation of the triangle inequality (Sec. 5)

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

(a) Show that

$$
\left|z_{1}+z_{2}\right|^{2}=\left(z_{1}+z_{2}\right)\left(\overline{z_{1}}+\overline{z_{2}}\right)=z_{1} \overline{z_{1}}+\left(z_{1} \overline{z_{2}}+\overline{z_{1} \overline{z_{2}}}\right)+z_{2} \overline{z_{2}}
$$

(b) Point out why

$$
z_{1} \overline{z_{2}}+\overline{z_{1} \overline{z_{2}}}=2 \operatorname{Re}\left(z_{1} \overline{z_{2}}\right) \leq 2\left|z_{1}\right|\left|z_{2}\right|
$$

(c) Use the results in parts (a) and (b) to obtain the inequality

$$
\left|z_{1}+z_{2}\right|^{2} \leq\left(\left|z_{1}\right|+\left|z_{2}\right|\right)^{2}
$$

and note how the triangle inequality follows.

7. EXPONENTIAL FORM

Let r and θ be polar coordinates of the point (x, y) that corresponds to a nonzero complex number $z=x+i y$. Since $x=r \cos \theta$ and $y=r \sin \theta$, the number z can be written in polar form as

$$
\begin{equation*}
z=r(\cos \theta+i \sin \theta) \tag{1}
\end{equation*}
$$

If $z=0$, the coordinate θ is undefined; and so it is understood that $z \neq 0$ whenever polar coordinates are used.

In complex analysis, the real number r is not allowed to be negative and is the length of the radius vector for z; that is, $r=|z|$. The real number θ represents the angle, measured in radians, that z makes with the positive real axis when z is interpreted as a radius vector (Fig. 6). As in calculus, θ has an infinite number of possible values. including negative ones, that differ by integral multiples of 2π. Those values can b determined from the equation $\tan \theta=y / x$, where the quadrant containing the poin corresponding to z must be specified. Each value of θ is called an argument of z, an the set of all such values is denoted by $\arg z$. The principal value of $\arg z$, denoted b

Statement (2) tells us that

$$
\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1} z_{2}^{-1}\right)=\arg z_{1}+\arg \left(z_{2}^{-1}\right)
$$

and, since (Sec. 8)

$$
z_{2}^{-1}=\frac{1}{r_{2}} e^{-i \theta_{2}}
$$

one can see that

$$
\begin{equation*}
\arg \left(z_{2}^{-1}\right)=-\arg z_{2} \tag{3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg z_{1}-\arg z_{2} \tag{4}
\end{equation*}
$$

Statement (3) is, of course, to be interpreted as saying that the set of all values on the left-hand side is the same as the set of all values on the right-hand side. Statement (4) is, then, to be interpreted in the same way that statement (2) is.

EXAMPLE 2. In order to illustrate statement (4), let us use it to find the principal value of $\operatorname{Arg} z$ when

$$
z=\frac{i}{-1-i}
$$

We start by writing

$$
\arg z=\arg i-\arg (-1-i)
$$

Since

$$
\operatorname{Arg} i=\frac{\pi}{2} \quad \text { and } \quad \operatorname{Arg}(-1-i)=-\frac{3 \pi}{4}
$$

one value of $\arg z$ is $5 \pi / 4$. But this is not a principal value Θ, which must lie in the interval $-\pi<\Theta \leq \pi$. We can, however, obtain that value by adding some integral multiple, possibly negative, of 2π :

$$
\operatorname{Arg}\left(\frac{i}{-1-i}\right)=\frac{5 \pi}{4}-2 \pi=-\frac{3 \pi}{4}
$$

EXERCISES

1. Find the principal argument $\operatorname{Arg} z$ when
(a) $z=\frac{-2}{1+\sqrt{3} i}$;
(b) $z=(\sqrt{3}-i)^{6}$.

Ans. (a) $2 \pi / 3$;
(b) π.
2. Show that $(a)\left|e^{i \theta}\right|=1$; (b) $e^{\overline{i \theta}}=e^{-i \theta}$.
3. Use mathematical induction to show that

$$
e^{i \theta_{1}} e^{i \theta_{2}} \cdots e^{i \theta_{n}}=e^{i\left(\theta_{1}+\theta_{2}+\cdots+\theta_{n}\right)} \quad(n=2,3, \ldots)
$$

4. Using the fact that the modulus $\left|e^{i \theta}-1\right|$ is the distance between the points $e^{i \theta}$ and 1 (see Sec. 4), give a geometric argument to find a value of θ in the interval $0 \leq \theta<2 \pi$ that satisfies the equation $\left|e^{i \theta}-1\right|=2$.

Ans. π.
5. By writing the individual factors on the left in exponential form, performing the needed operations, and finally changing back to rectangular coordinates, show that
(a) $i(1-\sqrt{3} i)(\sqrt{3}+i)=2(1+\sqrt{3} i)$;
(b) $5 i /(2+i)=1+2 i$;
(c) $(\sqrt{3}+i)^{6}=-64$;
(d) $(1+\sqrt{3} i)^{-10}=2^{-11}(-1+\sqrt{3} i)$.
6. Show that if $\operatorname{Re} z_{1}>0$ and $\operatorname{Re} z_{2}>0$, then

$$
\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}
$$

where principal arguments are used.
7. Let z be a nonzero complex number and n a negative integer $(n=-1,-2, \ldots$). Also, write $z=r e^{i \theta}$ and $m=-n=1,2, \ldots$ Using the expressions

$$
z^{m}=r^{m} e^{i m \theta} \quad \text { and } \quad z^{-1}=\left(\frac{1}{r}\right) e^{i(-\theta)}
$$

verify that $\left(z^{m}\right)^{-1}=\left(z^{-1}\right)^{m}$ and hence that the definition $z^{n}=\left(z^{-1}\right)^{m}$ in Sec. 7 could have been written alternatively as $z^{n}=\left(z^{m}\right)^{-1}$.
8. Prove that two nonzero complex numbers z_{1} and z_{2} have the same moduli if and only if there are complex numbers c_{1} and c_{2} such that $z_{1}=c_{1} c_{2}$ and $z_{2}=c_{1} \overline{c_{2}}$.

