MAT 336: History of Mathematics

Home
Course Info
Syllabus
Presentations

Welcome to MAT 336

MAT 336 is called "History of Mathematics." A better name for it might be "Mathematics, and its History." Throughout this course, we will be studying some of the most beautiful and timeless mathematical problems (theorems), their solutions (proofs), and their discoverers, as well as the historical developments that lead to each breakthrough. Rather than going deeply into a single complete theory as we understand it today, in this course the material is drawn from a broad variety of sources and topics, and arranged roughly chronologically. One should leave this course with a bird's-eye view of many developments in mathematics up to the 20th century. So this is what makes the course both (I hope) fun and interesting, and (I hope) challenging.

The prerequisites for the course are MAT 200 or AMS 310.
There are weekly homework assignments, six quizzes, two midterms, one in-class presentations, and a final exam. Suggestions for presentations are available at this page.

For more information, see the course info page.
Important dates:
Feb 9 Deadline to sign-up for in-class presentation topics
Mar 2 Midterm 1
Apr 6 Midterm 2 or (W) Paper Due
May 23 Final Exam, 2:15-4:15 pm
There will be no make-ups. Anyone absent from a quiz, exam, or presentation will receive a zero for that portion.
To consider an exceptional circumstance requires a letter from a Dean.

USING ONLY A COMPASS AND STRAIGHTEDGE, IT'S IMPOSSIBLE TO CONSTRUCT FRIENDS.
(Thanks to Yousuf for the link.)

MAT 336: History of Mathematics

Home
Course Info
Syllabus
Presentations

Welcome to MAT 336

MAT 336 is called "History of Mathematics." A better name for it might be "Mathematics, and its History." Throughout this course, we will be studying some of the most beautiful and timeless mathematical problems (theorems), their solutions (proofs), and their discoverers, as well as the historical developments that lead to each breakthrough. Rather than going deeply into a single complete theory as we understand it today, in this course the material is drawn from a broad variety of sources and topics, and arranged roughly chronologically. One should leave this course with a bird's-eye view of many developments in mathematics up to the 20th century. So this is what makes the course both (I hope) fun and interesting, and (I hope) challenging.

The prerequisites for the course are MAT 200 or AMS 310.
There are weekly homework assignments, six quizzes, two midterms, one in-class presentations, and a final exam. Suggestions for presentations are available at this page.

For more information, see the course info page.
Important dates:
Feb 9 Deadline to sign-up for in-class presentation topics
Mar 2 Midterm 1
Apr 6 Midterm 2 or (W) Paper Due
May 23 Final Exam, 2:15-4:15 pm
There will be no make-ups. Anyone absent from a quiz, exam, or presentation will receive a zero for that portion.
To consider an exceptional circumstance requires a letter from a Dean.

USING ONLY A COMPASS AND STRAIGHTEDGE, IT'S IMPOSSIBLE TO CONSTRUCT FRIENDS.
(Thanks to Yousuf for the link.)

UNIVERSITY
Home
Course Info
Syllabus
Presentations

MAT 336: History of Mathematics

Course Information

INSTRUCTION

Professor Alex Kontorovich
Office: Math Tower 3-120
E-mail: alexk@math.sunysb.edu
Office Hours: Mondays 1-2pm, Wednesdays 11:30 am - 12:30 pm, or by appointment

Grader: Evan Wright
Office: Math Tower 2-104
E-mail: evanpw@math.sunysb.edu
Office Hours: Tuesday 1-2pm in 2-104; Tuesday 2-3pm and Wednesday 12-1pm in the MLC

LECTURES

MW 2:20-3:40pm, Chemistry 128

ATTENDANCE

Attendance is mandatory. You are responsible for all information presented in every lecture, including material presented by your peers.

TEXTS

Journey through Genius: The Great Theorems of Mathematics by William Dunham History of Mathematics: An Introduction by David Burton

WEEKLY ASSIGNMENTS

Every week there will be required reading and homework assignments, which are collected on Wednesdays at the beginning of class. The detailed list is available on the syllabus page. Late homework will not be accepted under any circumstances.

QUIZZES

We will have periodic quizzes on accumulated material (lectures, reading, homework, and student presentations). See the home page for policy on missing quizzes.

PRESENTATIONS

Each of you is responsible for one in-class presentation on a topic of your choosing.
These are to be selected from the list found here. A detailed outline of your presentation is due in class one week before your scheduled presentation. Your choice of topic is due on Feb 9th. See the home page for policy on missing your scheduled presentation.