Suggestion: Note that

$$
\exp \left(i \frac{\theta_{1}+\theta_{2}}{2}\right) \exp \left(i \frac{\theta_{1}-\theta_{2}}{2}\right)=\exp \left(i \theta_{1}\right)
$$

and [see Exercise 2(b)]

$$
\exp \left(i \frac{\theta_{1}+\theta_{2}}{2}\right) \overline{\exp \left(i \frac{\theta_{1}-\theta_{2}}{2}\right)}=\exp \left(i \theta_{2}\right)
$$

9. Establish the identity

$$
1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z} \quad(z \neq 1)
$$

and then use it to derive Lagrange's trigonometric identity:

$$
1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin [(2 n+1) \theta / 2]}{2 \sin (\theta / 2)} \quad(0<\theta<2 \pi)
$$

Suggestion: As for the first identity, write $S=1+z+z^{2}+\cdots+z^{n}$ and consider the difference $S-z S$. To derive the second identity, write $z=e^{i \theta}$ in the first one.
10. Use de Moivre's formula (Sec. 8) to derive the following trigonometric identities:
(a) $\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta$;
(b) $\sin 3 \theta=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta$.
11. (a) Use the binomial formula (14), Sec. 3, and de Moivre's formula (Sec. 8) to write

$$
\cos n \theta+i \sin n \theta=\sum_{k=0}^{n}\binom{n}{k} \cos ^{n-k} \theta(i \sin \theta)^{k} \quad(n=0,1,2, \ldots) .
$$

Then define the integer m by means of the equations

$$
m= \begin{cases}n / 2 & \text { if } n \text { is even }, \\ (n-1) / 2 & \text { if } n \text { is odd }\end{cases}
$$

and use the above summation to show that [compare with Exercise $10(a)$]

$$
\cos n \theta=\sum_{k=0}^{m}\binom{n}{2 k}(-1)^{k} \cos ^{n-2 k} \theta \sin ^{2 k} \theta \quad(n=0,1,2, \ldots) .
$$

(b) Write $x=\cos \theta$ in the final summation in part (a) to show that it becomes a polynomial*

$$
T_{n}(x)=\sum_{k=0}^{m}\binom{n}{2 k}(-1)^{k} x^{n-2 k}\left(1-x^{2}\right)^{k}
$$

of degree $n(n=0,1,2, \ldots)$ in the variable x.

10. ROOTS OF COMPLEX NUMBERS

Consider now a point $z=r e^{i \theta}$, lying on a circle centered at the origin with radius r (Fig. 10). As θ is increased, z moves around the circle in the counterclockwise direction. In particular, when θ is increased by 2π, we arrive at the original point; and the same is true when θ is decreased by 2π. It is, therefore, evident from Fig. 10 that two nonzero complex numbers

$$
z_{1}=r_{1} e^{i \theta_{1}} \quad \text { and } \quad z_{2}=r_{2} e^{i \theta_{2}}
$$

FIGURE 10
*These are called Chebyshev polynomials and are prominent in approximation theory.

Index of /~chili/mat342f/hw2

Name Last modified Size Description

- Parent Direc	-
Emw2-sol.pdf	2014-09-17 13:36 2.4M
氟 Week2.pdf	2014-09-08 13:42 71K
35.JPG	2014-09-02 23:01 861K
3 34.JPG	2014-09-02 23:01 1.0M
-31.JPG	2014-09-02 23:00 873K
9 30.JPG	2014-09-02 23:00 882K

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Index of /~chili/mat342f/hw2

Name Last modified Size Description

- Parent Direc	
- 30.JPG	2014-09-02 23:00 882K
- 31.JPG	2014-09-02 23:00 873K
- 34.JPG	2014-09-02 23:01 1.0M
- 35.JPG	2014-09-02 23:01 861K
㦴 Week2.pdf	2014-09-08 13:42 71K
氯 hw2-sol.pdf	2014-09-17 13:36 2.4M

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Index of /~chili/mat342f/hw2

Name Last modified Size Description

- Parent Direc	
Em Week2.pdf	2014-09-08 13:42 71K
35.JPG	2014-09-02 23:01 861K
31.JPG	2014-09-02 23:00 873K
- $30 . \mathrm{JPG}$	2014-09-02 23:00 882K
34.JPG	2014-09-02 23:01 1.0M
堲 hw2-sol.pdf	2014-09-17 13:36 2.4M

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Index of /~chili/mat342f/hw2

Name Last modified Size Description

- Parent Direc	
- 30.JPG	2014-09-02 23:00 882K
- 31.JPG	2014-09-02 23:00 873K
- 34.JPG	2014-09-02 23:01 1.0M
- 35.JPG	2014-09-02 23:01 861K
㦴 Week2.pdf	2014-09-08 13:42 71K
氯 hw2-sol.pdf	2014-09-17 13:36 2.4M

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80
expression (5) can be put in the form

$$
\begin{equation*}
c_{0}=\sqrt{A}\left(\sqrt{\frac{1+\cos \alpha}{2}}+i \sqrt{\frac{1-\cos \alpha}{2}}\right) \tag{6}
\end{equation*}
$$

But $\cos \alpha=a / A$, and so

$$
\begin{equation*}
\sqrt{\frac{1 \pm \cos \alpha}{2}}=\sqrt{\frac{1 \pm(a / A)}{2}}=\sqrt{\frac{A \pm a}{2 A}} \tag{7}
\end{equation*}
$$

Consequently, it follows from expression (6) and (7), as well as the relation $c_{1}=-o_{0}$,
that the two square roots of $a+i(a>0)$ are (see Fig. 14)
(8)

$$
\pm \frac{1}{\sqrt{2}}(\sqrt{A+a}+i \sqrt{A-a})
$$

FIGURE 14

EXERCISES

1. Find the square roots of $(a) 2 i$; (b) $1-\sqrt{3} i$ and express them in rectangular coordinates,

$$
\text { Ans. (a) } \pm(1+i) ; \quad \text { (b) } \pm \frac{\sqrt{3}-i}{\sqrt{2}}
$$

2. Find the three cube roots $c_{k}(k=0,1,2)$ of $-8 i$, express them in rectangular coordinate and point out why they are as shown in Fig. 15.

$$
\text { Ans. } \pm \sqrt{3}-i, 2 i
$$

3. Find $(-8-8 \sqrt{3} i)^{1 / 4}$, express the roots in rectangular coordinates, exhibit them as the vertices of a certain square, and point out which is the principal root.

$$
\text { Ans. } \pm(\sqrt{3}-i) . \pm(1+\sqrt{3} i) .
$$

4. In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of certain regular polygons, and identify the principal root:
(a) $(-1)^{1 / 3} ; \quad$ (b) $8^{1 / 6}$.

Ans. (b) $\pm \sqrt{2}, \pm \frac{1+\sqrt{3} i}{\sqrt{2}}, \pm \frac{1-\sqrt{3} i}{\sqrt{2}}$.
5. According to Sec. 10 , the three cube roots of a nonzero complex number z_{0} can be written $c_{0}, c_{0} \omega_{3}, c_{0} \omega_{3}^{2}$ where c_{0} is the principal cube root of z_{0} and

$$
\omega_{3}=\exp \left(i \frac{2 \pi}{3}\right)=\frac{-1+\sqrt{3} i}{2}
$$

Show that if $z_{0}=-4 \sqrt{2}+4 \sqrt{2} i$, then $c_{0}=\sqrt{2}(1+i)$ and the other two cube roots are, in rectangular form, the numbers

$$
c_{0} \omega_{3}=\frac{-(\sqrt{3}+1)+(\sqrt{3}-1) i}{\sqrt{2}}, \quad c_{0} \omega_{3}^{2}=\frac{(\sqrt{3}-1)-(\sqrt{3}+1) i}{\sqrt{2}} .
$$

6. Find the four zeros of the polynomial $z^{4}+4$, one of them being

$$
z_{0}=\sqrt{2} e^{i \pi / 4}=1+i
$$

Then use those zeros to factor $z^{2}+4$ into quadratic factors with real coefficients.

$$
\text { Ans. }\left(z^{2}+2 z+2\right)\left(z^{2}-2 z+2\right)
$$

7. Show that if c is any nth root of unity other than unity itself, then

$$
1+c+c^{2}+\cdots+c^{n-1}=0
$$

Suggestion: Use the first identity in Exercise 9, Sec. 9.
8. (a) Prove that the usual formula solves the quadratic equation

$$
a z^{2}+b z+c=0 \quad(a \neq 0)
$$

when the coefficients a, b, and c are complex numbers. Specifically, by completing the square on the left-hand side, derive the quadratic formula

$$
z=\frac{-b+\left(b^{2}-4 a c\right)^{1 / 2}}{2 a}
$$

where both square roots are to be considered when $b^{2}-4 a c \neq 0$,
(b) Use the result in part (a) to find the roots of the equation $z^{2}+2 z+(1-i)=0$. Ans. (b) $\left(-1+\frac{1}{\sqrt{2}}\right)+\frac{i}{\sqrt{2}}, \quad\left(-1-\frac{1}{\sqrt{2}}\right)-\frac{i}{\sqrt{2}}$.

So inequality (4) represents the region interior to the circle (Fig. 18)

$$
(x-0)^{2}+\left(y+\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
$$

centered at $z=-i / 2$ and with radius $1 / 2$.

FIGURE 18

A porite is said to be an accumulation point, or limit point, of a set S if each deleted no babor hood of z_{0} contains at least one point of S. It follows that if a set S closed then it centain each of its accumulation points. For if an accumulation poin z_{0} were ay inould be a boundary point of S; but this contradicts the fact th a closer zetuscauts all of its boundary points. It is left as an exercise to show th the converse is, in fact, true. Thus a set is closed if and only if it contains all of accumulation points.

Evidently, a point z_{0} is not an accumulation point of a set S whenever there e some deleted neighborhood of z_{0} that does not contain at least one point in S. that the origin is the only accumulation point of the set

$$
z_{n}=\frac{i}{n} \quad(n=1,2, \ldots)
$$

EXERCISES

1. Sketch the following sets and determine which are domains:
(a) $|z-2+i| \leq 1$;
(b) $|2 z+3|>4$;
(c) $\operatorname{Im} z>1$;
(d) $\operatorname{Im} z=1$;
(e) $0 \leq \arg z \leq \pi / 4(z \neq 0)$;
(f) $|z-4| \geq|z|$.

Ans. (b), (c) are domains.
2. Which sets in Exercise 1 are neither open nor closed?

Ans. (e).
3. Which sets in Exercise 1 are bounded?

Ans. (a).
4. In each case, sketch the closure of the set:
(a) $-\pi<\arg z<\pi(z \neq 0)$;
(b) $|\operatorname{Re} z|<|z|$;
(c) $\operatorname{Re}\left(\frac{1}{z}\right) \leq \frac{1}{2}$;
(d) $\operatorname{Re}\left(z^{2}\right)>0$.
5. Let S be the open set consisting of all points z such that $|z|<1$ or $|z-2|<1$. State why S is not connected.
6. Show that a set S is open if and only if each point in S is an interior point.
7. Determine the accumulation points of each of the following sets:
(a) $z_{n}=i^{n}(n=1,2, \ldots)$;
(b) $z_{n}=i^{n} / n(n=1,2, \ldots)$;
(c) $0 \leq \arg z<\pi / 2(z \neq 0)$;
(d) $z_{n}=(-1)^{n}(1+i) \frac{n-1}{n}(n=1,2, \ldots)$.
Ans. (a) None;
(b) 0 ;
(d) $\pm(1+i)$.
8. Prove that if a set contains each of its accumulation points, then it must be a closed set.
9. Show that any point z_{0} of a domain is an accumulation point of that domain. 10. Prove that a finite set of points $z_{1}, z_{2}, \ldots, z_{n}$ cannot have any accumulation points.