WRITING OPTION

Students wishing to receive credit towards the writing requirement must notify me by Feb 9 via email. Only a reply email confirms that you are taking the "writing option", denoted by (W) throughout. If this is the case, you will write a 15 page paper on the topic of your presentation. A complete draft is due on March 14th and will be returned with comments/suggestions. The final paper is due on April 6th, in lieu of the second midterm, and will be graded as such.

EXAMS

There are two midterms and one final. The dates are:

Midterm 1: March 2nd
Midterm 2: April 6th
Final Exam: May 23rd
For those taking the writing option (W), the important dates for the paper are:
First Draft Due: March 14th
Paper Due: April 6th
See the home page for policy on missing exams or paper deadlines.
GRADING
Your course grade will be computed as follows:
Final Exam: 30\%
Midterm 1: 15\%
Midterm 2/(W)Paper: 15\%
Quizzes: 20\%
Presentation: 10\%
Homework: 10\%

CHEATING

Any work suspected of being copied or otherwise fraudulently represented will immediately result in a failing grade for the course, and will be persecuted to the highest extent allowed by University Policy.

Help OUTSIDE CLASS

The Math Learning Center is located in Math Tower S-240A and offers free help to any student requesting it. It also provides a locale for students wishing to form study groups.
AMERICANS WITH DISABILITIES ACT
If you have a physical, psychological, medical or learning disability that may impact your course work, please contact Disability Support Services, ECC (Educational Communications Center) Building, room 128, (631) 632-6748. They will determine with you what accommodations are necessary and appropriate. (Note that we cannot make special arrangements for students with disabilities except for those determined by DSS.) All information on and documentation of a disability condition should be supplied to the professor in writing at the earliest possible time.

Home

Course Info
Syllabus
Presentations

MAT 336: History of Mathematics

Course Syllabus

Readings are assigned from:
Dunham: Journey through Genius: The Great Theorems of Mathematics
Burton: History of Mathematics: An Introduction

Assignments will be posted one week in advance of their due date, so make sure you press Ctrl-R to reload!

WEEK	LECTURE 1	LECTURE 2	TOPICS	READING	HOMEWORK
$\begin{gathered} \text { Week } \\ 1 \\ 1 / 31, \\ 2 / 02 \end{gathered}$	Introduction, Overview		Notion of Number, Counting, Base 60 arithmetic Irrationality, Quadrature	Burton: Chapter 1	Burton: 1.2 \#1-7,11-13 1.3 \#1-5 Given that $\mathrm{V}=1 / 3$ ha $\wedge 2$ for a square pyramid, prove V=1/3 $h(a \wedge 2+a b+b \wedge 2)$ for a frustum. due 2/09
$\begin{gathered} \text { Week } \\ 2 \\ 2 / 07, \\ 2 / 09 \end{gathered}$		Presentations Signup Quiz 1	Quadrature of the Lune Squaring a Circle Trisecting an angle Doubling a cube Algebraic/Transcendental Numbers	Dunham: Chapter 1 Burton: Chapter 3.1-3.3	Burton: 3.2 \#2,3,5,6 3.3 \#2-5 (*)Find a polynomial with integer coefficients so that it has a root at Sqrt[2]+Sqrt[3]. (**)Another chance at the frustum problem. Due 2/16
$\begin{gathered} \text { Week } \\ 3 \\ 2 / 14, \\ 2 / 16 \end{gathered}$		BBC: The Story of Maths	Pythagorean theorem Figurative numbers	Dunham: Chapter 2 Burton: Chapter 4.1-4.2	Burton: 4.2 \#1-10 Give a formula for $\operatorname{Cos}(5 x)$ given $\operatorname{Cos}(\mathrm{x})$ Due 2/23
$\begin{gathered} \text { Week } \\ 4 \\ 2 / 21, \\ 2 / 23 \end{gathered}$	Quiz 2 Presentations 1, 2	Presentations $\text { 3, } 4$	"Elements" Book I Parallel postulate	Dunham: Chapter 2/3 Burton: Chapter 2.4-2.6	STUDY!!!
$\begin{gathered} \text { Week } \\ 5 \\ 2 / 28, \\ 3 / 02 \end{gathered}$	Presentations 5, 6 Review	MIDTERM 1	Infinitude of primes	Burton: Chapter 4.3	$\begin{gathered} \text { Burton: } 4.3 \# 10,11,12,13, \\ 15,17,18 \\ \text { Due 3/09 } \end{gathered}$
$\begin{gathered} \text { Week } \\ 6 \\ 3 / 07 \\ 3 / 09 \end{gathered}$			Non-Euclidean geometries Furstenberg's infinitude of primes	Dunham: Chapters 3/4 Burton: Chapter 4.5	Burton: 4.5 \#1, 2, 3, 4, 5 (*) Prove that if $2^{\wedge} n-1$ is a (Mersenne) prime, then $\mathrm{N}=$ $\left(2^{\wedge} n-1\right) 2^{\wedge}(n-1)$ is perfect. $(* *)$ Show that the set $\{0,1\}$ is closed in Furstenberg's topology. [Hint: find a (possibly