Index of /~chili/mat342f/hw3

Name Last modified Size Description

- Parent Direc	
徃 hw3-sol.pdf	2014-09-21 23:34 753K
䍓 Week3.pdf	2014-09-08 13:38 585K
55a.JPG	2014-09-15 19:34 854K
55.JPG	2014-09-07 19:25 854K
54.JPG	2014-09-07 19:25 783K
44.JPG	2014-09-07 19:25 871K
43.JPG	2014-09-07 19:25 800K

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Index of /~chili/mat342f/hw3

Name Last modified Size Description

Parent Directory	-
44.JPG	$2014-09-0719: 25871 \mathrm{~K}$
55.JPG	$2014-09-0719: 25854 \mathrm{~K}$
54.JPG	$2014-09-0719: 25783 \mathrm{~K}$
43.JPG	$2014-09-0719: 25800 \mathrm{~K}$
Week3.pdf	$2014-09-0813: 38585 \mathrm{~K}$
55a.JPG	$2014-09-1519: 34854 \mathrm{~K}$
hw3-sol.pdf	$2014-09-2123: 34753 \mathrm{~K}$

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Index of /~chili/mat342f/hw3

Name Last modified Size Description

* Parent Direct	
啫 Week3.pdf	2014-09-08 13:38 585K
㖿 hw3-sol.pdf	2014-09-21 23:34 753K
54.JPG	2014-09-07 19:25 783K
- $43 . \mathrm{JPG}$	2014-09-07 19:25 800K
55.JPG	2014-09-07 19:25 854K
55a.JPG	2014-09-15 19:34 854K
- 44.JPG	2014-09-07 19:25 871K

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Index of /~chili/mat342f/hw3

Name Last modified Size Description

Parent Directory	-
43.JPG	$2014-09-0719: 25800 \mathrm{~K}$
44.JPG	$2014-09-0719: 25871 \mathrm{~K}$
54.JPG	$2014-09-0719: 25783 \mathrm{~K}$
55.JPG	$2014-09-0719: 25854 \mathrm{~K}$
55a.JPG	$2014-09-1519: 34854 \mathrm{~K}$
Week3.pdf	$2014-09-0813: 38585 \mathrm{~K}$
LW3-sol.pdf	$2014-09-2123: 34753 \mathrm{~K}$

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80
the entire w plane. However, in this case, the transformation is not one to one since both the positive and negative real axes in the z plane are mapped onto the positive real axis in the w plane.

When n is a positive integer greater than 2 , various mapping properties of the transformation $w=z^{n}$, or $w=r^{n} e^{i n \theta}$, are similar to those of $w=z^{2}$. Such a transformation maps the entire z plane onto the entire w plane, where each nonzero point in the w plane is the image of n distinct points in the z plane. The circle $r=r_{0}$ is mapped onto the circle $\rho=r_{0}^{n}$; and the sector $r \leq r_{0}, 0 \leq \theta \leq 2 \pi / n$ is mapped onto the $\operatorname{disk} \rho \leq r_{0}^{n}$, but not in a one to one manner.

Other, but somewhat more involved, mappings by $w=z^{2}$ appear in Example 1, Sec. 107, and Exercises 1 through 4 Sec. 108.

EXERCISES

1. For each of the functions below, describe the domain of definition that is understood:
(a) $f(z)=\frac{1}{z^{2}+1}$;
(b) $f(z)=\operatorname{Arg}\left(\frac{1}{z}\right)$;
(c) $f(z)=\frac{z}{z+\bar{z}}$;
(d) $f(z)=\frac{1}{1-|z|^{2}}$.
Ans. (a) $z \neq \pm i$;
(b) $\operatorname{Re} z \neq 0$.
2. In each case, write the function $f(z)$ in the form $f(z)=u(x, y)+i v(x, y)$:
(a) $f(z)=z^{3}+z+1$;
(b) $f(z)=\frac{\bar{z}^{2}}{z} \quad(z \neq 0)$.

Suggestion: In part (b), start by multiplying the numerator and denominator by \bar{z}.
Ans. (a) $f(z)=\left(x^{3}-3 x y^{2}+x+1\right)+i\left(3 x^{2} y-y^{3}+y\right)$;

$$
\text { (b) } f(z)=\frac{x^{3}-3 x y^{2}}{x^{2}+y^{2}}+i \frac{y^{3}-3 x^{2} y}{x^{2}+y^{2}} \text {. }
$$

3. Suppose that $f(z)=x^{2}-y^{2}-2 y+i(2 x-2 x y)$, where $z=x+i y$. Use the expressions (see Sec. 6)

$$
x=\frac{z+\bar{z}}{2} \text { and } y=\frac{z-\bar{z}}{2 i}
$$

to write $f(z)$ in terms of z, and simplify the result.

$$
\text { Ans. } f(z)=\bar{z}^{2}+2 i z \text {. }
$$

4. Write the function

$$
f(z)=z+\frac{1}{z} \quad(z \neq 0)
$$

in the form $f(:)=u(r, \theta)+i v(r, \theta)$.

$$
\text { Ans. } f(z)=\left(r+\frac{1}{r}\right) \cos \theta+i\left(r-\frac{1}{r}\right) \sin \theta
$$

5. By referring to the discussion in Sec. 14 related to Fig. 19 there, find a domain in the \& plane whose image under the transformation $w=z^{2}$ is the square domain in the w plame bounded by the lines $u=1, u=2, v=1$, and $v=2$. (See Fig. 2, Appendix 2.)
6. Find and sketch, showing corresponding orientations, the images of the hyperbolas

$$
x^{2}-y^{2}=c_{1}\left(c_{1}<0\right) \text { and } 2 x y=c_{2}\left(c_{2}<0\right)
$$

under the transformation $w=z^{2}$.
7. Use rays indicated by dashed half lines in Fig. 21 to show that the transformation $w=z^{2}$ maps the first quadrant onto the upper half plane, as shown in Fig. 21.
8. Sketch the region onto which the sector $r \leq 1,0 \leq \theta \leq \pi / 4$ is mapped by the transformation (a) $w=z^{2} ;(b) w=z^{3}$; (c) $w=z^{4}$.
9. One interpretation of a function $w=f(z)=u(x, y)+i v(x, y)$ is that of a vector field in the domain of definition of f. The function assigns a vector w, with components $u(x, y)$ and $v(x, y)$, to each point z at which it is defined. Indicate graphically the vector fields represented by
(a) $w=i z: \quad$ (b) $w=\frac{z}{|z|}$.

15. LIMITS

Let a function f be defined at all points z in some deleted neighborhood of a point z_{0}. The statement that $f(z)$ has a limit w_{0} as z approaches z_{0}, or that

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} f(z)=w_{0} \tag{1}
\end{equation*}
$$

means that the point $w=f(z)$ can be made arbitrarily close to w_{0} if we choose the point z close enough to z_{0} but distinct from it . We now express the definition of limit in a precise and usable form.

Statement (1) means that for each positive number ε, there is a positive number δ such that

$$
\begin{equation*}
\left|f(z)-w_{0}\right|<\varepsilon \quad \text { whenever } \quad 0<\left|z-z_{0}\right|<\delta \tag{2}
\end{equation*}
$$

Geometrically, this definition says that for each ε neighborhood $\left|w-w_{0}\right|<\varepsilon$ o w_{0}, there is a deleted δ neighborhood $0<\left|z-z_{0}\right|<\delta$ of z_{0} such that every poin z in it has an image w lying in the ε neighborhood (Fig. 22). Note that even thougl all points in the deleted neighborhood $0<\left|z-z_{0}\right|<\delta$ are to be considered, thei images need not fill up the entire neighborhood $\left|w-w_{0}\right|<\varepsilon$. If f has the constan value w_{0}, for instance, the image of z is always the center of that neighborhood. Note

Theorem 4. If a function f is continuous throughout a region R that is bout closed and bounded, there exists a nonnegative real number M such that

$$
\begin{equation*}
|f(z)| \leq M \quad \text { for all points } z \text { in } R \tag{6}
\end{equation*}
$$

where equality holds for at least one such z.
To prove this, we assume that the function f in equation (5) is continuous and note how it follows that the function

$$
\sqrt{[u(x, y)]^{2}+[v(x, y)]^{2}}
$$

is continuous throughout R and thus reaches a maximum value M somewhere in R : Inequality (6) thus holds, and we say that f is bounded on R.

EXERCISES

1. Use definition (2), Sec. 15, of limit to prove that
(a) $\lim _{z \rightarrow z_{0}} \operatorname{Re} z=\operatorname{Re} z_{0}$;
(b) $\lim _{z \rightarrow z_{0}} \bar{z}=\overline{z_{0}}$;
(c) $\lim _{z \rightarrow 0} \frac{z^{2}}{z}=0$.
2. Let a, b, and c denote complex constants. Then use definition (2), Sec. 15 , of limit to show that
(a) $\lim _{z \rightarrow z_{0}}(a z+b)=a z_{0}+b$;
(b) $\lim _{z \rightarrow z}\left(z^{2}+c\right)=z_{0}^{2}+c ;$
(c) $\lim _{z \rightarrow 1-i}[x+i(2 x+y)]=1+i \quad(z=x+i y)$.
3. Let n be a positive integer and let $P(z)$ and $Q(z)$ be polynomials, where $Q\left(z_{0}\right) \neq 0$. Use Theorem 2 in Sec. 16, as well as limits appearing in that section, to find
(a) $\lim _{z \rightarrow z_{0}} \frac{1}{z^{n}}\left(z_{0} \neq 0\right)$;
(b) $\lim _{z \rightarrow i} \frac{i z^{3}-1}{z+i}$;
(c) $\lim _{z \rightarrow z_{0}} \frac{P(z)}{Q(z)}$.
Ans. (a) $1 / z_{0}^{n}$;
(b) 0 ;
(c) $P\left(z_{0}\right) / Q\left(z_{0}\right)$.
4. Use mathematical induction and property (9), Sec. 16 , of limits to show that

$$
\lim _{z \rightarrow z_{0}} z^{n}=z_{0}^{n}
$$

when n is a positive integer $(n=1,2, \ldots)$.
5. Show that the function

$$
f(z)=\left(\frac{z}{\bar{z}}\right)^{2}
$$

has the value 1 at all nonzero points on the real and imaginary axes, where $z=(x, 0)$ and $z=(0, y)$, respectively, but that it has the value -1 at all nonzero points on the line $y=x$, where $z=(x, x)$. Thus show that the limit of $f(z)$ as z tends to 0 does

[^4]not exist. [Note that it is not sufficient to simply consider nonzero points $z=(x, 0)$ and $z=(0, y)$, as it was in Example 2, Sec. 15.]
6. Prove statement (8) in Theorem 2 of Sec. 16 using
(a) Theorem 1 in Sec. 16 and properties of limits of real-valued functions of two real variables;
(b) definition (2), Sec. 15, of limit.
7. Use definition (2), Sec. 15, of limit to prove that
$$
\text { if } \quad \lim _{z \rightarrow z_{0}} f(z)=w_{0}, \quad \text { then } \quad \lim _{z \rightarrow z_{0}}|f(z)|=\left|w_{0}\right| \text {. }
$$