$\left.\begin{array}{|c|c|c|c|c|c|} & & & & \text { infinite) collection of } \\ \text { arithmetic progressions } \\ \text { whose union is Z-\{0,1\}] } \\ \text { Due 3/16 }\end{array}\right]$

MAT 336: History of

Home
Course Info
Syllabus
Presentations

Mathematics

PRESENTATIONS

Starting in week 4 (February 21), each class will include two 15-minute student presentations.
You will sign-up for a presentation in class on February 9th. Topics will be determined by choice; collisions will be resolved by a lottery.
A detailed outline of your presentation is due in class one week before, so if your presentation is on Feb 21, the outline must be submitted on Feb 14.

PLAGIARISM

In collecting information for your outline and presentation, you will undoubtedly look through a vast number of resources. These must all be included in a bibliography, submitted with your outline. The source of every piece of information must be clearly delineated.

GRADING

Your presentation will be graded out of 10 points, according to the following rubric:
(1 point) Outline Content (due the week before)
(1 point) Outline Bibliography (due the week before)
(1 point) Time Management (no less than 10 mins, no more than 15)
(1 point) Speaking in a Clear, Easily-Audible Voice
(1 point) Historical Content
(1 point) Creativity/Originality of Presentation
(4 points) Mathematical Content

Presentation Topics and Schedule

WEEK	PRESENTER \& TITLE
Week 4 $(2 / 21,2 / 23)$	1. Reezan (W), Rhind Papyrus, Rosetta Stone 2. Melissa, Egyptian Multiplication and Unit Fraction Tables 3. Sophia, Egyptian Approximation to Area of the Circle 4. Sheila (W), Plimpton 322
Week 5 $(2 / 28,3 / 02)$	5. Jared, Twin Primes Conjecture 6. Ze Chen, Dirichlet's Theorem
Week 7 (3/16)	7. Sugjae (W), Archemedes's Cattle Problem 8. Qi, Chang Ch'iu-chien 10. Anielisa, Bhaskara
Week 8 $(3 / 21,3 / 23)$	11. Yousuf, al-Khwarizmi 12. Humberto (W), Abu Kamil and Thabit ibn Qurra

	13. Peter (W), Apollonius: Point/Point/Point and Line/Line/Line 14. Alex S, Apollonius: Point/Point/Line
Week 9 (3/28)	15. Rose, Apollonius: Point/Line/Line 18. Ren, Apollonius: Line/Line/Circle 19. Christian, Huygens 21. Sean, Apollonius: Circle/Circle/Circle
Week 9 (3/30)	23. Leon, "Liber Abaci" and "Liber Quadratorum" 24. Nazia, Jordanus de Nemore
Week 10 $(4 / 04)$	22. Christina (W), Descartes' Circle Theorem
Week 11 $(4 / 11,4 / 13)$	25. Haolong, Galileo
Week 12 $(4 / 18,4 / 20)$	SPRING BREAK
Week 13 $(4 / 25,4 / 27)$	27. Douglas (W), Brahe and Kepler 29. Jenna, Graunt 30. Adam (W), Pascal 31. Ashley (W), De Mere
Week 14 $(5 / 02,5 / 04)$	32. Hao, Maurolico 33. Mikhail (W), Formal Proofs 34. Alex C, De Moivre 35. Jose (W), Laplace
Week 15 $(5 / 09,5 / 11)$	36. Natalie (W), Somerville 37. Corey, Poisson 38. Huo, Chebyshev