Suggestion: Observe how inequality (2), Sec. 5 , enables one to write

$$
\| f(z)\left|-\left|w_{0}\right|\right| \leq\left|f(z)-w_{0}\right|
$$

8. Write $\Delta z=z-z_{0}$ and show that

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0} \quad \text { if and only if } \quad \lim _{\Delta z \rightarrow 0} f\left(z_{0}+\Delta z\right)=w_{0}
$$

9. Show that

$$
\lim _{z \rightarrow z_{0}} f(z) g(z)=0 \quad \text { if } \quad \lim _{z \rightarrow z_{0}} f(z)=0
$$

and if there exists a positive number M such that $|g(z)| \leq M$ for all z in some neighborhood of z_{0}.
10. Use the theorem in Sec. 17 to show that
(a) $\lim _{z \rightarrow \infty} \frac{4 z^{2}}{(z-1)^{2}}=4$;
(b) $\lim _{z \rightarrow 1} \frac{1}{(z-1)^{3}}=\infty$;
(c) $\lim _{z \rightarrow \infty} \frac{z^{2}+1}{z-1}=\infty$.
11. With the aid of the theorem in Sec. 17, show that when

$$
T(z)=\frac{a z+b}{c z+d} \quad(a d-b c \neq 0)
$$

(a) $\lim _{z \rightarrow \infty} T(z)=\infty \quad$ if $c=0$;
(b) $\lim _{z \rightarrow \infty} T(z)=\frac{a}{c}$ and $\lim _{z \rightarrow-d / c} T(z)=\infty \quad$ if $c \neq 0$.
12. State why limits involving the point at infinity are unique.
13. Show that a set S is unbounded (Sec. 12) if and only if every neighborhood of the point at infinity contains at least one point in S.

19. DERIVATIVES

Let f be a function whose domain of definition contains a neighborhood $\left|z-z_{0}\right|<\varepsilon$ of a point z_{0}. The derivative of f at z_{0} is the limit

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \tag{1}
\end{equation*}
$$

and the function f is said to be differentiable at z_{0} when $f^{\prime}\left(z_{0}\right)$ exists.
not exist. [Note that it is not sufficient to simply consider nonzero points $z=(x, 0)$ and $z=(0, y)$, as it was in Example 2, Sec. 15.]
6. Prove statement (8) in Theorem 2 of Sec. 16 using
(a) Theorem 1 in Sec. 16 and properties of limits of real-valued functions of two real variables;
(b) definition (2), Sec. 15, of limit.
7. Use definition (2), Sec. 15, of limit to prove that

$$
\text { if } \quad \lim _{z \rightarrow z_{0}} f(z)=w_{0}, \quad \text { then } \quad \lim _{z \rightarrow z_{0}}|f(z)|=\left|w_{0}\right| \text {. }
$$

Suggestion: Observe how inequality (2), Sec. 5 , enables one to write

$$
\| f(z)\left|-\left|w_{0}\right|\right| \leq\left|f(z)-w_{0}\right|
$$

8. Write $\Delta z=z-z_{0}$ and show that

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0} \quad \text { if and only if } \quad \lim _{\Delta z \rightarrow 0} f\left(z_{0}+\Delta z\right)=w_{0}
$$

9. Show that

$$
\lim _{z \rightarrow z_{0}} f(z) g(z)=0 \quad \text { if } \quad \lim _{z \rightarrow z_{0}} f(z)=0
$$

and if there exists a positive number M such that $|g(z)| \leq M$ for all z in some neighborhood of z_{0}.
10. Use the theorem in Sec. 17 to show that
(a) $\lim _{z \rightarrow \infty} \frac{4 z^{2}}{(z-1)^{2}}=4$;
(b) $\lim _{z \rightarrow 1} \frac{1}{(z-1)^{3}}=\infty$;
(c) $\lim _{z \rightarrow \infty} \frac{z^{2}+1}{z-1}=\infty$.
11. With the aid of the theorem in Sec. 17, show that when

$$
T(z)=\frac{a z+b}{c z+d} \quad(a d-b c \neq 0)
$$

(a) $\lim _{z \rightarrow \infty} T(z)=\infty \quad$ if $c=0$;
(b) $\lim _{z \rightarrow \infty} T(z)=\frac{a}{c}$ and $\lim _{z \rightarrow-d / c} T(z)=\infty \quad$ if $c \neq 0$.
12. State why limits involving the point at infinity are unique.
13. Show that a set S is unbounded (Sec. 12) if and only if every neighborhood of the point at infinity contains at least one point in S.

19. DERIVATIVES

Let f be a function whose domain of definition contains a neighborhood $\left|z-z_{0}\right|<\varepsilon$ of a point z_{0}. The derivative of f at z_{0} is the limit

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \tag{1}
\end{equation*}
$$

and the function f is said to be differentiable at z_{0} when $f^{\prime}\left(z_{0}\right)$ exists.

Index of /~chili/mat342f/hw4

Name Last modified Size Description

Parent Directory	-
2014-09-24 13:57 2.0M	
hw4-sol.pdf	$2014-09-1514: 28330 \mathrm{~K}$
Week4.pdf	$2014-09-1519: 321.4 \mathrm{M}$
61-62-70.pdf	$2014-09-1519: 34854 \mathrm{~K}$

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Index of /~chili/mat342f/hw4

Name Last modified Size Description

Parent Directory	-
2014-09-15 14:28 330K	
Week4.pdf	$2014-09-1519: 321.4 \mathrm{M}$
61-62-70.pdf	$2014-09-1519: 34854 \mathrm{~K}$
55.JPG	$2014-09-2413: 572.0 \mathrm{M}$

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Index of /~chili/mat342f/hw4

Name Last modified Size Description

Parent Directory	-
2014-09-15 14:28 330K	
55.JPG	$2014-09-1519: 34854 \mathrm{~K}$
61-62-70.pdf	$2014-09-1519: 321.4 \mathrm{M}$
皆	

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80

Index of /~chili/mat342f/hw4

Name Last modified Size Description

Apache/2.4.7 (Ubuntu) Server at www.math.stonybrook.edu Port 80
not exist. [Note that it is not sufficient to simply consider nonzero points $z=(x, 0)$ and $z=(0, y)$, as it was in Example 2, Sec. 15.]
6. Prove statement (8) in Theorem 2 of Sec. 16 using
(a) Theorem 1 in Sec. 16 and properties of limits of real-valued functions of two real variables;
(b) definition (2), Sec. 15, of limit.
7. Use definition (2), Sec. 15, of limit to prove that

$$
\text { if } \quad \lim _{z \rightarrow z_{0}} f(z)=w_{0}, \quad \text { then } \quad \lim _{z \rightarrow z_{0}}|f(z)|=\left|w_{0}\right| \text {. }
$$

Suggestion: Observe how inequality (2), Sec. 5 , enables one to write

$$
\| f(z)\left|-\left|w_{0}\right|\right| \leq\left|f(z)-w_{0}\right|
$$

8. Write $\Delta z=z-z_{0}$ and show that

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0} \quad \text { if and only if } \quad \lim _{\Delta z \rightarrow 0} f\left(z_{0}+\Delta z\right)=w_{0}
$$

9. Show that

$$
\lim _{z \rightarrow z_{0}} f(z) g(z)=0 \quad \text { if } \quad \lim _{z \rightarrow z_{0}} f(z)=0
$$

and if there exists a positive number M such that $|g(z)| \leq M$ for all z in some neighborhood of z_{0}.
10. Use the theorem in Sec. 17 to show that
(a) $\lim _{z \rightarrow \infty} \frac{4 z^{2}}{(z-1)^{2}}=4$;
(b) $\lim _{z \rightarrow 1} \frac{1}{(z-1)^{3}}=\infty$;
(c) $\lim _{z \rightarrow \infty} \frac{z^{2}+1}{z-1}=\infty$.
11. With the aid of the theorem in Sec. 17, show that when

$$
T(z)=\frac{a z+b}{c z+d} \quad(a d-b c \neq 0)
$$

(a) $\lim _{z \rightarrow \infty} T(z)=\infty \quad$ if $c=0$;
(b) $\lim _{z \rightarrow \infty} T(z)=\frac{a}{c}$ and $\lim _{z \rightarrow-d / c} T(z)=\infty \quad$ if $c \neq 0$.
12. State why limits involving the point at infinity are unique.
13. Show that a set S is unbounded (Sec. 12) if and only if every neighborhood of the point at infinity contains at least one point in S.

19. DERIVATIVES

Let f be a function whose domain of definition contains a neighborhood $\left|z-z_{0}\right|<\varepsilon$ of a point z_{0}. The derivative of f at z_{0} is the limit

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \tag{1}
\end{equation*}
$$

and the function f is said to be differentiable at z_{0} when $f^{\prime}\left(z_{0}\right)$ exists.

EXERCISES

1. Use definition (3), Sec. 19, to give a direct proof that

$$
\frac{d w}{d z}=2 z \quad \text { when } \quad w=z^{2}
$$

2. Use results in Sec. 20 to find $f^{\prime}(z)$ when
(a) $f(z)=3 z^{2}-2 z+4$;
(b) $f(z)=\left(2 z^{2}+i\right)^{5}$;
(c) $f(z)=\frac{z-1}{2 z+1}\left(z \neq-\frac{1}{2}\right)$;
(d) $f(z)=\frac{\left(1+z^{2}\right)^{4}}{z^{2}} \quad(z \neq 0)$.
3. Using results in Sec. 20, show that
(a) a polynomial

$$
P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n} \quad\left(a_{n} \neq 0\right)
$$

of degree $n(n \geq 1)$ is differentiable everywhere, with derivative

$$
P^{\prime}(z)=a_{1}+2 a_{2} z+\cdots+n a_{n} z^{n-1}
$$

(b) the coefficients in the polynomial $P(z)$ in part (a) can be written

$$
a_{0}=P(0), \quad a_{1}=\frac{P^{\prime}(0)}{1!}, \quad a_{2}=\frac{P^{\prime \prime}(0)}{2!}, \quad \ldots, \quad a_{n}=\frac{P^{(n)}(0)}{n!} .
$$

4. Suppose that $f\left(z_{0}\right)=g\left(z_{0}\right)=0$ and that $f^{\prime}\left(z_{0}\right)$ and $g^{\prime}\left(z_{0}\right)$ exist, where $g^{\prime}\left(z_{0}\right) \neq 0$. Use definition (1), Sec. 19, of derivative to show that

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}
$$

5. Derive expression (3), Sec. 20, for the derivative of the sum of two functions.
6. Derive expression (2), Sec. 20, for the derivative of z^{n} when n is a positive integer by using
(a) mathematical induction and expression (4), Sec. 20, for the derivative of the product of two functions;
(b) definition (3), Sec. 19, of derivative and the binomial formula (Sec. 3).
7. Prove that expression (2), Sec. 20, for the derivative of z^{n} remains valid when n is a negative integer $(n=-1,-2, \ldots)$, provided that $z \neq 0$.

Suggestion: Write $m=-n$ and use the rule for the derivative of a quotient of two functions.
8. Use the method in Example 2, Sec. 19, to show that $f^{\prime}(z)$ does not exist at any point z when
(a) $f(z)=\operatorname{Re} z$;
(b) $f(z)=\operatorname{Im} z$.
9. Let f denote the function whose values are

$$
f(z)= \begin{cases}\bar{z}^{2} / z & \text { when } \quad z \neq 0 \\ 0 & \text { when } \quad z=0\end{cases}
$$

Show that if $z=0$, then $\Delta w / \Delta z=1$ at each nonzero point on the real and imaginary axes in the Δz, or $\Delta x \Delta y$, plane. Then show that $\Delta w / \Delta z=-1$ at each nonzero point ($\Delta x, \Delta x$) on the line $\Delta y=\Delta x$ in that plane (Fig. 29). Conclude from these observations that $f^{\prime}(0)$ does not exist. Note that to obtain this result, it is not sufficient to consider only horizontal and vertical approaches to the origin in the Δz plane. (Compare with Exercise 5, Sec. 18, as well as Example 2, Sec. 19.)

FIGURE 29
10. With the aid of the binomial formula (13) in Sec. 3, point out why each of the functions

$$
P_{n}(z)=\frac{1}{n!2^{n}} \frac{d^{n}}{d z^{n}}\left(z^{2}-1\right)^{n} \quad(n=0,1,2, \ldots)
$$

is a polynomial (Sec. 13) of degree n^{*}. (We use the convention that the derivative of order zero of a function is the function itself.)

21. CAUCHY-RIEMANN EQUATIONS

In this section, we obtain a pair of equations that the first-order partial derivatives of the component functions u and v of a function

$$
\begin{equation*}
f(z)=u(x, y)+i v(x, y) \tag{1}
\end{equation*}
$$

must satisfy at a point $z_{0}=\left(x_{0}, y_{0}\right)$ when the derivative of f exists there. We also show how to express $f^{\prime}\left(z_{0}\right)$ in terms of those partial derivatives.

Starting with the assumption that $f^{\prime}\left(z_{0}\right)$ exists, we write

$$
z_{0}=x_{0}+i y_{0}, \quad \Delta z=\Delta x+i \Delta y
$$

where $z \neq 0$, the component functions are

$$
u=\frac{\cos 2 \theta}{r^{2}} \text { and } \quad v=-\frac{\sin 2 \theta}{r^{2}}
$$

Since

$$
r u_{r}=-\frac{2 \cos 2 \theta}{r^{2}}=v_{\theta} . \quad u_{\theta}=-\frac{2 \sin 2 \theta}{r^{2}}=-r v_{r}
$$

and since the other conditions in the theorem are satisfied at every nonzero point $z=r e^{i \theta}$, the derivative of f exists when $z \neq 0$. Moreover, according to the theorem, $=r e^{i \theta}$. the derivative of $f^{\prime}(z)=e^{-i \theta}\left(-\frac{2 \cos 2 \theta}{r^{3}}+i \frac{2 \sin 2 \theta}{r^{3}}\right)=-2 e^{-i \theta} \frac{e^{-i 2 \theta}}{r^{3}}=-\frac{2}{\left(r e^{i \theta}\right)^{3}}=-\frac{2}{z^{3}}$.

EXAMPLE 2. The theorem can be used to show that any branch

$$
f(z)=\sqrt{r} e^{i \theta / 2} \quad(r>0, \alpha<\theta<\alpha+2 \pi)
$$

of the square root function $z^{1 / 2}$ has a derivative everywhere in its domain of definition. Here

$$
u(r, \theta)=\sqrt{r} \cos \frac{\theta}{2} \quad \text { and } \quad v(r, \theta)=\sqrt{r} \sin \frac{\theta}{2}
$$

Inasmuch as

$$
r u_{r}=\frac{\sqrt{r}}{2} \cos \frac{\theta}{2}=v_{\theta} \quad \text { and } \quad u_{\theta}=-\frac{\sqrt{r}}{2} \sin \frac{\theta}{2}=-r v_{r}
$$

and since the remaining conditions in the theorem are satisfied, the derivative $f^{\prime}(z)$ exists at each point where $f(z)$ is defined. The theorem also tells us that

$$
f^{\prime}(z)=e^{-i \theta}\left(\frac{1}{2 \sqrt{r}} \cos \frac{\theta}{2}+i \frac{1}{2 \sqrt{r}} \sin \frac{\theta}{2}\right) ;
$$

and this reduces to

$$
f^{\prime}(z)=\frac{1}{2 \sqrt{r}} e^{-i \theta}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)=\frac{1}{2 \sqrt{r} e^{i \theta / 2}}=\frac{1}{2 f(z)}
$$

EXERCISES

1. Use the theorem in Sec. 21 to show that $f^{\prime}(z)$ does not exist at any point if
(a) $f(z)=\bar{z}$;
(b) $f(z)=z-\bar{z}$;
(c) $f(z)=2 x+i x y^{2}$;
(d) $f(z)=e^{x} e^{-i y}$.
2. Use the theorem in Sec. 23 to show that $f^{\prime}(z)$ and its derivative $f^{\prime \prime}(z)$ exist everywhere, and find $f^{\prime \prime}(z)$ when
(a) $f(z)=i z+2$;
(b) $f(z)=e^{-x} e^{-i y}$;
(c) $f(z)=z^{3}$;
(d) $f(z)=\cos x \cosh y-i \sin x \sinh y$.

Ans. (b) $f^{\prime \prime}(z)=f(z) ; \quad$ (d) $f^{\prime \prime}(z)$ Genfenated by CamScanner

[^0]: *The terms regular and holomorphic are also used in the literature to denote analyticity.

[^1]: *Named for C. Jordan (1838-1922), pronouncedridon'rated by Camseanner

[^2]: *See pp. 115-116 of the book by Newman or Sec. 13 of the one by Thron, both of which are cited in Appendix 1. The special case in which C is a simple closed polygon is proved on pp. 281-285 of Vol. 1 of the work by Hille, also cited in Appendix 1.

[^3]: *The usual way to evaluate this integral is by writing its square as

 $$
 \int_{0}^{\infty} e^{-x^{2}} d x \int_{0}^{\infty} e^{-y^{2}} d y=\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y
 $$

[^4]: "See, for instance, A. E. Taylor and W. R. Mann, "Advanced Calculus," 3d ed., pp. 125-126 and p. 529,
 1983.

